0.8.21.1:
[sbcl.git] / src / runtime / purify.c
1 /*
2  * C-level stuff to implement Lisp-level PURIFY
3  */
4
5 /*
6  * This software is part of the SBCL system. See the README file for
7  * more information.
8  *
9  * This software is derived from the CMU CL system, which was
10  * written at Carnegie Mellon University and released into the
11  * public domain. The software is in the public domain and is
12  * provided with absolutely no warranty. See the COPYING and CREDITS
13  * files for more information.
14  */
15
16 #include <stdio.h>
17 #include <sys/types.h>
18 #include <stdlib.h>
19 #include <strings.h>
20 #include <errno.h>
21
22 #include "sbcl.h"
23 #include "runtime.h"
24 #include "os.h"
25 #include "globals.h"
26 #include "validate.h"
27 #include "interrupt.h"
28 #include "purify.h"
29 #include "interr.h"
30 #include "fixnump.h"
31 #include "gc.h"
32 #include "gc-internal.h"
33 #include "thread.h"
34 #include "genesis/primitive-objects.h"
35 #include "genesis/static-symbols.h"
36
37 #define PRINTNOISE
38
39 #if defined(LISP_FEATURE_GENCGC)
40 /* this is another artifact of the poor integration between gencgc and
41  * the rest of the runtime: on cheney gc there is a global
42  * dynamic_space_free_pointer which is valid whenever foreign function
43  * call is active, but in gencgc there's no such variable and we have
44  * to keep our own
45  */
46 static lispobj *dynamic_space_free_pointer;
47 #endif
48 extern unsigned long bytes_consed_between_gcs;
49
50 #define gc_abort() \
51   lose("GC invariant lost, file \"%s\", line %d", __FILE__, __LINE__)
52
53 #if 1
54 #define gc_assert(ex) do { \
55         if (!(ex)) gc_abort(); \
56 } while (0)
57 #else
58 #define gc_assert(ex)
59 #endif
60
61 \f
62 /* These hold the original end of the read_only and static spaces so
63  * we can tell what are forwarding pointers. */
64
65 static lispobj *read_only_end, *static_end;
66
67 static lispobj *read_only_free, *static_free;
68
69 static lispobj *pscav(lispobj *addr, long nwords, boolean constant);
70
71 #define LATERBLOCKSIZE 1020
72 #define LATERMAXCOUNT 10
73
74 static struct
75 later {
76     struct later *next;
77     union {
78         lispobj *ptr;
79         long count;
80     } u[LATERBLOCKSIZE];
81 } *later_blocks = NULL;
82 static long later_count = 0;
83
84 #if N_WORD_BITS == 32
85  #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG
86 #elif N_WORD_BITS == 64
87  #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
88 #endif
89
90 /* FIXME: Shouldn't this be defined in sbcl.h?  See also notes in
91  * cheneygc.c */
92
93 #ifdef sparc
94 #define FUN_RAW_ADDR_OFFSET 0
95 #else
96 #define FUN_RAW_ADDR_OFFSET (6*sizeof(lispobj) - FUN_POINTER_LOWTAG)
97 #endif
98 \f
99 static boolean
100 forwarding_pointer_p(lispobj obj)
101 {
102     lispobj *ptr = native_pointer(obj);
103
104     return ((static_end <= ptr && ptr <= static_free) ||
105             (read_only_end <= ptr && ptr <= read_only_free));
106 }
107
108 static boolean
109 dynamic_pointer_p(lispobj ptr)
110 {
111 #ifndef LISP_FEATURE_GENCGC
112     return (ptr >= (lispobj)current_dynamic_space
113             &&
114             ptr < (lispobj)dynamic_space_free_pointer);
115 #else
116     /* Be more conservative, and remember, this is a maybe. */
117     return (ptr >= (lispobj)DYNAMIC_SPACE_START
118             &&
119             ptr < (lispobj)dynamic_space_free_pointer);
120 #endif
121 }
122
123 static inline lispobj *
124 newspace_alloc(long nwords, int constantp) 
125 {
126     lispobj *ret;
127     nwords=CEILING(nwords,2);
128     if(constantp) {
129         ret=read_only_free;
130         read_only_free+=nwords;
131     } else {
132         ret=static_free;
133         static_free+=nwords;
134     }
135     return ret;
136 }
137
138
139 \f
140 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
141
142 #ifdef LISP_FEATURE_GENCGC
143 /*
144  * enhanced x86/GENCGC stack scavenging by Douglas Crosher
145  *
146  * Scavenging the stack on the i386 is problematic due to conservative
147  * roots and raw return addresses. Here it is handled in two passes:
148  * the first pass runs before any objects are moved and tries to
149  * identify valid pointers and return address on the stack, the second
150  * pass scavenges these.
