2 * C-level stuff to implement Lisp-level PURIFY
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 #include <sys/types.h>
26 #include "interrupt.h"
30 #include "gc-internal.h"
35 /* again, what's so special about the x86 that this is differently
36 * visible there than on other platforms? -dan 20010125
38 static lispobj *dynamic_space_free_pointer;
42 lose("GC invariant lost, file \"%s\", line %d", __FILE__, __LINE__)
45 #define gc_assert(ex) do { \
46 if (!(ex)) gc_abort(); \
53 /* These hold the original end of the read_only and static spaces so
54 * we can tell what are forwarding pointers. */
56 static lispobj *read_only_end, *static_end;
58 static lispobj *read_only_free, *static_free;
60 static lispobj *pscav(lispobj *addr, int nwords, boolean constant);
62 #define LATERBLOCKSIZE 1020
63 #define LATERMAXCOUNT 10
72 } *later_blocks = NULL;
73 static int later_count = 0;
75 #define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
76 #define NWORDS(x,y) (CEILING((x),(y)) / (y))
78 /* FIXME: Shouldn't this be defined in sbcl.h? See also notes in
82 #define FUN_RAW_ADDR_OFFSET 0
84 #define FUN_RAW_ADDR_OFFSET (6*sizeof(lispobj) - FUN_POINTER_LOWTAG)
88 forwarding_pointer_p(lispobj obj)
90 lispobj *ptr = native_pointer(obj);
92 return ((static_end <= ptr && ptr <= static_free) ||
93 (read_only_end <= ptr && ptr <= read_only_free));
97 dynamic_pointer_p(lispobj ptr)
100 return (ptr >= (lispobj)current_dynamic_space
102 ptr < (lispobj)dynamic_space_free_pointer);
104 /* Be more conservative, and remember, this is a maybe. */
105 return (ptr >= (lispobj)DYNAMIC_SPACE_START
107 ptr < (lispobj)dynamic_space_free_pointer);
114 #ifdef LISP_FEATURE_GENCGC
116 * enhanced x86/GENCGC stack scavenging by Douglas Crosher
118 * Scavenging the stack on the i386 is problematic due to conservative
119 * roots and raw return addresses. Here it is handled in two passes:
120 * the first pass runs before any objects are moved and tries to
121 * identify valid pointers and return address on the stack, the second
122 * pass scavenges these.
125 static unsigned pointer_filter_verbose = 0;
127 /* FIXME: This is substantially the same code as in gencgc.c. (There
128 * are some differences, at least (1) the gencgc.c code needs to worry
129 * about return addresses on the stack pinning code objects, (2) the
130 * gencgc.c code needs to worry about the GC maybe happening in an
131 * interrupt service routine when the main thread of control was
132 * interrupted just as it had allocated memory and before it
133 * initialized it, while PURIFY needn't worry about that, and (3) the
134 * gencgc.c code has mutated more under maintenance since the fork
135 * from CMU CL than the code here has.) The two versions should be
136 * made to explicitly share common code, instead of just two different
137 * cut-and-pasted versions. */
139 valid_dynamic_space_pointer(lispobj *pointer, lispobj *start_addr)
141 /* If it's not a return address then it needs to be a valid Lisp
143 if (!is_lisp_pointer((lispobj)pointer))
146 /* Check that the object pointed to is consistent with the pointer
148 switch (lowtag_of((lispobj)pointer)) {
149 case FUN_POINTER_LOWTAG:
150 /* Start_addr should be the enclosing code object, or a closure
152 switch (widetag_of(*start_addr)) {
153 case CODE_HEADER_WIDETAG:
154 /* This case is probably caught above. */
156 case CLOSURE_HEADER_WIDETAG:
157 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
158 if ((int)pointer != ((int)start_addr+FUN_POINTER_LOWTAG)) {
159 if (pointer_filter_verbose) {
160 fprintf(stderr,"*Wf2: %x %x %x\n", (unsigned int) pointer,
161 (unsigned int) start_addr, *start_addr);
167 if (pointer_filter_verbose) {
168 fprintf(stderr,"*Wf3: %x %x %x\n", (unsigned int) pointer,
169 (unsigned int) start_addr, *start_addr);
174 case LIST_POINTER_LOWTAG:
175 if ((int)pointer != ((int)start_addr+LIST_POINTER_LOWTAG)) {
176 if (pointer_filter_verbose)
177 fprintf(stderr,"*Wl1: %x %x %x\n", (unsigned int) pointer,
178 (unsigned int) start_addr, *start_addr);
181 /* Is it plausible cons? */
182 if ((is_lisp_pointer(start_addr[0])
183 || ((start_addr[0] & 3) == 0) /* fixnum */
184 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
185 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
186 && (is_lisp_pointer(start_addr[1])
187 || ((start_addr[1] & 3) == 0) /* fixnum */
188 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
189 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG))) {
192 if (pointer_filter_verbose) {
