2 * interrupt-handling magic
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
49 #include <sys/types.h>
50 #ifndef LISP_FEATURE_WIN32
58 #include "interrupt.h"
66 #include "genesis/fdefn.h"
67 #include "genesis/simple-fun.h"
68 #include "genesis/cons.h"
70 static void run_deferred_handler(struct interrupt_data *data, void *v_context);
71 #ifndef LISP_FEATURE_WIN32
72 static void store_signal_data_for_later (struct interrupt_data *data,
73 void *handler, int signal,
75 os_context_t *context);
78 sigaddset_deferrable(sigset_t *s)
82 sigaddset(s, SIGQUIT);
83 sigaddset(s, SIGPIPE);
84 sigaddset(s, SIGALRM);
86 sigaddset(s, SIGTSTP);
87 sigaddset(s, SIGCHLD);
89 sigaddset(s, SIGXCPU);
90 sigaddset(s, SIGXFSZ);
91 sigaddset(s, SIGVTALRM);
92 sigaddset(s, SIGPROF);
93 sigaddset(s, SIGWINCH);
95 #if !((defined(LISP_FEATURE_DARWIN) || defined(LISP_FEATURE_FREEBSD)) && defined(LISP_FEATURE_SB_THREAD))
96 sigaddset(s, SIGUSR1);
97 sigaddset(s, SIGUSR2);
100 #ifdef LISP_FEATURE_SB_THREAD
101 sigaddset(s, SIG_INTERRUPT_THREAD);
106 sigaddset_blockable(sigset_t *s)
108 sigaddset_deferrable(s);
109 #ifdef LISP_FEATURE_SB_THREAD
110 #ifdef SIG_RESUME_FROM_GC
111 sigaddset(s, SIG_RESUME_FROM_GC);
113 sigaddset(s, SIG_STOP_FOR_GC);
117 /* initialized in interrupt_init */
118 static sigset_t deferrable_sigset;
119 static sigset_t blockable_sigset;
123 check_blockables_blocked_or_lose(void)
125 #if !defined(LISP_FEATURE_WIN32)
126 /* Get the current sigmask, by blocking the empty set. */
127 sigset_t empty,current;
130 thread_sigmask(SIG_BLOCK, &empty, ¤t);
131 for(i = 1; i < NSIG; i++) {
132 if (sigismember(&blockable_sigset, i) && !sigismember(¤t, i))
133 lose("blockable signal %d not blocked\n",i);
139 unblock_gc_signals(void)
141 #ifdef LISP_FEATURE_SB_THREAD
144 #if defined(SIG_RESUME_FROM_GC)
145 sigaddset(&new,SIG_RESUME_FROM_GC);
147 sigaddset(&new,SIG_STOP_FOR_GC);
148 thread_sigmask(SIG_UNBLOCK,&new,0);
153 check_interrupts_enabled_or_lose(os_context_t *context)
155 struct thread *thread=arch_os_get_current_thread();
156 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
157 lose("interrupts not enabled\n");
158 if (arch_pseudo_atomic_atomic(context))
159 lose ("in pseudo atomic section\n");
162 /* When we catch an internal error, should we pass it back to Lisp to
163 * be handled in a high-level way? (Early in cold init, the answer is
164 * 'no', because Lisp is still too brain-dead to handle anything.
165 * After sufficient initialization has been completed, the answer
167 boolean internal_errors_enabled = 0;
169 #ifndef LISP_FEATURE_WIN32
170 static void (*interrupt_low_level_handlers[NSIG]) (int, siginfo_t*, void*);
172 union interrupt_handler interrupt_handlers[NSIG];
174 /* At the toplevel repl we routinely call this function. The signal
175 * mask ought to be clear anyway most of the time, but may be non-zero
176 * if we were interrupted e.g. while waiting for a queue. */
179 reset_signal_mask(void)
181 #ifndef LISP_FEATURE_WIN32
184 thread_sigmask(SIG_SETMASK,&new,0);
189 block_blockable_signals(void)
191 #ifndef LISP_FEATURE_WIN32
192 thread_sigmask(SIG_BLOCK, &blockable_sigset, 0);
197 block_deferrable_signals(void)
199 #ifndef LISP_FEATURE_WIN32
200 thread_sigmask(SIG_BLOCK, &deferrable_sigset, 0);
206 * utility routines used by various signal handlers
210 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
212 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
216 /* Build a fake stack frame or frames */
218 current_control_frame_pointer =
219 (lispobj *)(unsigned long)
220 (*os_context_register_addr(context, reg_CSP));
221 if ((lispobj *)(unsigned long)
222 (*os_context_register_addr(context, reg_CFP))
223 == current_control_frame_pointer) {
224 /* There is a small window during call where the callee's
225 * frame isn't built yet. */
226 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
227 == FUN_POINTER_LOWTAG) {
228 /* We have called, but not built the new frame, so
229 * build it for them. */
230 current_control_frame_pointer[0] =
231 *os_context_register_addr(context, reg_OCFP);
232 current_control_frame_pointer[1] =
233 *os_context_register_addr(context, reg_LRA);
234 current_control_frame_pointer += 8;
235 /* Build our frame on top of it. */
236 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
239 /* We haven't yet called, build our frame as if the
240 * partial frame wasn't there. */
241 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
244 /* We can't tell whether we are still in the caller if it had to
245 * allocate a stack frame due to stack arguments. */
246 /* This observation provoked some past CMUCL maintainer to ask
247 * "Can anything strange happen during return?" */
250 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
253 current_control_stack_pointer = current_control_frame_pointer + 8;