151  */
152
153 static unsigned pointer_filter_verbose = 0;
154
155 /* FIXME: This is substantially the same code as
156  * possibly_valid_dynamic_space_pointer in gencgc.c.  The only
157  * relevant difference seems to be that the gencgc code also checks
158  * for raw pointers into Code objects, whereas in purify these are
159  * checked separately in setup_i386_stack_scav - they go onto
160  * valid_stack_ra_locations instead of just valid_stack_locations */
161
162 static int
163 valid_dynamic_space_pointer(lispobj *pointer, lispobj *start_addr)
164 {
165     /* If it's not a return address then it needs to be a valid Lisp
166      * pointer. */
167     if (!is_lisp_pointer((lispobj)pointer))
168         return 0;
169
170     /* Check that the object pointed to is consistent with the pointer
171      * low tag. */
172     switch (lowtag_of((lispobj)pointer)) {
173     case FUN_POINTER_LOWTAG:
174         /* Start_addr should be the enclosing code object, or a closure
175          * header. */
176         switch (widetag_of(*start_addr)) {
177         case CODE_HEADER_WIDETAG:
178             /* This case is probably caught above. */
179             break;
180         case CLOSURE_HEADER_WIDETAG:
181         case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
182             if ((long)pointer != ((long)start_addr+FUN_POINTER_LOWTAG)) {
183                 if (pointer_filter_verbose) {
184                     fprintf(stderr,"*Wf2: %x %x %x\n", 
185                             (unsigned long) pointer, 
186                             (unsigned long) start_addr, *start_addr);
187                 }
188                 return 0;
189             }
190             break;
191         default:
192             if (pointer_filter_verbose) {
193                 fprintf(stderr,"*Wf3: %x %x %x\n", (unsigned long) pointer, 
194                         (unsigned long) start_addr, *start_addr);
195             }
196             return 0;
197         }
198         break;
199     case LIST_POINTER_LOWTAG:
200         if ((long)pointer != ((long)start_addr+LIST_POINTER_LOWTAG)) {
201             if (pointer_filter_verbose)
202                 fprintf(stderr,"*Wl1: %x %x %x\n", (unsigned long) pointer, 
203                         (unsigned long) start_addr, *start_addr);
204             return 0;
205         }
206         /* Is it plausible cons? */
207         if ((is_lisp_pointer(start_addr[0])
208             || ((start_addr[0] & FIXNUM_TAG_MASK) == 0) /* fixnum */
209             || (widetag_of(start_addr[0]) == CHARACTER_WIDETAG)
210 #if N_WORD_BITS == 64
211             || (widetag_of(start_addr[0]) == SINGLE_FLOAT_WIDETAG)
212 #endif
213             || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
214            && (is_lisp_pointer(start_addr[1])
215                || ((start_addr[1] & FIXNUM_TAG_MASK) == 0) /* fixnum */
216                || (widetag_of(start_addr[1]) == CHARACTER_WIDETAG)
217 #if N_WORD_BITS == 64
218                || (widetag_of(start_addr[1]) == SINGLE_FLOAT_WIDETAG)
219 #endif
220                || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG))) {
221             break;
222         } else {
223             if (pointer_filter_verbose) {
224                 fprintf(stderr,"*Wl2: %x %x %x\n", (unsigned long) pointer, 
225                         (unsigned long) start_addr, *start_addr);
226             }
227             return 0;
228         }
229     case INSTANCE_POINTER_LOWTAG:
230         if ((long)pointer != ((long)start_addr+INSTANCE_POINTER_LOWTAG)) {
231             if (pointer_filter_verbose) {
232                 fprintf(stderr,"*Wi1: %x %x %x\n", (unsigned long) pointer, 
233                         (unsigned long) start_addr, *start_addr);
234             }
235             return 0;
236         }
237         if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
238             if (pointer_filter_verbose) {
239                 fprintf(stderr,"*Wi2: %x %x %x\n", (unsigned long) pointer, 
240                         (unsigned long) start_addr, *start_addr);
241             }
242             return 0;
243         }
244         break;
245     case OTHER_POINTER_LOWTAG:
246         if ((long)pointer != ((long)start_addr+OTHER_POINTER_LOWTAG)) {
247             if (pointer_filter_verbose) {
248                 fprintf(stderr,"*Wo1: %x %x %x\n", (unsigned long) pointer, 
249                         (unsigned long) start_addr, *start_addr);
250             }
251             return 0;
252         }
253         /* Is it plausible? Not a cons. XXX should check the headers. */
254         if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & FIXNUM_TAG_MASK) == 0)) {
255             if (pointer_filter_verbose) {
256                 fprintf(stderr,"*Wo2: %x %x %x\n", (unsigned long) pointer, 
257                         (unsigned long) start_addr, *start_addr);
258             }
259             return 0;
260         }
261         switch (widetag_of(start_addr[0])) {
262         case UNBOUND_MARKER_WIDETAG:
263         case CHARACTER_WIDETAG:
264 #if N_WORD_BITS == 64
265         case SINGLE_FLOAT_WIDETAG:
266 #endif
267             if (pointer_filter_verbose) {
268                 fprintf(stderr,"*Wo3: %x %x %x\n", (unsigned long) pointer, 
269                         (unsigned long) start_addr, *start_addr);
270             }
271             return 0;
272
273             /* only pointed to by function pointers? */
274         case CLOSURE_HEADER_WIDETAG:
275         case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
276             if (pointer_filter_verbose) {
277                 fprintf(stderr,"*Wo4: %x %x %x\n", (unsigned long) pointer, 
278                         (unsigned long) start_addr, *start_addr);
279             }
280             return 0;
281
282         case INSTANCE_HEADER_WIDETAG:
283             if (pointer_filter_verbose) {
284                 fprintf(stderr,"*Wo5: %x %x %x\n", (unsigned long) pointer, 
285                         (unsigned long) start_addr, *start_addr);
286             }