193 fprintf(stderr,"*Wl2: %x %x %x\n", (unsigned int) pointer,
194 (unsigned int) start_addr, *start_addr);
198 case INSTANCE_POINTER_LOWTAG:
199 if ((int)pointer != ((int)start_addr+INSTANCE_POINTER_LOWTAG)) {
200 if (pointer_filter_verbose) {
201 fprintf(stderr,"*Wi1: %x %x %x\n", (unsigned int) pointer,
202 (unsigned int) start_addr, *start_addr);
206 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
207 if (pointer_filter_verbose) {
208 fprintf(stderr,"*Wi2: %x %x %x\n", (unsigned int) pointer,
209 (unsigned int) start_addr, *start_addr);
214 case OTHER_POINTER_LOWTAG:
215 if ((int)pointer != ((int)start_addr+OTHER_POINTER_LOWTAG)) {
216 if (pointer_filter_verbose) {
217 fprintf(stderr,"*Wo1: %x %x %x\n", (unsigned int) pointer,
218 (unsigned int) start_addr, *start_addr);
222 /* Is it plausible? Not a cons. XXX should check the headers. */
223 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
224 if (pointer_filter_verbose) {
225 fprintf(stderr,"*Wo2: %x %x %x\n", (unsigned int) pointer,
226 (unsigned int) start_addr, *start_addr);
230 switch (widetag_of(start_addr[0])) {
231 case UNBOUND_MARKER_WIDETAG:
232 case BASE_CHAR_WIDETAG:
233 if (pointer_filter_verbose) {
234 fprintf(stderr,"*Wo3: %x %x %x\n", (unsigned int) pointer,
235 (unsigned int) start_addr, *start_addr);
239 /* only pointed to by function pointers? */
240 case CLOSURE_HEADER_WIDETAG:
241 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
242 if (pointer_filter_verbose) {
243 fprintf(stderr,"*Wo4: %x %x %x\n", (unsigned int) pointer,
244 (unsigned int) start_addr, *start_addr);
248 case INSTANCE_HEADER_WIDETAG:
249 if (pointer_filter_verbose) {
250 fprintf(stderr,"*Wo5: %x %x %x\n", (unsigned int) pointer,
251 (unsigned int) start_addr, *start_addr);
255 /* the valid other immediate pointer objects */
256 case SIMPLE_VECTOR_WIDETAG:
258 case COMPLEX_WIDETAG:
259 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
260 case COMPLEX_SINGLE_FLOAT_WIDETAG:
262 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
263 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
265 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
266 case COMPLEX_LONG_FLOAT_WIDETAG:
268 case SIMPLE_ARRAY_WIDETAG:
269 case COMPLEX_STRING_WIDETAG:
270 case COMPLEX_BIT_VECTOR_WIDETAG:
271 case COMPLEX_VECTOR_WIDETAG:
272 case COMPLEX_ARRAY_WIDETAG:
273 case VALUE_CELL_HEADER_WIDETAG:
274 case SYMBOL_HEADER_WIDETAG:
276 case CODE_HEADER_WIDETAG:
278 case SINGLE_FLOAT_WIDETAG:
279 case DOUBLE_FLOAT_WIDETAG:
280 #ifdef LONG_FLOAT_WIDETAG
281 case LONG_FLOAT_WIDETAG:
283 case SIMPLE_STRING_WIDETAG:
284 case SIMPLE_BIT_VECTOR_WIDETAG:
285 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
286 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
287 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
288 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
289 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
290 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
291 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
293 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
294 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
296 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
297 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
299 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
300 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
302 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
303 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
304 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
305 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
307 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
308 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
310 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
311 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
313 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
314 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
317 case WEAK_POINTER_WIDETAG:
321 if (pointer_filter_verbose) {
322 fprintf(stderr,"*Wo6: %x %x %x\n", (unsigned int) pointer,
323 (unsigned int) start_addr, *start_addr);
329 if (pointer_filter_verbose) {
330 fprintf(stderr,"*W?: %x %x %x\n", (unsigned int) pointer,
331 (unsigned int) start_addr, *start_addr);
340 #define MAX_STACK_POINTERS 256
341 lispobj *valid_stack_locations[MAX_STACK_POINTERS];
342 unsigned int num_valid_stack_locations;
344 #define MAX_STACK_RETURN_ADDRESSES 128
345 lispobj *valid_stack_ra_locations[MAX_STACK_RETURN_ADDRESSES];