255 current_control_frame_pointer[0] = oldcont;
256 current_control_frame_pointer[1] = NIL;
257 current_control_frame_pointer[2] =
258 (lispobj)(*os_context_register_addr(context, reg_CODE));
262 /* Stores the context for gc to scavange and builds fake stack
265 fake_foreign_function_call(os_context_t *context)
268 struct thread *thread=arch_os_get_current_thread();
270 /* context_index incrementing must not be interrupted */
271 check_blockables_blocked_or_lose();
273 /* Get current Lisp state from context. */
275 dynamic_space_free_pointer =
276 (lispobj *)(unsigned long)
277 (*os_context_register_addr(context, reg_ALLOC));
278 /* fprintf(stderr,"dynamic_space_free_pointer: %p\n", dynamic_space_free_pointer); */
279 #if defined(LISP_FEATURE_ALPHA) || defined(LISP_FEATURE_MIPS)
280 if ((long)dynamic_space_free_pointer & 1) {
281 lose("dead in fake_foreign_function_call, context = %x\n", context);
286 current_binding_stack_pointer =
287 (lispobj *)(unsigned long)
288 (*os_context_register_addr(context, reg_BSP));
291 build_fake_control_stack_frames(thread,context);
293 /* Do dynamic binding of the active interrupt context index
294 * and save the context in the context array. */
296 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
298 if (context_index >= MAX_INTERRUPTS) {
299 lose("maximum interrupt nesting depth (%d) exceeded\n", MAX_INTERRUPTS);
302 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
303 make_fixnum(context_index + 1),thread);
305 thread->interrupt_contexts[context_index] = context;
307 #ifdef FOREIGN_FUNCTION_CALL_FLAG
308 foreign_function_call_active = 1;
312 /* blocks all blockable signals. If you are calling from a signal handler,
313 * the usual signal mask will be restored from the context when the handler
314 * finishes. Otherwise, be careful */
316 undo_fake_foreign_function_call(os_context_t *context)
318 struct thread *thread=arch_os_get_current_thread();
319 /* Block all blockable signals. */
320 block_blockable_signals();
322 #ifdef FOREIGN_FUNCTION_CALL_FLAG
323 foreign_function_call_active = 0;
326 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
330 /* Put the dynamic space free pointer back into the context. */
331 *os_context_register_addr(context, reg_ALLOC) =
332 (unsigned long) dynamic_space_free_pointer
333 | (*os_context_register_addr(context, reg_ALLOC)
336 ((unsigned long)(*os_context_register_addr(context, reg_ALLOC)) & ~LOWTAG_MASK)
337 | ((unsigned long) dynamic_space_free_pointer & LOWTAG_MASK);
342 /* a handler for the signal caused by execution of a trap opcode
343 * signalling an internal error */
345 interrupt_internal_error(os_context_t *context, boolean continuable)
349 fake_foreign_function_call(context);
351 if (!internal_errors_enabled) {
352 describe_internal_error(context);
353 /* There's no good way to recover from an internal error
354 * before the Lisp error handling mechanism is set up. */
355 lose("internal error too early in init, can't recover\n");
358 /* Allocate the SAP object while the interrupts are still
360 context_sap = alloc_sap(context);
362 #ifndef LISP_FEATURE_WIN32
363 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
366 SHOW("in interrupt_internal_error");
368 /* Display some rudimentary debugging information about the
369 * error, so that even if the Lisp error handler gets badly
370 * confused, we have a chance to determine what's going on. */
371 describe_internal_error(context);
373 funcall2(StaticSymbolFunction(INTERNAL_ERROR), context_sap,
374 continuable ? T : NIL);
376 undo_fake_foreign_function_call(context); /* blocks signals again */
378 arch_skip_instruction(context);
382 interrupt_handle_pending(os_context_t *context)
384 /* There are three ways we can get here. First, if an interrupt
385 * occurs within pseudo-atomic, it will be deferred, and we'll
386 * trap to here at the end of the pseudo-atomic block. Second, if
387 * the GC (in alloc()) decides that a GC is required, it will set
388 * *GC-PENDING* and pseudo-atomic-interrupted, and alloc() is
389 * always called from within pseudo-atomic, and thus we end up
390 * here again. Third, when calling GC-ON or at the end of a
391 * WITHOUT-GCING, MAYBE-HANDLE-PENDING-GC will trap to here if
392 * there is a pending GC. */
394 /* Win32 only needs to handle the GC cases (for now?) */
396 struct thread *thread;
398 /* Punt if in PA section, marking it as interrupted. This can
399 * happenat least if we pick up a GC request while in a
400 * WITHOUT-GCING with an outer PA -- it is not immediately clear
401 * to me that this should/could ever happen, but better safe then
402 * sorry. --NS 2007-05-15 */
403 if (arch_pseudo_atomic_atomic(context)) {
404 arch_set_pseudo_atomic_interrupted(context);
408 thread = arch_os_get_current_thread();
410 FSHOW_SIGNAL((stderr, "/entering interrupt_handle_pending\n"));