287             return 0;
288
289             /* the valid other immediate pointer objects */
290         case SIMPLE_VECTOR_WIDETAG:
291         case RATIO_WIDETAG:
292         case COMPLEX_WIDETAG:
293 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
294         case COMPLEX_SINGLE_FLOAT_WIDETAG:
295 #endif
296 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
297         case COMPLEX_DOUBLE_FLOAT_WIDETAG:
298 #endif
299 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
300         case COMPLEX_LONG_FLOAT_WIDETAG:
301 #endif
302         case SIMPLE_ARRAY_WIDETAG:
303         case COMPLEX_BASE_STRING_WIDETAG:
304 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
305         case COMPLEX_CHARACTER_STRING_WIDETAG:
306 #endif
307         case COMPLEX_VECTOR_NIL_WIDETAG:
308         case COMPLEX_BIT_VECTOR_WIDETAG:
309         case COMPLEX_VECTOR_WIDETAG:
310         case COMPLEX_ARRAY_WIDETAG:
311         case VALUE_CELL_HEADER_WIDETAG:
312         case SYMBOL_HEADER_WIDETAG:
313         case FDEFN_WIDETAG:
314         case CODE_HEADER_WIDETAG:
315         case BIGNUM_WIDETAG:
316 #if N_WORD_BITS != 64
317         case SINGLE_FLOAT_WIDETAG:
318 #endif
319         case DOUBLE_FLOAT_WIDETAG:
320 #ifdef LONG_FLOAT_WIDETAG
321         case LONG_FLOAT_WIDETAG:
322 #endif
323         case SIMPLE_ARRAY_NIL_WIDETAG:
324         case SIMPLE_BASE_STRING_WIDETAG:
325 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
326         case SIMPLE_CHARACTER_STRING_WIDETAG:
327 #endif
328         case SIMPLE_BIT_VECTOR_WIDETAG:
329         case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
330         case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
331         case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
332         case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
333         case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
334         case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
335 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
336         case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
337 #endif
338         case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
339         case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
340 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
341                 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
342 #endif
343 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
344                 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
345 #endif
346 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
347                 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
348 #endif
349 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
350         case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
351 #endif
352 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
353         case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
354 #endif
355 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
356         case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
357 #endif
358 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
359         case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
360 #endif
361 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
362                 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
363 #endif
364 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
365                 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
366 #endif
367         case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
368         case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
369 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
370         case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
371 #endif
372 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
373         case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
374 #endif
375 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
376         case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
377 #endif
378 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
379         case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
380 #endif
381         case SAP_WIDETAG:
382         case WEAK_POINTER_WIDETAG:
383             break;
384
385         default:
386             if (pointer_filter_verbose) {
387                 fprintf(stderr,"*Wo6: %x %x %x\n", (unsigned long) pointer, 
388                         (unsigned long) start_addr, *start_addr);
389             }
390             return 0;
391         }
392         break;
393     default:
394         if (pointer_filter_verbose) {
395             fprintf(stderr,"*W?: %x %x %x\n", (unsigned long) pointer, 
396                     (unsigned long) start_addr, *start_addr);
397         }
398         return 0;
399     }
400
401     /* looks good */
402     return 1;
403 }
404
405 #define MAX_STACK_POINTERS 256
406 lispobj *valid_stack_locations[MAX_STACK_POINTERS];
407 unsigned long num_valid_stack_locations;
408
409 #define MAX_STACK_RETURN_ADDRESSES 128
410 lispobj *valid_stack_ra_locations[MAX_STACK_RETURN_ADDRESSES];
411 lispobj *valid_stack_ra_code_objects[MAX_STACK_RETURN_ADDRESSES];
412 unsigned long num_valid_stack_ra_locations;
413
414 /* Identify valid stack slots. */
415 static void
416 setup_i386_stack_scav(lispobj *lowaddr, lispobj *base)
417 {
418     lispobj *sp = lowaddr;
419     num_valid_stack_locations = 0;
420     num_valid_stack_ra_locations = 0;
421     for (sp = lowaddr; sp < base; sp++) {
422         lispobj thing = *sp;
423         /* Find the object start address */
424         lispobj *start_addr = search_dynamic_space((void *)thing);
425         if (start_addr) {
426             /* We need to allow raw pointers into Code objects for
427              * return addresses. This will also pick up pointers to
428              * functions in code objects. */
429             if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
430                 /* FIXME asserting here is a really dumb thing to do.