346 lispobj *valid_stack_ra_code_objects[MAX_STACK_RETURN_ADDRESSES];
347 unsigned int num_valid_stack_ra_locations;
349 /* Identify valid stack slots. */
351 setup_i386_stack_scav(lispobj *lowaddr, lispobj *base)
353 lispobj *sp = lowaddr;
354 num_valid_stack_locations = 0;
355 num_valid_stack_ra_locations = 0;
356 for (sp = lowaddr; sp < base; sp++) {
358 /* Find the object start address */
359 lispobj *start_addr = search_dynamic_space((void *)thing);
361 /* We need to allow raw pointers into Code objects for
362 * return addresses. This will also pick up pointers to
363 * functions in code objects. */
364 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
365 gc_assert(num_valid_stack_ra_locations <
366 MAX_STACK_RETURN_ADDRESSES);
367 valid_stack_ra_locations[num_valid_stack_ra_locations] = sp;
368 valid_stack_ra_code_objects[num_valid_stack_ra_locations++] =
369 (lispobj *)((int)start_addr + OTHER_POINTER_LOWTAG);
371 if (valid_dynamic_space_pointer((void *)thing, start_addr)) {
372 gc_assert(num_valid_stack_locations < MAX_STACK_POINTERS);
373 valid_stack_locations[num_valid_stack_locations++] = sp;
378 if (pointer_filter_verbose) {
379 fprintf(stderr, "number of valid stack pointers = %d\n",
380 num_valid_stack_locations);
381 fprintf(stderr, "number of stack return addresses = %d\n",
382 num_valid_stack_ra_locations);
387 pscav_i386_stack(void)
391 for (i = 0; i < num_valid_stack_locations; i++)
392 pscav(valid_stack_locations[i], 1, 0);
394 for (i = 0; i < num_valid_stack_ra_locations; i++) {
395 lispobj code_obj = (lispobj)valid_stack_ra_code_objects[i];
396 pscav(&code_obj, 1, 0);
397 if (pointer_filter_verbose) {
398 fprintf(stderr,"*C moved RA %x to %x; for code object %x to %x\n",
399 *valid_stack_ra_locations[i],
400 (int)(*valid_stack_ra_locations[i])
401 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj),
402 (unsigned int) valid_stack_ra_code_objects[i], code_obj);
404 *valid_stack_ra_locations[i] =
405 ((int)(*valid_stack_ra_locations[i])
406 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj));
414 pscav_later(lispobj *where, int count)
418 if (count > LATERMAXCOUNT) {
419 while (count > LATERMAXCOUNT) {
420 pscav_later(where, LATERMAXCOUNT);
421 count -= LATERMAXCOUNT;
422 where += LATERMAXCOUNT;
426 if (later_blocks == NULL || later_count == LATERBLOCKSIZE ||
427 (later_count == LATERBLOCKSIZE-1 && count > 1)) {
428 new = (struct later *)malloc(sizeof(struct later));
429 new->next = later_blocks;
430 if (later_blocks && later_count < LATERBLOCKSIZE)
431 later_blocks->u[later_count].ptr = NULL;
437 later_blocks->u[later_count++].count = count;
438 later_blocks->u[later_count++].ptr = where;
443 ptrans_boxed(lispobj thing, lispobj header, boolean constant)
446 lispobj result, *new, *old;
448 nwords = 1 + HeaderValue(header);
451 old = (lispobj *)native_pointer(thing);
453 new = read_only_free;
454 read_only_free += CEILING(nwords, 2);
458 static_free += CEILING(nwords, 2);
462 bcopy(old, new, nwords * sizeof(lispobj));
464 /* Deposit forwarding pointer. */
465 result = make_lispobj(new, lowtag_of(thing));
469 pscav(new, nwords, constant);
474 /* We need to look at the layout to see whether it is a pure structure
475 * class, and only then can we transport as constant. If it is pure,
476 * we can ALWAYS transport as a constant. */
478 ptrans_instance(lispobj thing, lispobj header, boolean constant)
480 lispobj layout = ((struct instance *)native_pointer(thing))->slots[0];
481 lispobj pure = ((struct instance *)native_pointer(layout))->slots[15];
485 return (ptrans_boxed(thing, header, 1));
487 return (ptrans_boxed(thing, header, 0));
490 /* Substructure: special case for the COMPACT-INFO-ENVs,
491 * where the instance may have a point to the dynamic
492 * space placed into it (e.g. the cache-name slot), but
493 * the lists and arrays at the time of a purify can be
494 * moved to the RO space. */
496 lispobj result, *new, *old;
498 nwords = 1 + HeaderValue(header);
501 old = (lispobj *)native_pointer(thing);
503 static_free += CEILING(nwords, 2);
506 bcopy(old, new, nwords * sizeof(lispobj));
508 /* Deposit forwarding pointer. */
509 result = make_lispobj(new, lowtag_of(thing));
513 pscav(new, nwords, 1);
519 return NIL; /* dummy value: return something ... */
524 ptrans_fdefn(lispobj thing, lispobj header)
527 lispobj result, *new, *old, oldfn;
530 nwords = 1 + HeaderValue(header);
533 old = (lispobj *)native_pointer(thing);
535 static_free += CEILING(nwords, 2);
538 bcopy(old, new, nwords * sizeof(lispobj));