412 check_blockables_blocked_or_lose();
414 /* If pseudo_atomic_interrupted is set then the interrupt is going
415 * to be handled now, ergo it's safe to clear it. */
416 arch_clear_pseudo_atomic_interrupted(context);
418 if (SymbolValue(GC_INHIBIT,thread)==NIL) {
419 #ifdef LISP_FEATURE_SB_THREAD
420 if (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL) {
421 /* STOP_FOR_GC_PENDING and GC_PENDING are cleared by
422 * the signal handler if it actually stops us. */
423 sig_stop_for_gc_handler(SIG_STOP_FOR_GC,NULL,context);
426 if (SymbolValue(GC_PENDING,thread) != NIL) {
427 /* GC_PENDING is cleared in SUB-GC, or if another thread
428 * is doing a gc already we will get a SIG_STOP_FOR_GC and
429 * that will clear it. */
432 check_blockables_blocked_or_lose();
435 #ifndef LISP_FEATURE_WIN32
436 /* we may be here only to do the gc stuff, if interrupts are
437 * enabled run the pending handler */
438 if (SymbolValue(INTERRUPTS_ENABLED,thread) != NIL) {
439 struct interrupt_data *data = thread->interrupt_data;
441 /* There may be no pending handler, because it was only a gc
442 * that had to be executed or because pseudo atomic triggered
443 * twice for a single interrupt. For the interested reader,
444 * that may happen if an interrupt hits after the interrupted
445 * flag is cleared but before pseudo-atomic is set and a
446 * pseudo atomic is interrupted in that interrupt. */
447 if (data->pending_handler) {
449 /* If we're here as the result of a pseudo-atomic as opposed
450 * to WITHOUT-INTERRUPTS, then INTERRUPT_PENDING is already
451 * NIL, because maybe_defer_handler sets
452 * PSEUDO_ATOMIC_INTERRUPTED only if interrupts are enabled.*/
453 SetSymbolValue(INTERRUPT_PENDING, NIL, thread);
455 /* restore the saved signal mask from the original signal (the
456 * one that interrupted us during the critical section) into the
457 * os_context for the signal we're currently in the handler for.
458 * This should ensure that when we return from the handler the
459 * blocked signals are unblocked */
460 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
462 sigemptyset(&data->pending_mask);
463 /* This will break on sparc linux: the deferred handler really wants
464 * to be called with a void_context */
465 run_deferred_handler(data,(void *)context);
472 * the two main signal handlers:
473 * interrupt_handle_now(..)
474 * maybe_now_maybe_later(..)
476 * to which we have added interrupt_handle_now_handler(..). Why?
477 * Well, mostly because the SPARC/Linux platform doesn't quite do
478 * signals the way we want them done. The third argument in the
479 * handler isn't filled in by the kernel properly, so we fix it up
480 * ourselves in the arch_os_get_context(..) function; however, we only
481 * want to do this when we first hit the handler, and not when
482 * interrupt_handle_now(..) is being called from some other handler
483 * (when the fixup will already have been done). -- CSR, 2002-07-23
487 interrupt_handle_now(int signal, siginfo_t *info, os_context_t *context)
489 #ifdef FOREIGN_FUNCTION_CALL_FLAG
490 boolean were_in_lisp;
492 union interrupt_handler handler;
494 check_blockables_blocked_or_lose();
496 #ifndef LISP_FEATURE_WIN32
497 if (sigismember(&deferrable_sigset,signal))
498 check_interrupts_enabled_or_lose(context);
501 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
502 /* Under Linux on some architectures, we appear to have to restore
503 the FPU control word from the context, as after the signal is
504 delivered we appear to have a null FPU control word. */
505 os_restore_fp_control(context);
508 handler = interrupt_handlers[signal];
510 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
514 #ifdef FOREIGN_FUNCTION_CALL_FLAG
515 were_in_lisp = !foreign_function_call_active;
519 fake_foreign_function_call(context);
522 FSHOW_SIGNAL((stderr,
523 "/entering interrupt_handle_now(%d, info, context)\n",
526 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
528 /* This can happen if someone tries to ignore or default one
529 * of the signals we need for runtime support, and the runtime
530 * support decides to pass on it. */
531 lose("no handler for signal %d in interrupt_handle_now(..)\n", signal);
533 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
534 /* Once we've decided what to do about contexts in a
535 * return-elsewhere world (the original context will no longer
536 * be available; should we copy it or was nobody using it anyway?)
537 * then we should convert this to return-elsewhere */
539 /* CMUCL comment said "Allocate the SAPs while the interrupts
540 * are still disabled.". I (dan, 2003.08.21) assume this is
541 * because we're not in pseudoatomic and allocation shouldn't
542 * be interrupted. In which case it's no longer an issue as
543 * all our allocation from C now goes through a PA wrapper,
544 * but still, doesn't hurt.