431                  * If we've overflowed some arbitrary static limit, we
432                  * should just refuse to purify, instead of killing
433                  * the whole lisp session
434                  */
435                 gc_assert(num_valid_stack_ra_locations <
436                           MAX_STACK_RETURN_ADDRESSES);
437                 valid_stack_ra_locations[num_valid_stack_ra_locations] = sp;
438                 valid_stack_ra_code_objects[num_valid_stack_ra_locations++] =
439                     (lispobj *)((long)start_addr + OTHER_POINTER_LOWTAG);
440             } else {
441                 if (valid_dynamic_space_pointer((void *)thing, start_addr)) {
442                     gc_assert(num_valid_stack_locations < MAX_STACK_POINTERS);
443                     valid_stack_locations[num_valid_stack_locations++] = sp;
444                 }
445             }
446         }
447     }
448     if (pointer_filter_verbose) {
449         fprintf(stderr, "number of valid stack pointers = %d\n",
450                 num_valid_stack_locations);
451         fprintf(stderr, "number of stack return addresses = %d\n",
452                 num_valid_stack_ra_locations);
453     }
454 }
455
456 static void
457 pscav_i386_stack(void)
458 {
459     long i;
460
461     for (i = 0; i < num_valid_stack_locations; i++)
462         pscav(valid_stack_locations[i], 1, 0);
463
464     for (i = 0; i < num_valid_stack_ra_locations; i++) {
465         lispobj code_obj = (lispobj)valid_stack_ra_code_objects[i];
466         pscav(&code_obj, 1, 0);
467         if (pointer_filter_verbose) {
468             fprintf(stderr,"*C moved RA %x to %x; for code object %x to %x\n",
469                     *valid_stack_ra_locations[i],
470                     (long)(*valid_stack_ra_locations[i])
471                     - ((long)valid_stack_ra_code_objects[i] - (long)code_obj),
472                     (unsigned long) valid_stack_ra_code_objects[i], code_obj);
473         }
474         *valid_stack_ra_locations[i] =
475             ((long)(*valid_stack_ra_locations[i])
476              - ((long)valid_stack_ra_code_objects[i] - (long)code_obj));
477     }
478 }
479 #endif
480 #endif
481
482 \f
483 static void
484 pscav_later(lispobj *where, long count)
485 {
486     struct later *new;
487
488     if (count > LATERMAXCOUNT) {
489         while (count > LATERMAXCOUNT) {
490             pscav_later(where, LATERMAXCOUNT);
491             count -= LATERMAXCOUNT;
492             where += LATERMAXCOUNT;
493         }
494     }
495     else {
496         if (later_blocks == NULL || later_count == LATERBLOCKSIZE ||
497             (later_count == LATERBLOCKSIZE-1 && count > 1)) {
498             new  = (struct later *)malloc(sizeof(struct later));
499             new->next = later_blocks;
500             if (later_blocks && later_count < LATERBLOCKSIZE)
501                 later_blocks->u[later_count].ptr = NULL;
502             later_blocks = new;
503             later_count = 0;
504         }
505
506         if (count != 1)
507             later_blocks->u[later_count++].count = count;
508         later_blocks->u[later_count++].ptr = where;
509     }
510 }
511
512 static lispobj
513 ptrans_boxed(lispobj thing, lispobj header, boolean constant)
514 {
515     long nwords;
516     lispobj result, *new, *old;
517
518     nwords = CEILING(1 + HeaderValue(header), 2);
519
520     /* Allocate it */
521     old = (lispobj *)native_pointer(thing);
522     new = newspace_alloc(nwords,constant);
523
524     /* Copy it. */
525     bcopy(old, new, nwords * sizeof(lispobj));
526
527     /* Deposit forwarding pointer. */
528     result = make_lispobj(new, lowtag_of(thing));
529     *old = result;
530
531     /* Scavenge it. */