540 /* Deposit forwarding pointer. */
541 result = make_lispobj(new, lowtag_of(thing));
544 /* Scavenge the function. */
545 fdefn = (struct fdefn *)new;
547 pscav(&fdefn->fun, 1, 0);
548 if ((char *)oldfn + FUN_RAW_ADDR_OFFSET == fdefn->raw_addr)
549 fdefn->raw_addr = (char *)fdefn->fun + FUN_RAW_ADDR_OFFSET;
555 ptrans_unboxed(lispobj thing, lispobj header)
558 lispobj result, *new, *old;
560 nwords = 1 + HeaderValue(header);
563 old = (lispobj *)native_pointer(thing);
564 new = read_only_free;
565 read_only_free += CEILING(nwords, 2);
568 bcopy(old, new, nwords * sizeof(lispobj));
570 /* Deposit forwarding pointer. */
571 result = make_lispobj(new , lowtag_of(thing));
578 ptrans_vector(lispobj thing, int bits, int extra,
579 boolean boxed, boolean constant)
581 struct vector *vector;
583 lispobj result, *new;
585 vector = (struct vector *)native_pointer(thing);
586 nwords = 2 + (CEILING((fixnum_value(vector->length)+extra)*bits,32)>>5);
588 if (boxed && !constant) {
590 static_free += CEILING(nwords, 2);
593 new = read_only_free;
594 read_only_free += CEILING(nwords, 2);
597 bcopy(vector, new, nwords * sizeof(lispobj));
599 result = make_lispobj(new, lowtag_of(thing));
600 vector->header = result;
603 pscav(new, nwords, constant);
610 apply_code_fixups_during_purify(struct code *old_code, struct code *new_code)
612 int nheader_words, ncode_words, nwords;
613 void *constants_start_addr, *constants_end_addr;
614 void *code_start_addr, *code_end_addr;
615 lispobj fixups = NIL;
616 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
617 struct vector *fixups_vector;
619 ncode_words = fixnum_value(new_code->code_size);
620 nheader_words = HeaderValue(*(lispobj *)new_code);
621 nwords = ncode_words + nheader_words;
623 constants_start_addr = (void *)new_code + 5*4;
624 constants_end_addr = (void *)new_code + nheader_words*4;
625 code_start_addr = (void *)new_code + nheader_words*4;
626 code_end_addr = (void *)new_code + nwords*4;
628 /* The first constant should be a pointer to the fixups for this
629 * code objects. Check. */
630 fixups = new_code->constants[0];
632 /* It will be 0 or the unbound-marker if there are no fixups, and
633 * will be an other-pointer to a vector if it is valid. */
635 (fixups==UNBOUND_MARKER_WIDETAG) ||
636 !is_lisp_pointer(fixups)) {
637 #ifdef LISP_FEATURE_GENCGC
638 /* Check for a possible errors. */
639 sniff_code_object(new_code,displacement);
644 fixups_vector = (struct vector *)native_pointer(fixups);
646 /* Could be pointing to a forwarding pointer. */
647 if (is_lisp_pointer(fixups) && (dynamic_pointer_p(fixups))
648 && forwarding_pointer_p(*(lispobj *)fixups_vector)) {
649 /* If so then follow it. */
651 (struct vector *)native_pointer(*(lispobj *)fixups_vector);
654 if (widetag_of(fixups_vector->header) ==
655 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
656 /* We got the fixups for the code block. Now work through the
657 * vector, and apply a fixup at each address. */
658 int length = fixnum_value(fixups_vector->length);
660 for (i=0; i<length; i++) {
661 unsigned offset = fixups_vector->data[i];
662 /* Now check the current value of offset. */
664 *(unsigned *)((unsigned)code_start_addr + offset);
666 /* If it's within the old_code object then it must be an
667 * absolute fixup (relative ones are not saved) */
668 if ((old_value>=(unsigned)old_code)
669 && (old_value<((unsigned)old_code + nwords*4)))
670 /* So add the dispacement. */
671 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
674 /* It is outside the old code object so it must be a relative
675 * fixup (absolute fixups are not saved). So subtract the
677 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
682 /* No longer need the fixups. */
683 new_code->constants[0] = 0;
685 #ifdef LISP_FEATURE_GENCGC
686 /* Check for possible errors. */
687 sniff_code_object(new_code,displacement);
693 ptrans_code(lispobj thing)
695 struct code *code, *new;
697 lispobj func, result;
699 code = (struct code *)native_pointer(thing);
700 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
702 new = (struct code *)read_only_free;
703 read_only_free += CEILING(nwords, 2);
705 bcopy(code, new, nwords * sizeof(lispobj));
707 #ifdef LISP_FEATURE_X86
708 apply_code_fixups_during_purify(code,new);
711 result = make_lispobj(new, OTHER_POINTER_LOWTAG);
713 /* Stick in a forwarding pointer for the code object. */
714 *(lispobj *)code = result;
716 /* Put in forwarding pointers for all the functions. */
717 for (func = code->entry_points;