546 * Yeah, but non-gencgc platforms don't really wrap allocation
547 * in PA. MG - 2005-08-29 */
549 lispobj info_sap,context_sap = alloc_sap(context);
550 info_sap = alloc_sap(info);
551 /* Leave deferrable signals blocked, the handler itself will
552 * allow signals again when it sees fit. */
553 #ifdef LISP_FEATURE_SB_THREAD
556 sigemptyset(&unblock);
557 sigaddset(&unblock, SIG_STOP_FOR_GC);
558 #ifdef SIG_RESUME_FROM_GC
559 sigaddset(&unblock, SIG_RESUME_FROM_GC);
561 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
565 FSHOW_SIGNAL((stderr,"/calling Lisp-level handler\n"));
567 funcall3(handler.lisp,
573 FSHOW_SIGNAL((stderr,"/calling C-level handler\n"));
575 #ifndef LISP_FEATURE_WIN32
576 /* Allow signals again. */
577 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
579 (*handler.c)(signal, info, context);
582 #ifdef FOREIGN_FUNCTION_CALL_FLAG
586 undo_fake_foreign_function_call(context); /* block signals again */
589 FSHOW_SIGNAL((stderr,
590 "/returning from interrupt_handle_now(%d, info, context)\n",
594 /* This is called at the end of a critical section if the indications
595 * are that some signal was deferred during the section. Note that as
596 * far as C or the kernel is concerned we dealt with the signal
597 * already; we're just doing the Lisp-level processing now that we
600 run_deferred_handler(struct interrupt_data *data, void *v_context)
602 /* The pending_handler may enable interrupts and then another
603 * interrupt may hit, overwrite interrupt_data, so reset the
604 * pending handler before calling it. Trust the handler to finish
605 * with the siginfo before enabling interrupts. */
606 void (*pending_handler) (int, siginfo_t*, void*)=data->pending_handler;
608 data->pending_handler=0;
609 (*pending_handler)(data->pending_signal,&(data->pending_info), v_context);
612 #ifndef LISP_FEATURE_WIN32
614 maybe_defer_handler(void *handler, struct interrupt_data *data,
615 int signal, siginfo_t *info, os_context_t *context)
617 struct thread *thread=arch_os_get_current_thread();
619 check_blockables_blocked_or_lose();
621 if (SymbolValue(INTERRUPT_PENDING,thread) != NIL)
622 lose("interrupt already pending\n");
623 /* If interrupts are disabled then INTERRUPT_PENDING is set and
624 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
625 * atomic section inside a WITHOUT-INTERRUPTS.
627 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
628 store_signal_data_for_later(data,handler,signal,info,context);
629 SetSymbolValue(INTERRUPT_PENDING, T,thread);
630 FSHOW_SIGNAL((stderr,
631 "/maybe_defer_handler(%x,%d),thread=%lu: deferred\n",
632 (unsigned int)handler,signal,
633 (unsigned long)thread->os_thread));
636 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
637 * actually use its argument for anything on x86, so this branch
638 * may succeed even when context is null (gencgc alloc()) */
639 if (arch_pseudo_atomic_atomic(context)) {
640 store_signal_data_for_later(data,handler,signal,info,context);
641 arch_set_pseudo_atomic_interrupted(context);
642 FSHOW_SIGNAL((stderr,
643 "/maybe_defer_handler(%x,%d),thread=%lu: deferred(PA)\n",
644 (unsigned int)handler,signal,
645 (unsigned long)thread->os_thread));
648 FSHOW_SIGNAL((stderr,
649 "/maybe_defer_handler(%x,%d),thread=%lu: not deferred\n",
650 (unsigned int)handler,signal,
651 (unsigned long)thread->os_thread));
656 store_signal_data_for_later (struct interrupt_data *data, void *handler,
658 siginfo_t *info, os_context_t *context)
660 if (data->pending_handler)
661 lose("tried to overwrite pending interrupt handler %x with %x\n",
662 data->pending_handler, handler);
664 lose("tried to defer null interrupt handler\n");
665 data->pending_handler = handler;
666 data->pending_signal = signal;
668 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
670 FSHOW_SIGNAL((stderr, "/store_signal_data_for_later: signal: %d\n", signal));
673 /* the signal mask in the context (from before we were
674 * interrupted) is copied to be restored when
675 * run_deferred_handler happens. Then the usually-blocked
676 * signals are added to the mask in the context so that we are
677 * running with blocked signals when the handler returns */
678 sigcopyset(&(data->pending_mask),os_context_sigmask_addr(context));
679 sigaddset_deferrable(os_context_sigmask_addr(context));
684 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
686 os_context_t *context = arch_os_get_context(&void_context);
687 struct thread *thread = arch_os_get_current_thread();
688 struct interrupt_data *data = thread->interrupt_data;
690 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
691 os_restore_fp_control(context);
694 if(!maybe_defer_handler(interrupt_handle_now,data,signal,info,context))
695 interrupt_handle_now(signal, info, context);
699 low_level_interrupt_handle_now(int signal, siginfo_t *info, os_context_t *context)
701 /* No FP control fixage needed, caller has done that. */
702 check_blockables_blocked_or_lose();
703 check_interrupts_enabled_or_lose(context);
704 interrupt_low_level_handlers[signal](signal, info, context);
705 /* No Darwin context fixage needed, caller does that. */