532     pscav(new, nwords, constant);
533
534     return result;
535 }
536
537 /* We need to look at the layout to see whether it is a pure structure
538  * class, and only then can we transport as constant. If it is pure,
539  * we can ALWAYS transport as a constant. */
540 static lispobj
541 ptrans_instance(lispobj thing, lispobj header, boolean /* ignored */ constant)
542 {
543     lispobj layout = ((struct instance *)native_pointer(thing))->slots[0];
544     lispobj pure = ((struct instance *)native_pointer(layout))->slots[15];
545
546     switch (pure) {
547     case T:
548         return (ptrans_boxed(thing, header, 1));
549     case NIL:
550         return (ptrans_boxed(thing, header, 0));
551     case 0:
552         {
553             /* Substructure: special case for the COMPACT-INFO-ENVs,
554              * where the instance may have a point to the dynamic
555              * space placed into it (e.g. the cache-name slot), but
556              * the lists and arrays at the time of a purify can be
557              * moved to the RO space. */
558             long nwords;
559             lispobj result, *new, *old;
560
561             nwords = CEILING(1 + HeaderValue(header), 2);
562
563             /* Allocate it */
564             old = (lispobj *)native_pointer(thing);
565             new = newspace_alloc(nwords, 0); /*  inconstant */
566
567             /* Copy it. */
568             bcopy(old, new, nwords * sizeof(lispobj));
569
570             /* Deposit forwarding pointer. */
571             result = make_lispobj(new, lowtag_of(thing));
572             *old = result;
573
574             /* Scavenge it. */
575             pscav(new, nwords, 1);
576
577             return result;
578         }
579     default:
580         gc_abort();
581         return NIL; /* dummy value: return something ... */
582     }
583 }
584
585 static lispobj
586 ptrans_fdefn(lispobj thing, lispobj header)
587 {
588     long nwords;
589     lispobj result, *new, *old, oldfn;
590     struct fdefn *fdefn;
591
592     nwords = CEILING(1 + HeaderValue(header), 2);
593
594     /* Allocate it */
595     old = (lispobj *)native_pointer(thing);
596     new = newspace_alloc(nwords, 0);    /* inconstant */
597
598     /* Copy it. */
599     bcopy(old, new, nwords * sizeof(lispobj));
600
601     /* Deposit forwarding pointer. */
602     result = make_lispobj(new, lowtag_of(thing));
603     *old = result;
604
605     /* Scavenge the function. */
606     fdefn = (struct fdefn *)new;
607     oldfn = fdefn->fun;
608     pscav(&fdefn->fun, 1, 0);
609     if ((char *)oldfn + FUN_RAW_ADDR_OFFSET == fdefn->raw_addr)
610         fdefn->raw_addr = (char *)fdefn->fun + FUN_RAW_ADDR_OFFSET;
611
612     return result;
613 }
614
615 static lispobj
616 ptrans_unboxed(lispobj thing, lispobj header)
617 {
618     long nwords;
619     lispobj result, *new, *old;
620     
621     nwords = CEILING(1 + HeaderValue(header), 2);
622     
623     /* Allocate it */
624     old = (lispobj *)native_pointer(thing);
625     new = newspace_alloc(nwords,1);     /* always constant */
626     
627     /* copy it. */
628     bcopy(old, new, nwords * sizeof(lispobj));
629     
630     /* Deposit forwarding pointer. */
631     result = make_lispobj(new , lowtag_of(thing));
632     *old = result;
633
634     return result;
635 }
636
637 static lispobj
638 ptrans_vector(lispobj thing, long bits, long extra,
639               boolean boxed, boolean constant)
640 {
641     struct vector *vector;
642     long nwords;
643     lispobj result, *new;
644     long length;
645
646     vector = (struct vector *)native_pointer(thing);
647     length = fixnum_value(vector->length)+extra;
648     // Argh, handle simple-vector-nil separately.