719 func = ((struct simple_fun *)native_pointer(func))->next) {
721 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
723 *(lispobj *)native_pointer(func) = result + (func - thing);
726 /* Arrange to scavenge the debug info later. */
727 pscav_later(&new->debug_info, 1);
729 if (new->trace_table_offset & 0x3)
731 pscav(&new->trace_table_offset, 1, 0);
733 new->trace_table_offset = NIL; /* limit lifetime */
736 /* Scavenge the constants. */
737 pscav(new->constants, HeaderValue(new->header)-5, 1);
739 /* Scavenge all the functions. */
740 pscav(&new->entry_points, 1, 1);
741 for (func = new->entry_points;
743 func = ((struct simple_fun *)native_pointer(func))->next) {
744 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
745 gc_assert(!dynamic_pointer_p(func));
748 /* Temporarly convert the self pointer to a real function pointer. */
749 ((struct simple_fun *)native_pointer(func))->self
750 -= FUN_RAW_ADDR_OFFSET;
752 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
754 ((struct simple_fun *)native_pointer(func))->self
755 += FUN_RAW_ADDR_OFFSET;
757 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
764 ptrans_func(lispobj thing, lispobj header)
767 lispobj code, *new, *old, result;
768 struct simple_fun *function;
770 /* Thing can either be a function header, a closure function
771 * header, a closure, or a funcallable-instance. If it's a closure
772 * or a funcallable-instance, we do the same as ptrans_boxed.
773 * Otherwise we have to do something strange, 'cause it is buried
774 * inside a code object. */
776 if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG ||
777 widetag_of(header) == CLOSURE_FUN_HEADER_WIDETAG) {
779 /* We can only end up here if the code object has not been
780 * scavenged, because if it had been scavenged, forwarding pointers
781 * would have been left behind for all the entry points. */
783 function = (struct simple_fun *)native_pointer(thing);
786 ((native_pointer(thing) -
787 (HeaderValue(function->header))), OTHER_POINTER_LOWTAG);
789 /* This will cause the function's header to be replaced with a
790 * forwarding pointer. */
794 /* So we can just return that. */
795 return function->header;
798 /* It's some kind of closure-like thing. */
799 nwords = 1 + HeaderValue(header);
800 old = (lispobj *)native_pointer(thing);
802 /* Allocate the new one. */
803 if (widetag_of(header) == FUNCALLABLE_INSTANCE_HEADER_WIDETAG) {
804 /* FINs *must* not go in read_only space. */
806 static_free += CEILING(nwords, 2);
809 /* Closures can always go in read-only space, 'cause they
812 new = read_only_free;
813 read_only_free += CEILING(nwords, 2);
816 bcopy(old, new, nwords * sizeof(lispobj));
818 /* Deposit forwarding pointer. */
819 result = make_lispobj(new, lowtag_of(thing));
823 pscav(new, nwords, 0);
830 ptrans_returnpc(lispobj thing, lispobj header)
834 /* Find the corresponding code object. */
835 code = thing - HeaderValue(header)*sizeof(lispobj);
837 /* Make sure it's been transported. */
838 new = *(lispobj *)native_pointer(code);
839 if (!forwarding_pointer_p(new))
840 new = ptrans_code(code);
842 /* Maintain the offset: */
843 return new + (thing - code);
846 #define WORDS_PER_CONS CEILING(sizeof(struct cons) / sizeof(lispobj), 2)
849 ptrans_list(lispobj thing, boolean constant)
851 struct cons *old, *new, *orig;
855 orig = (struct cons *)read_only_free;
857 orig = (struct cons *)static_free;
861 /* Allocate a new cons cell. */
862 old = (struct cons *)native_pointer(thing);
864 new = (struct cons *)read_only_free;
865 read_only_free += WORDS_PER_CONS;
868 new = (struct cons *)static_free;
869 static_free += WORDS_PER_CONS;
872 /* Copy the cons cell and keep a pointer to the cdr. */
874 thing = new->cdr = old->cdr;
876 /* Set up the forwarding pointer. */
877 *(lispobj *)old = make_lispobj(new, LIST_POINTER_LOWTAG);
879 /* And count this cell. */
881 } while (lowtag_of(thing) == LIST_POINTER_LOWTAG &&
882 dynamic_pointer_p(thing) &&
883 !(forwarding_pointer_p(*(lispobj *)native_pointer(thing))));
885 /* Scavenge the list we just copied. */
886 pscav((lispobj *)orig, length * WORDS_PER_CONS, constant);
888 return make_lispobj(orig, LIST_POINTER_LOWTAG);
892 ptrans_otherptr(lispobj thing, lispobj header, boolean constant)
894 switch (widetag_of(header)) {
896 case SINGLE_FLOAT_WIDETAG:
897 case DOUBLE_FLOAT_WIDETAG:
898 #ifdef LONG_FLOAT_WIDETAG
899 case LONG_FLOAT_WIDETAG:
901 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
902 case COMPLEX_SINGLE_FLOAT_WIDETAG:
904 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
905 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
907 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
908 case COMPLEX_LONG_FLOAT_WIDETAG:
911 return ptrans_unboxed(thing, header);
914 case COMPLEX_WIDETAG:
915 case SIMPLE_ARRAY_WIDETAG:
916 case COMPLEX_STRING_WIDETAG:
917 case COMPLEX_VECTOR_WIDETAG:
918 case COMPLEX_ARRAY_WIDETAG:
919 return ptrans_boxed(thing, header, constant);
921 case VALUE_CELL_HEADER_WIDETAG:
922 case WEAK_POINTER_WIDETAG:
923 return ptrans_boxed(thing, header, 0);
925 case SYMBOL_HEADER_WIDETAG:
926 return ptrans_boxed(thing, header, 0);
928 case SIMPLE_STRING_WIDETAG:
929 return ptrans_vector(thing, 8, 1, 0, constant);
931 case SIMPLE_BIT_VECTOR_WIDETAG:
932 return ptrans_vector(thing, 1, 0, 0, constant);
934 case SIMPLE_VECTOR_WIDETAG:
935 return ptrans_vector(thing, 32, 0, 1, constant);
937 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
938 return ptrans_vector(thing, 2, 0, 0, constant);
940 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
941 return ptrans_vector(thing, 4, 0, 0, constant);
943 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
944 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
945 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
947 return ptrans_vector(thing, 8, 0, 0, constant);
949 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
950 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
951 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
953 return ptrans_vector(thing, 16, 0, 0, constant);
955 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
956 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
957 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
959 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
960 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
962 return ptrans_vector(thing, 32, 0, 0, constant);
964 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
965 return ptrans_vector(thing, 32, 0, 0, constant);
967 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
968 return ptrans_vector(thing, 64, 0, 0, constant);
970 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
971 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
973 return ptrans_vector(thing, 96, 0, 0, constant);
976 return ptrans_vector(thing, 128, 0, 0, constant);
980 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
981 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
982 return ptrans_vector(thing, 64, 0, 0, constant);
985 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
986 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
987 return ptrans_vector(thing, 128, 0, 0, constant);
990 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
991 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
993 return ptrans_vector(thing, 192, 0, 0, constant);
996 return ptrans_vector(thing, 256, 0, 0, constant);
1000 case CODE_HEADER_WIDETAG:
1001 return ptrans_code(thing);
1003 case RETURN_PC_HEADER_WIDETAG:
1004 return ptrans_returnpc(thing, header);
1007 return ptrans_fdefn(thing, header);
1010 /* Should only come across other pointers to the above stuff. */
1017 pscav_fdefn(struct fdefn *fdefn)
1021 fix_func = ((char *)(fdefn->fun+FUN_RAW_ADDR_OFFSET) == fdefn->raw_addr);
1022 pscav(&fdefn->name, 1, 1);
1023 pscav(&fdefn->fun, 1, 0);
1025 fdefn->raw_addr = (char *)(fdefn->fun + FUN_RAW_ADDR_OFFSET);
1026 return sizeof(struct fdefn) / sizeof(lispobj);
1030 /* now putting code objects in static space */
1032 pscav_code(struct code*code)
1036 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
1038 /* Arrange to scavenge the debug info later. */
1039 pscav_later(&code->debug_info, 1);
1041 /* Scavenge the constants. */
1042 pscav(code->constants, HeaderValue(code->header)-5, 1);
1044 /* Scavenge all the functions. */
1045 pscav(&code->entry_points, 1, 1);
1046 for (func = code->entry_points;
1048 func = ((struct simple_fun *)native_pointer(func))->next) {
1049 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
1050 gc_assert(!dynamic_pointer_p(func));
1053 /* Temporarly convert the self pointer to a real function
1055 ((struct simple_fun *)native_pointer(func))->self
1056 -= FUN_RAW_ADDR_OFFSET;
1058 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
1060 ((struct simple_fun *)native_pointer(func))->self
1061 += FUN_RAW_ADDR_OFFSET;
1063 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
1066 return CEILING(nwords,2);
1071 pscav(lispobj *addr, int nwords, boolean constant)