709 low_level_maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
711 os_context_t *context = arch_os_get_context(&void_context);
712 struct thread *thread = arch_os_get_current_thread();
713 struct interrupt_data *data = thread->interrupt_data;
715 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
716 os_restore_fp_control(context);
719 if(!maybe_defer_handler(low_level_interrupt_handle_now,data,
720 signal,info,context))
721 low_level_interrupt_handle_now(signal, info, context);
725 #ifdef LISP_FEATURE_SB_THREAD
728 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
730 os_context_t *context = arch_os_get_context(&void_context);
732 struct thread *thread=arch_os_get_current_thread();
735 if (arch_pseudo_atomic_atomic(context)) {
736 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
737 arch_set_pseudo_atomic_interrupted(context);
738 FSHOW_SIGNAL((stderr,"thread=%lu sig_stop_for_gc deferred (PA)\n",
742 else if (SymbolValue(GC_INHIBIT,thread) != NIL) {
743 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
744 FSHOW_SIGNAL((stderr,
745 "thread=%lu sig_stop_for_gc deferred (*GC-INHIBIT*)\n",
750 /* Not PA and GC not inhibited -- we can stop now. */
752 /* need the context stored so it can have registers scavenged */
753 fake_foreign_function_call(context);
755 /* Block everything. */
757 thread_sigmask(SIG_BLOCK,&ss,0);
759 /* Not pending anymore. */
760 SetSymbolValue(GC_PENDING,NIL,thread);
761 SetSymbolValue(STOP_FOR_GC_PENDING,NIL,thread);
763 if(thread->state!=STATE_RUNNING) {
764 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
765 fixnum_value(thread->state));
768 thread->state=STATE_SUSPENDED;
769 FSHOW_SIGNAL((stderr,"thread=%lu suspended\n",thread->os_thread));
772 #if defined(SIG_RESUME_FROM_GC)
773 sigaddset(&ss,SIG_RESUME_FROM_GC);
775 sigaddset(&ss,SIG_STOP_FOR_GC);
778 /* It is possible to get SIGCONT (and probably other non-blockable
780 #ifdef SIG_RESUME_FROM_GC
783 do { sigwait(&ss, &sigret); }
784 while (sigret != SIG_RESUME_FROM_GC);
787 while (sigwaitinfo(&ss,0) != SIG_STOP_FOR_GC);
790 FSHOW_SIGNAL((stderr,"thread=%lu resumed\n",thread->os_thread));
791 if(thread->state!=STATE_RUNNING) {
792 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
793 fixnum_value(thread->state));
796 undo_fake_foreign_function_call(context);
801 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
803 os_context_t *context = arch_os_get_context(&void_context);
804 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
805 os_restore_fp_control(context);
807 interrupt_handle_now(signal, info, context);
810 /* manipulate the signal context and stack such that when the handler
811 * returns, it will call function instead of whatever it was doing
815 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
816 extern int *context_eflags_addr(os_context_t *context);
819 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
820 extern void post_signal_tramp(void);
821 extern void call_into_lisp_tramp(void);
823 arrange_return_to_lisp_function(os_context_t *context, lispobj function)
825 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
826 void * fun=native_pointer(function);
827 void *code = &(((struct simple_fun *) fun)->code);
830 /* Build a stack frame showing `interrupted' so that the
831 * user's backtrace makes (as much) sense (as usual) */
833 /* FIXME: what about restoring fp state? */
834 /* FIXME: what about restoring errno? */
835 #ifdef LISP_FEATURE_X86
836 /* Suppose the existence of some function that saved all
837 * registers, called call_into_lisp, then restored GP registers and
838 * returned. It would look something like this:
846 pushl {address of function to call}
847 call 0x8058db0 <call_into_lisp>
854 * What we do here is set up the stack that call_into_lisp would
855 * expect to see if it had been called by this code, and frob the
856 * signal context so that signal return goes directly to call_into_lisp,
857 * and when that function (and the lisp function it invoked) returns,
858 * it returns to the second half of this imaginary function which
859 * restores all registers and returns to C
861 * For this to work, the latter part of the imaginary function
862 * must obviously exist in reality. That would be post_signal_tramp
865 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
867 #if defined(LISP_FEATURE_DARWIN)
868 u32 *register_save_area = (u32 *)os_validate(0, 0x40);
870 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: preparing to go to function %x, sp: %x\n", function, sp));
871 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: context: %x, &context %x\n", context, &context));
873 /* 1. os_validate (malloc/mmap) register_save_block
874 * 2. copy register state into register_save_block
875 * 3. put a pointer to register_save_block in a register in the context
876 * 4. set the context's EIP to point to a trampoline which:
877 * a. builds the fake stack frame from the block
879 * c. calls the function
882 *register_save_area = *os_context_pc_addr(context);
883 *(register_save_area + 1) = function;
884 *(register_save_area + 2) = *os_context_register_addr(context,reg_EDI);
885 *(register_save_area + 3) = *os_context_register_addr(context,reg_ESI);