649     if (bits == 0) {
650       nwords = 2;
651     } else {
652       nwords = CEILING(NWORDS(length, bits) + 2, 2);
653     } 
654
655     new=newspace_alloc(nwords, (constant || !boxed));
656     bcopy(vector, new, nwords * sizeof(lispobj));
657
658     result = make_lispobj(new, lowtag_of(thing));
659     vector->header = result;
660
661     if (boxed)
662         pscav(new, nwords, constant);
663
664     return result;
665 }
666
667 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
668 static void
669 apply_code_fixups_during_purify(struct code *old_code, struct code *new_code)
670 {
671     long nheader_words, ncode_words, nwords;
672     void  *constants_start_addr, *constants_end_addr;
673     void  *code_start_addr, *code_end_addr;
674     lispobj fixups = NIL;
675     unsigned  displacement = (unsigned)new_code - (unsigned)old_code;
676     struct vector *fixups_vector;
677
678     ncode_words = fixnum_value(new_code->code_size);
679     nheader_words = HeaderValue(*(lispobj *)new_code);
680     nwords = ncode_words + nheader_words;
681
682     constants_start_addr = (void *)new_code + 5 * N_WORD_BYTES;
683     constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
684     code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
685     code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
686
687     /* The first constant should be a pointer to the fixups for this
688      * code objects. Check. */
689     fixups = new_code->constants[0];
690
691     /* It will be 0 or the unbound-marker if there are no fixups, and
692      * will be an other-pointer to a vector if it is valid. */
693     if ((fixups==0) ||
694         (fixups==UNBOUND_MARKER_WIDETAG) ||
695         !is_lisp_pointer(fixups)) {
696 #ifdef LISP_FEATURE_GENCGC
697         /* Check for a possible errors. */
698         sniff_code_object(new_code,displacement);
699 #endif
700         return;
701     }
702
703     fixups_vector = (struct vector *)native_pointer(fixups);
704
705     /* Could be pointing to a forwarding pointer. */
706     if (is_lisp_pointer(fixups) && (dynamic_pointer_p(fixups))
707         && forwarding_pointer_p(*(lispobj *)fixups_vector)) {
708         /* If so then follow it. */
709         fixups_vector =
710             (struct vector *)native_pointer(*(lispobj *)fixups_vector);
711     }
712
713     if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
714         /* We got the fixups for the code block. Now work through the
715          * vector, and apply a fixup at each address. */
716         long length = fixnum_value(fixups_vector->length);
717         long i;
718         for (i=0; i<length; i++) {
719             unsigned offset = fixups_vector->data[i];
720             /* Now check the current value of offset. */
721             unsigned old_value =
722                 *(unsigned *)((unsigned)code_start_addr + offset);
723
724             /* If it's within the old_code object then it must be an
725              * absolute fixup (relative ones are not saved) */
726             if ((old_value>=(unsigned)old_code)
727                 && (old_value<((unsigned)old_code + nwords * N_WORD_BYTES)))
728                 /* So add the dispacement. */
729                 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
730                     + displacement;
731             else
732                 /* It is outside the old code object so it must be a relative
733                  * fixup (absolute fixups are not saved). So subtract the
734                  * displacement. */
735                 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
736                     - displacement;
737         }
738     }
739
740     /* No longer need the fixups. */
741     new_code->constants[0] = 0;
742
743 #ifdef LISP_FEATURE_GENCGC
744     /* Check for possible errors. */
745     sniff_code_object(new_code,displacement);
746 #endif
747 }
748 #endif
749
750 static lispobj
751 ptrans_code(lispobj thing)
752 {
753     struct code *code, *new;
754     long nwords;
755     lispobj func, result;
756
757     code = (struct code *)native_pointer(thing);
758     nwords = CEILING(HeaderValue(code->header) + fixnum_value(code->code_size),
759                      2);
760
761     new = (struct code *)newspace_alloc(nwords,1); /* constant */
762
763     bcopy(code, new, nwords * sizeof(lispobj));
764
765 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
766     apply_code_fixups_during_purify(code,new);
767 #endif
768
769     result = make_lispobj(new, OTHER_POINTER_LOWTAG);
770
771     /* Stick in a forwarding pointer for the code object. */
772     *(lispobj *)code = result;
773
774     /* Put in forwarding pointers for all the functions. */
775     for (func = code->entry_points;
776          func != NIL;
777          func = ((struct simple_fun *)native_pointer(func))->next) {
778
779         gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
780
781         *(lispobj *)native_pointer(func) = result + (func - thing);
782     }
783
784     /* Arrange to scavenge the debug info later. */
785     pscav_later(&new->debug_info, 1);
786
787     /* FIXME: why would this be a fixnum? */
788     /* "why" is a hard word, but apparently for compiled functions the
789        trace_table_offset contains the length of the instructions, as
790        a fixnum.  See CODE-INST-AREA-LENGTH in
791        src/compiler/target-disassem.lisp.  -- CSR, 2004-01-08 */
792     if (!(fixnump(new->trace_table_offset)))
793 #if 0
794         pscav(&new->trace_table_offset, 1, 0);
795 #else
796         new->trace_table_offset = NIL; /* limit lifetime */
797 #endif
798
799     /* Scavenge the constants. */
800     pscav(new->constants, HeaderValue(new->header)-5, 1);
801
802     /* Scavenge all the functions. */
803     pscav(&new->entry_points, 1, 1);
804     for (func = new->entry_points;
805          func != NIL;
806          func = ((struct simple_fun *)native_pointer(func))->next) {
807         gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
808         gc_assert(!dynamic_pointer_p(func));
809
810 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
811         /* Temporarily convert the self pointer to a real function pointer. */
812         ((struct simple_fun *)native_pointer(func))->self
813             -= FUN_RAW_ADDR_OFFSET;
814 #endif
815         pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
816 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
817         ((struct simple_fun *)native_pointer(func))->self
818             += FUN_RAW_ADDR_OFFSET;
819 #endif
820         pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
821     }
822
823     return result;
824 }
825
826 static lispobj
827 ptrans_func(lispobj thing, lispobj header)
828 {
829     long nwords;
830     lispobj code, *new, *old, result;
831     struct simple_fun *function;
832
833     /* Thing can either be a function header, a closure function
834      * header, a closure, or a funcallable-instance. If it's a closure
835      * or a funcallable-instance, we do the same as ptrans_boxed.