1073 lispobj thing, *thingp, header;
1074 int count = 0; /* (0 = dummy init value to stop GCC warning) */
1075 struct vector *vector;
1077 while (nwords > 0) {
1079 if (is_lisp_pointer(thing)) {
1080 /* It's a pointer. Is it something we might have to move? */
1081 if (dynamic_pointer_p(thing)) {
1082 /* Maybe. Have we already moved it? */
1083 thingp = (lispobj *)native_pointer(thing);
1085 if (is_lisp_pointer(header) && forwarding_pointer_p(header))
1086 /* Yep, so just copy the forwarding pointer. */
1089 /* Nope, copy the object. */
1090 switch (lowtag_of(thing)) {
1091 case FUN_POINTER_LOWTAG:
1092 thing = ptrans_func(thing, header);
1095 case LIST_POINTER_LOWTAG:
1096 thing = ptrans_list(thing, constant);
1099 case INSTANCE_POINTER_LOWTAG:
1100 thing = ptrans_instance(thing, header, constant);
1103 case OTHER_POINTER_LOWTAG:
1104 thing = ptrans_otherptr(thing, header, constant);
1108 /* It was a pointer, but not one of them? */
1116 else if (thing & 3) {
1117 /* It's an other immediate. Maybe the header for an unboxed */
1119 switch (widetag_of(thing)) {
1120 case BIGNUM_WIDETAG:
1121 case SINGLE_FLOAT_WIDETAG:
1122 case DOUBLE_FLOAT_WIDETAG:
1123 #ifdef LONG_FLOAT_WIDETAG
1124 case LONG_FLOAT_WIDETAG:
1127 /* It's an unboxed simple object. */
1128 count = HeaderValue(thing)+1;
1131 case SIMPLE_VECTOR_WIDETAG:
1132 if (HeaderValue(thing) == subtype_VectorValidHashing) {
1133 *addr = (subtype_VectorMustRehash << N_WIDETAG_BITS) |
1134 SIMPLE_VECTOR_WIDETAG;
1139 case SIMPLE_STRING_WIDETAG:
1140 vector = (struct vector *)addr;
1141 count = CEILING(NWORDS(fixnum_value(vector->length)+1,4)+2,2);
1144 case SIMPLE_BIT_VECTOR_WIDETAG:
1145 vector = (struct vector *)addr;
1146 count = CEILING(NWORDS(fixnum_value(vector->length),32)+2,2);
1149 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
1150 vector = (struct vector *)addr;
1151 count = CEILING(NWORDS(fixnum_value(vector->length),16)+2,2);
1154 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
1155 vector = (struct vector *)addr;
1156 count = CEILING(NWORDS(fixnum_value(vector->length),8)+2,2);
1159 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
1160 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
1161 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
1163 vector = (struct vector *)addr;
1164 count = CEILING(NWORDS(fixnum_value(vector->length),4)+2,2);
1167 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
1168 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
1169 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
1171 vector = (struct vector *)addr;
1172 count = CEILING(NWORDS(fixnum_value(vector->length),2)+2,2);
1175 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
1176 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
1177 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
1179 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
1180 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
1182 vector = (struct vector *)addr;
1183 count = CEILING(fixnum_value(vector->length)+2,2);
1186 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
1187 vector = (struct vector *)addr;
1188 count = CEILING(fixnum_value(vector->length)+2,2);
1191 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
1192 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1193 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1195 vector = (struct vector *)addr;
1196 count = fixnum_value(vector->length)*2+2;
1199 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
1200 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
1201 vector = (struct vector *)addr;
1203 count = fixnum_value(vector->length)*3+2;
1206 count = fixnum_value(vector->length)*4+2;
1211 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1212 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1213 vector = (struct vector *)addr;
1214 count = fixnum_value(vector->length)*4+2;
1218 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1219 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1220 vector = (struct vector *)addr;
1222 count = fixnum_value(vector->length)*6+2;
1225 count = fixnum_value(vector->length)*8+2;
1230 case CODE_HEADER_WIDETAG:
1232 gc_abort(); /* no code headers in static space */
1234 count = pscav_code((struct code*)addr);
1238 case SIMPLE_FUN_HEADER_WIDETAG:
1239 case CLOSURE_FUN_HEADER_WIDETAG:
1240 case RETURN_PC_HEADER_WIDETAG:
1241 /* We should never hit any of these, 'cause they occur
1242 * buried in the middle of code objects. */
1247 case CLOSURE_HEADER_WIDETAG:
1248 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
1249 /* The function self pointer needs special care on the
1250 * x86 because it is the real entry point. */
1252 lispobj fun = ((struct closure *)addr)->fun
1253 - FUN_RAW_ADDR_OFFSET;
1254 pscav(&fun, 1, constant);
1255 ((struct closure *)addr)->fun = fun + FUN_RAW_ADDR_OFFSET;
1261 case WEAK_POINTER_WIDETAG:
1262 /* Weak pointers get preserved during purify, 'cause I
1263 * don't feel like figuring out how to break them. */
1264 pscav(addr+1, 2, constant);
1269 /* We have to handle fdefn objects specially, so we
1270 * can fix up the raw function address. */
1271 count = pscav_fdefn((struct fdefn *)addr);
1280 /* It's a fixnum. */
1292 purify(lispobj static_roots, lispobj read_only_roots)
1296 struct later *laters, *next;
1299 printf("[doing purification:");
1303 if (fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX)) != 0) {
1304 /* FIXME: 1. What does this mean? 2. It shouldn't be reporting
1305 * its error simply by a. printing a string b. to stdout instead
1307 printf(" Ack! Can't purify interrupt contexts. ");
1312 #if defined(__i386__)
1313 dynamic_space_free_pointer =
1314 (lispobj*)SymbolValue(ALLOCATION_POINTER);
1317 read_only_end = read_only_free =
1318 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER);
1319 static_end = static_free =
1320 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER);
1327 #ifdef LISP_FEATURE_GENCGC
1328 gc_assert((lispobj *)CONTROL_STACK_END > ((&read_only_roots)+1));
1329 setup_i386_stack_scav(((&static_roots)-2), (lispobj *)CONTROL_STACK_END);
1332 pscav(&static_roots, 1, 0);
1333 pscav(&read_only_roots, 1, 1);
1336 printf(" handlers");
1339 pscav((lispobj *) interrupt_handlers,
1340 sizeof(interrupt_handlers) / sizeof(lispobj),
1348 pscav((lispobj *)CONTROL_STACK_START,
1349 current_control_stack_pointer - (lispobj *)CONTROL_STACK_START,
1352 #ifdef LISP_FEATURE_GENCGC
1358 printf(" bindings");
1361 #if !defined(__i386__)
1362 pscav( (lispobj *)BINDING_STACK_START,
1363 (lispobj *)current_binding_stack_pointer - (lispobj *)BINDING_STACK_START,
1366 pscav( (lispobj *)BINDING_STACK_START,
1367 (lispobj *)SymbolValue(BINDING_STACK_POINTER) -
1368 (lispobj *)BINDING_STACK_START,
1372 /* The original CMU CL code had scavenge-read-only-space code
1373 * controlled by the Lisp-level variable
1374 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
1375 * wasn't documented under what circumstances it was useful or
1376 * safe to turn it on, so it's been turned off in SBCL. If you
1377 * want/need this functionality, and can test and document it,
1378 * please submit a patch. */
1380 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != UNBOUND_MARKER_WIDETAG
1381 && SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
1382 unsigned read_only_space_size =
1383 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
1384 (lispobj *)READ_ONLY_SPACE_START;
1386 "scavenging read only space: %d bytes\n",
1387 read_only_space_size * sizeof(lispobj));
1388 pscav( (lispobj *)READ_ONLY_SPACE_START, read_only_space_size, 0);
1396 clean = (lispobj *)STATIC_SPACE_START;
1398 while (clean != static_free)
1399 clean = pscav(clean, static_free - clean, 0);
1400 laters = later_blocks;
1401 count = later_count;
1402 later_blocks = NULL;
1404 while (laters != NULL) {
1405 for (i = 0; i < count; i++) {
1406 if (laters->u[i].count == 0) {
1408 } else if (laters->u[i].count <= LATERMAXCOUNT) {
1409 pscav(laters->u[i+1].ptr, laters->u[i].count, 1);
1412 pscav(laters->u[i].ptr, 1, 1);
1415 next = laters->next;
1418 count = LATERBLOCKSIZE;
1420 } while (clean != static_free || later_blocks != NULL);
1427 os_zero((os_vm_address_t) current_dynamic_space,
1428 (os_vm_size_t) DYNAMIC_SPACE_SIZE);
1430 /* Zero the stack. Note that the stack is also zeroed by SUB-GC
1431 * calling SCRUB-CONTROL-STACK - this zeros the stack on the x86. */
1433 os_zero((os_vm_address_t) current_control_stack_pointer,
1434 (os_vm_size_t) (CONTROL_STACK_SIZE -
1435 ((current_control_stack_pointer -
1436 (lispobj *)CONTROL_STACK_START) *
1440 /* It helps to update the heap free pointers so that free_heap can
1441 * verify after it's done. */
1442 SetSymbolValue(READ_ONLY_SPACE_FREE_POINTER, (lispobj)read_only_free);
1443 SetSymbolValue(STATIC_SPACE_FREE_POINTER, (lispobj)static_free);
1445 #if !defined(__i386__)
1446 dynamic_space_free_pointer = current_dynamic_space;
1448 #if defined LISP_FEATURE_GENCGC
1451 #error unsupported case /* in CMU CL, was "ibmrt using GC" */