886 *(register_save_area + 4) = *os_context_register_addr(context,reg_EDX);
887 *(register_save_area + 5) = *os_context_register_addr(context,reg_ECX);
888 *(register_save_area + 6) = *os_context_register_addr(context,reg_EBX);
889 *(register_save_area + 7) = *os_context_register_addr(context,reg_EAX);
890 *(register_save_area + 8) = *context_eflags_addr(context);
892 *os_context_pc_addr(context) =
893 (os_context_register_t) call_into_lisp_tramp;
894 *os_context_register_addr(context,reg_ECX) =
895 (os_context_register_t) register_save_area;
898 /* return address for call_into_lisp: */
899 *(sp-15) = (u32)post_signal_tramp;
900 *(sp-14) = function; /* args for call_into_lisp : function*/
901 *(sp-13) = 0; /* arg array */
902 *(sp-12) = 0; /* no. args */
903 /* this order matches that used in POPAD */
904 *(sp-11)=*os_context_register_addr(context,reg_EDI);
905 *(sp-10)=*os_context_register_addr(context,reg_ESI);
907 *(sp-9)=*os_context_register_addr(context,reg_ESP)-8;
908 /* POPAD ignores the value of ESP: */
910 *(sp-7)=*os_context_register_addr(context,reg_EBX);
912 *(sp-6)=*os_context_register_addr(context,reg_EDX);
913 *(sp-5)=*os_context_register_addr(context,reg_ECX);
914 *(sp-4)=*os_context_register_addr(context,reg_EAX);
915 *(sp-3)=*context_eflags_addr(context);
916 *(sp-2)=*os_context_register_addr(context,reg_EBP);
917 *(sp-1)=*os_context_pc_addr(context);
921 #elif defined(LISP_FEATURE_X86_64)
922 u64 *sp=(u64 *)*os_context_register_addr(context,reg_RSP);
924 /* return address for call_into_lisp: */
925 *(sp-18) = (u64)post_signal_tramp;
927 *(sp-17)=*os_context_register_addr(context,reg_R15);
928 *(sp-16)=*os_context_register_addr(context,reg_R14);
929 *(sp-15)=*os_context_register_addr(context,reg_R13);
930 *(sp-14)=*os_context_register_addr(context,reg_R12);
931 *(sp-13)=*os_context_register_addr(context,reg_R11);
932 *(sp-12)=*os_context_register_addr(context,reg_R10);
933 *(sp-11)=*os_context_register_addr(context,reg_R9);
934 *(sp-10)=*os_context_register_addr(context,reg_R8);
935 *(sp-9)=*os_context_register_addr(context,reg_RDI);
936 *(sp-8)=*os_context_register_addr(context,reg_RSI);
937 /* skip RBP and RSP */
938 *(sp-7)=*os_context_register_addr(context,reg_RBX);
939 *(sp-6)=*os_context_register_addr(context,reg_RDX);
940 *(sp-5)=*os_context_register_addr(context,reg_RCX);
941 *(sp-4)=*os_context_register_addr(context,reg_RAX);
942 *(sp-3)=*context_eflags_addr(context);
943 *(sp-2)=*os_context_register_addr(context,reg_RBP);
944 *(sp-1)=*os_context_pc_addr(context);
946 *os_context_register_addr(context,reg_RDI) =
947 (os_context_register_t)function; /* function */
948 *os_context_register_addr(context,reg_RSI) = 0; /* arg. array */
949 *os_context_register_addr(context,reg_RDX) = 0; /* no. args */
951 struct thread *th=arch_os_get_current_thread();
952 build_fake_control_stack_frames(th,context);
955 #ifdef LISP_FEATURE_X86
957 #if !defined(LISP_FEATURE_DARWIN)
958 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
959 *os_context_register_addr(context,reg_ECX) = 0;
960 *os_context_register_addr(context,reg_EBP) = (os_context_register_t)(sp-2);
962 *os_context_register_addr(context,reg_UESP) =
963 (os_context_register_t)(sp-15);
965 *os_context_register_addr(context,reg_ESP) = (os_context_register_t)(sp-15);
966 #endif /* __NETBSD__ */
967 #endif /* LISP_FEATURE_DARWIN */
969 #elif defined(LISP_FEATURE_X86_64)
970 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
971 *os_context_register_addr(context,reg_RCX) = 0;
972 *os_context_register_addr(context,reg_RBP) = (os_context_register_t)(sp-2);
973 *os_context_register_addr(context,reg_RSP) = (os_context_register_t)(sp-18);
975 /* this much of the calling convention is common to all
977 *os_context_pc_addr(context) = (os_context_register_t)(unsigned long)code;
978 *os_context_register_addr(context,reg_NARGS) = 0;
979 *os_context_register_addr(context,reg_LIP) =
980 (os_context_register_t)(unsigned long)code;
981 *os_context_register_addr(context,reg_CFP) =
982 (os_context_register_t)(unsigned long)current_control_frame_pointer;
984 #ifdef ARCH_HAS_NPC_REGISTER
985 *os_context_npc_addr(context) =
986 4 + *os_context_pc_addr(context);
988 #ifdef LISP_FEATURE_SPARC
989 *os_context_register_addr(context,reg_CODE) =
990 (os_context_register_t)(fun + FUN_POINTER_LOWTAG);
994 #ifdef LISP_FEATURE_SB_THREAD
996 /* FIXME: this function can go away when all lisp handlers are invoked
997 * via arrange_return_to_lisp_function. */
999 interrupt_thread_handler(int num, siginfo_t *info, void *v_context)
1001 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
1003 /* let the handler enable interrupts again when it sees fit */
1004 sigaddset_deferrable(os_context_sigmask_addr(context));
1005 arrange_return_to_lisp_function(context, StaticSymbolFunction(RUN_INTERRUPTION));
1010 /* KLUDGE: Theoretically the approach we use for undefined alien
1011 * variables should work for functions as well, but on PPC/Darwin
1012 * we get bus error at bogus addresses instead, hence this workaround,
1013 * that has the added benefit of automatically discriminating between
1014 * functions and variables.