836      * Otherwise we have to do something strange, 'cause it is buried
837      * inside a code object. */
838
839     if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG) {
840
841         /* We can only end up here if the code object has not been
842          * scavenged, because if it had been scavenged, forwarding pointers
843          * would have been left behind for all the entry points. */
844
845         function = (struct simple_fun *)native_pointer(thing);
846         code =
847             make_lispobj
848             ((native_pointer(thing) -
849               (HeaderValue(function->header))), OTHER_POINTER_LOWTAG);
850         
851         /* This will cause the function's header to be replaced with a 
852          * forwarding pointer. */
853
854         ptrans_code(code);
855
856         /* So we can just return that. */
857         return function->header;
858     }
859     else {
860         /* It's some kind of closure-like thing. */
861         nwords = CEILING(1 + HeaderValue(header), 2);
862         old = (lispobj *)native_pointer(thing);
863
864         /* Allocate the new one.  FINs *must* not go in read_only
865          * space.  Closures can; they never change */
866
867         new = newspace_alloc
868             (nwords,(widetag_of(header)!=FUNCALLABLE_INSTANCE_HEADER_WIDETAG));
869              
870         /* Copy it. */
871         bcopy(old, new, nwords * sizeof(lispobj));
872
873         /* Deposit forwarding pointer. */
874         result = make_lispobj(new, lowtag_of(thing));
875         *old = result;
876
877         /* Scavenge it. */
878         pscav(new, nwords, 0);
879
880         return result;
881     }
882 }
883
884 static lispobj
885 ptrans_returnpc(lispobj thing, lispobj header)
886 {
887     lispobj code, new;
888
889     /* Find the corresponding code object. */
890     code = thing - HeaderValue(header)*sizeof(lispobj);
891
892     /* Make sure it's been transported. */
893     new = *(lispobj *)native_pointer(code);
894     if (!forwarding_pointer_p(new))
895         new = ptrans_code(code);
896
897     /* Maintain the offset: */
898     return new + (thing - code);
899 }
900
901 #define WORDS_PER_CONS CEILING(sizeof(struct cons) / sizeof(lispobj), 2)
902
903 static lispobj
904 ptrans_list(lispobj thing, boolean constant)
905 {
906     struct cons *old, *new, *orig;
907     long length;
908
909     orig = (struct cons *) newspace_alloc(0,constant);
910     length = 0;
911
912     do {
913         /* Allocate a new cons cell. */
914         old = (struct cons *)native_pointer(thing);
915         new = (struct cons *) newspace_alloc(WORDS_PER_CONS,constant);
916
917         /* Copy the cons cell and keep a pointer to the cdr. */
918         new->car = old->car;
919         thing = new->cdr = old->cdr;
920
921         /* Set up the forwarding pointer. */
922         *(lispobj *)old = make_lispobj(new, LIST_POINTER_LOWTAG);
923
924         /* And count this cell. */
925         length++;
926     } while (lowtag_of(thing) == LIST_POINTER_LOWTAG &&
927              dynamic_pointer_p(thing) &&
928              !(forwarding_pointer_p(*(lispobj *)native_pointer(thing))));
929
930     /* Scavenge the list we just copied. */
931     pscav((lispobj *)orig, length * WORDS_PER_CONS, constant);
932
933     return make_lispobj(orig, LIST_POINTER_LOWTAG);
934 }
935
936 static lispobj
937 ptrans_otherptr(lispobj thing, lispobj header, boolean constant)
938 {
939     switch (widetag_of(header)) {
940         /* FIXME: this needs a reindent */
941       case BIGNUM_WIDETAG:
942       case SINGLE_FLOAT_WIDETAG:
943       case DOUBLE_FLOAT_WIDETAG:
944 #ifdef LONG_FLOAT_WIDETAG
945       case LONG_FLOAT_WIDETAG:
946 #endif
947 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
948       case COMPLEX_SINGLE_FLOAT_WIDETAG:
949 #endif
950 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
951       case COMPLEX_DOUBLE_FLOAT_WIDETAG:
952 #endif
953 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
954       case COMPLEX_LONG_FLOAT_WIDETAG:
955 #endif
956       case SAP_WIDETAG:
957           return ptrans_unboxed(thing, header);
958
959       case RATIO_WIDETAG:
960       case COMPLEX_WIDETAG:
961       case SIMPLE_ARRAY_WIDETAG:
962       case COMPLEX_BASE_STRING_WIDETAG:
963 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
964     case COMPLEX_CHARACTER_STRING_WIDETAG:
965 #endif
966       case COMPLEX_BIT_VECTOR_WIDETAG:
967       case COMPLEX_VECTOR_NIL_WIDETAG:
968       case COMPLEX_VECTOR_WIDETAG:
969       case COMPLEX_ARRAY_WIDETAG:
970         return ptrans_boxed(thing, header, constant);
971         
972       case VALUE_CELL_HEADER_WIDETAG:
973       case WEAK_POINTER_WIDETAG:
974         return ptrans_boxed(thing, header, 0);
975
976       case SYMBOL_HEADER_WIDETAG:
977         return ptrans_boxed(thing, header, 0);
978
979       case SIMPLE_ARRAY_NIL_WIDETAG:
980         return ptrans_vector(thing, 0, 0, 0, constant);
981
982       case SIMPLE_BASE_STRING_WIDETAG:
983         return ptrans_vector(thing, 8, 1, 0, constant);
984
985 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
986     case SIMPLE_CHARACTER_STRING_WIDETAG:
987         return ptrans_vector(thing, 32, 1, 0, constant);
988 #endif
989