1017 undefined_alien_function(void)
1019 funcall0(StaticSymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR));
1023 handle_guard_page_triggered(os_context_t *context,os_vm_address_t addr)
1025 struct thread *th=arch_os_get_current_thread();
1027 /* note the os_context hackery here. When the signal handler returns,
1028 * it won't go back to what it was doing ... */
1029 if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
1030 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
1031 /* We hit the end of the control stack: disable guard page
1032 * protection so the error handler has some headroom, protect the
1033 * previous page so that we can catch returns from the guard page
1034 * and restore it. */
1035 protect_control_stack_guard_page(0);
1036 protect_control_stack_return_guard_page(1);
1038 arrange_return_to_lisp_function
1039 (context, StaticSymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
1042 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
1043 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
1044 /* We're returning from the guard page: reprotect it, and
1045 * unprotect this one. This works even if we somehow missed
1046 * the return-guard-page, and hit it on our way to new
1047 * exhaustion instead. */
1048 protect_control_stack_guard_page(1);
1049 protect_control_stack_return_guard_page(0);
1052 else if (addr >= undefined_alien_address &&
1053 addr < undefined_alien_address + os_vm_page_size) {
1054 arrange_return_to_lisp_function
1055 (context, StaticSymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
1062 * noise to install handlers
1065 #ifndef LISP_FEATURE_WIN32
1066 /* In Linux 2.4 synchronous signals (sigtrap & co) can be delivered if
1067 * they are blocked, in Linux 2.6 the default handler is invoked
1068 * instead that usually coredumps. One might hastily think that adding
1069 * SA_NODEFER helps, but until ~2.6.13 if SA_NODEFER is specified then
1070 * the whole sa_mask is ignored and instead of not adding the signal
1071 * in question to the mask. That means if it's not blockable the
1072 * signal must be unblocked at the beginning of signal handlers.
1074 * It turns out that NetBSD's SA_NODEFER doesn't DTRT in a different
1075 * way: if SA_NODEFER is set and the signal is in sa_mask, the signal
1076 * will be unblocked in the sigmask during the signal handler. -- RMK
1079 static volatile int sigaction_nodefer_works = -1;
1081 #define SA_NODEFER_TEST_BLOCK_SIGNAL SIGABRT
1082 #define SA_NODEFER_TEST_KILL_SIGNAL SIGUSR1
1085 sigaction_nodefer_test_handler(int signal, siginfo_t *info, void *void_context)
1087 sigset_t empty, current;
1089 sigemptyset(&empty);
1090 thread_sigmask(SIG_BLOCK, &empty, ¤t);
1091 /* There should be exactly two blocked signals: the two we added
1092 * to sa_mask when setting up the handler. NetBSD doesn't block
1093 * the signal we're handling when SA_NODEFER is set; Linux before
1094 * 2.6.13 or so also doesn't block the other signal when
1095 * SA_NODEFER is set. */
1096 for(i = 1; i < NSIG; i++)
1097 if (sigismember(¤t, i) !=
1098 (((i == SA_NODEFER_TEST_BLOCK_SIGNAL) || (i == signal)) ? 1 : 0)) {
1099 FSHOW_SIGNAL((stderr, "SA_NODEFER doesn't work, signal %d\n", i));
1100 sigaction_nodefer_works = 0;
1102 if (sigaction_nodefer_works == -1)
1103 sigaction_nodefer_works = 1;
1107 see_if_sigaction_nodefer_works(void)
1109 struct sigaction sa, old_sa;
1111 sa.sa_flags = SA_SIGINFO | SA_NODEFER;
1112 sa.sa_sigaction = sigaction_nodefer_test_handler;
1113 sigemptyset(&sa.sa_mask);
1114 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_BLOCK_SIGNAL);
1115 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_KILL_SIGNAL);
1116 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &sa, &old_sa);
1117 /* Make sure no signals are blocked. */
1120 sigemptyset(&empty);
1121 thread_sigmask(SIG_SETMASK, &empty, 0);
1123 kill(getpid(), SA_NODEFER_TEST_KILL_SIGNAL);
1124 while (sigaction_nodefer_works == -1);
1125 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &old_sa, NULL);
1128 #undef SA_NODEFER_TEST_BLOCK_SIGNAL
1129 #undef SA_NODEFER_TEST_KILL_SIGNAL
1132 unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1136 sigemptyset(&unblock);
1137 sigaddset(&unblock, signal);
1138 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1139 interrupt_handle_now_handler(signal, info, void_context);
1143 low_level_unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1147 sigemptyset(&unblock);
1148 sigaddset(&unblock, signal);
1149 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1150 (*interrupt_low_level_handlers[signal])(signal, info, void_context);
1154 undoably_install_low_level_interrupt_handler (int signal,
1155 interrupt_handler_t handler)
1157 struct sigaction sa;
1159 if (0 > signal || signal >= NSIG) {
1160 lose("bad signal number %d\n", signal);
1163 if (ARE_SAME_HANDLER(handler, SIG_DFL))
1164 sa.sa_sigaction = handler;
1165 else if (sigismember(&deferrable_sigset,signal))
1166 sa.sa_sigaction = low_level_maybe_now_maybe_later;
1167 /* The use of a trampoline appears to break the
1168 arch_os_get_context() workaround for SPARC/Linux. For now,
1169 don't use the trampoline (and so be vulnerable to the problems
1170 that SA_NODEFER is meant to solve. */
1171 #if !(defined(LISP_FEATURE_SPARC) && defined(LISP_FEATURE_LINUX))
1172 else if (!sigaction_nodefer_works &&
1173 !sigismember(&blockable_sigset, signal))
1174 sa.sa_sigaction = low_level_unblock_me_trampoline;
1177 sa.sa_sigaction = handler;
1179 sigcopyset(&sa.sa_mask, &blockable_sigset);
1180 sa.sa_flags = SA_SIGINFO | SA_RESTART
1181 | (sigaction_nodefer_works ? SA_NODEFER : 0);
1182 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1183 if((signal==SIG_MEMORY_FAULT)
1184 #ifdef SIG_INTERRUPT_THREAD
1185 || (signal==SIG_INTERRUPT_THREAD)
1188 sa.sa_flags |= SA_ONSTACK;
1191 sigaction(signal, &sa, NULL);
1192 interrupt_low_level_handlers[signal] =
1193 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
1197 /* This is called from Lisp. */
1199 install_handler(int signal, void handler(int, siginfo_t*, void*))
1201 #ifndef LISP_FEATURE_WIN32
1202 struct sigaction sa;
1204 union interrupt_handler oldhandler;
1206 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
1209 sigaddset(&new, signal);
1210 thread_sigmask(SIG_BLOCK, &new, &old);
1212 FSHOW((stderr, "/interrupt_low_level_handlers[signal]=%x\n",
1213 (unsigned int)interrupt_low_level_handlers[signal]));
1214 if (interrupt_low_level_handlers[signal]==0) {
1215 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
1216 ARE_SAME_HANDLER(handler, SIG_IGN))
1217 sa.sa_sigaction = handler;
1218 else if (sigismember(&deferrable_sigset, signal))
1219 sa.sa_sigaction = maybe_now_maybe_later;
1220 else if (!sigaction_nodefer_works &&
1221 !sigismember(&blockable_sigset, signal))
1222 sa.sa_sigaction = unblock_me_trampoline;
1224 sa.sa_sigaction = interrupt_handle_now_handler;
1226 sigcopyset(&sa.sa_mask, &blockable_sigset);
1227 sa.sa_flags = SA_SIGINFO | SA_RESTART |
1228 (sigaction_nodefer_works ? SA_NODEFER : 0);
1229 sigaction(signal, &sa, NULL);
1232 oldhandler = interrupt_handlers[signal];
1233 interrupt_handlers[signal].c = handler;
1235 thread_sigmask(SIG_SETMASK, &old, 0);
1237 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
1239 return (unsigned long)oldhandler.lisp;
1241 /* Probably-wrong Win32 hack */
1247 interrupt_init(void)
1249 #ifndef LISP_FEATURE_WIN32
1251 SHOW("entering interrupt_init()");
1252 see_if_sigaction_nodefer_works();
1253 sigemptyset(&deferrable_sigset);
1254 sigemptyset(&blockable_sigset);
1255 sigaddset_deferrable(&deferrable_sigset);
1256 sigaddset_blockable(&blockable_sigset);
1258 /* Set up high level handler information. */
1259 for (i = 0; i < NSIG; i++) {
1260 interrupt_handlers[i].c =
1261 /* (The cast here blasts away the distinction between
1262 * SA_SIGACTION-style three-argument handlers and
1263 * signal(..)-style one-argument handlers, which is OK
1264 * because it works to call the 1-argument form where the
1265 * 3-argument form is expected.) */
1266 (void (*)(int, siginfo_t*, void*))SIG_DFL;
1269 SHOW("returning from interrupt_init()");
1273 #ifndef LISP_FEATURE_WIN32
1275 siginfo_code(siginfo_t *info)
1277 return info->si_code;
1279 os_vm_address_t current_memory_fault_address;
1282 lisp_memory_fault_error(os_context_t *context, os_vm_address_t addr)
1284 /* FIXME: This is lossy: if we get another memory fault (eg. from
1285 * another thread) before lisp has read this, we lose the information.
1286 * However, since this is mostly informative, we'll live with that for
1287 * now -- some address is better then no address in this case.
1289 current_memory_fault_address = addr;
1290 arrange_return_to_lisp_function(context, StaticSymbolFunction(MEMORY_FAULT_ERROR));
1295 unhandled_trap_error(os_context_t *context)
1297 lispobj context_sap;
1298 fake_foreign_function_call(context);
1299 context_sap = alloc_sap(context);
1300 #ifndef LISP_FEATURE_WIN32
1301 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
1303 funcall1(StaticSymbolFunction(UNHANDLED_TRAP_ERROR), context_sap);
1304 lose("UNHANDLED-TRAP-ERROR fell through");
1307 /* Common logic for trapping instructions. How we actually handle each
1308 * case is highly architecture dependent, but the overall shape is
1311 handle_trap(os_context_t *context, int trap)
1314 case trap_PendingInterrupt:
1315 FSHOW((stderr, "/<trap pending interrupt>\n"));
1316 arch_skip_instruction(context);
1317 interrupt_handle_pending(context);
1321 FSHOW((stderr, "/<trap error/cerror %d>\n", trap));
1322 interrupt_internal_error(context, trap==trap_Cerror);
1324 case trap_Breakpoint:
1325 arch_handle_breakpoint(context);
1327 case trap_FunEndBreakpoint:
1328 arch_handle_fun_end_breakpoint(context);
1330 #ifdef trap_AfterBreakpoint
1331 case trap_AfterBreakpoint:
1332 arch_handle_after_breakpoint(context);
1335 #ifdef trap_SingleStepAround
1336 case trap_SingleStepAround:
1337 case trap_SingleStepBefore:
1338 arch_handle_single_step_trap(context, trap);
1342 fake_foreign_function_call(context);
1343 lose("%%PRIMITIVE HALT called; the party is over.\n");
1345 unhandled_trap_error(context);