990       case SIMPLE_BIT_VECTOR_WIDETAG:
991         return ptrans_vector(thing, 1, 0, 0, constant);
992
993       case SIMPLE_VECTOR_WIDETAG:
994         return ptrans_vector(thing, N_WORD_BITS, 0, 1, constant);
995
996       case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
997         return ptrans_vector(thing, 2, 0, 0, constant);
998
999       case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
1000         return ptrans_vector(thing, 4, 0, 0, constant);
1001
1002       case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
1003 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
1004       case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
1005       case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
1006 #endif
1007         return ptrans_vector(thing, 8, 0, 0, constant);
1008
1009       case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
1010 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
1011       case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
1012       case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
1013 #endif
1014         return ptrans_vector(thing, 16, 0, 0, constant);
1015
1016       case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
1017 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
1018       case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
1019       case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
1020 #endif
1021 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
1022       case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
1023       case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
1024 #endif
1025         return ptrans_vector(thing, 32, 0, 0, constant);
1026
1027 #if N_WORD_BITS == 64
1028 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
1029       case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
1030 #endif
1031 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
1032       case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
1033 #endif
1034 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
1035       case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
1036 #endif
1037 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
1038       case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
1039 #endif
1040 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
1041       case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
1042 #endif
1043         return ptrans_vector(thing, 64, 0, 0, constant);
1044 #endif
1045                 
1046       case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
1047         return ptrans_vector(thing, 32, 0, 0, constant);
1048
1049       case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
1050         return ptrans_vector(thing, 64, 0, 0, constant);
1051
1052 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
1053       case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
1054 #ifdef LISP_FEATURE_X86
1055         return ptrans_vector(thing, 96, 0, 0, constant);
1056 #endif
1057 #ifdef sparc
1058         return ptrans_vector(thing, 128, 0, 0, constant);
1059 #endif
1060 #endif
1061
1062 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1063       case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1064         return ptrans_vector(thing, 64, 0, 0, constant);
1065 #endif
1066
1067 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1068       case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1069         return ptrans_vector(thing, 128, 0, 0, constant);
1070 #endif
1071
1072 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1073       case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1074 #ifdef LISP_FEATURE_X86
1075         return ptrans_vector(thing, 192, 0, 0, constant);
1076 #endif
1077 #ifdef sparc
1078         return ptrans_vector(thing, 256, 0, 0, constant);
1079 #endif
1080 #endif
1081
1082       case CODE_HEADER_WIDETAG:
1083         return ptrans_code(thing);
1084
1085       case RETURN_PC_HEADER_WIDETAG:
1086         return ptrans_returnpc(thing, header);
1087
1088       case FDEFN_WIDETAG:
1089         return ptrans_fdefn(thing, header);
1090
1091       default:
1092         fprintf(stderr, "Invalid widetag: %d\n", widetag_of(header));
1093         /* Should only come across other pointers to the above stuff. */
1094         gc_abort();
1095         return NIL;
1096     }
1097 }
1098
1099 static long
1100 pscav_fdefn(struct fdefn *fdefn)
1101 {
1102     boolean fix_func;
1103
1104     fix_func = ((char *)(fdefn->fun+FUN_RAW_ADDR_OFFSET) == fdefn->raw_addr);
1105     pscav(&fdefn->name, 1, 1);
1106     pscav(&fdefn->fun, 1, 0);
1107     if (fix_func)
1108         fdefn->raw_addr = (char *)(fdefn->fun + FUN_RAW_ADDR_OFFSET);
1109     return sizeof(struct fdefn) / sizeof(lispobj);
1110 }
1111
1112 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
1113 /* now putting code objects in static space */
1114 static long
1115 pscav_code(struct code*code)
1116 {
1117     long nwords;
1118     lispobj func;
1119     nwords = CEILING(HeaderValue(code->header) + fixnum_value(code->code_size),
1120                      2);
1121
1122     /* Arrange to scavenge the debug info later. */
1123     pscav_later(&code->debug_info, 1);
1124
1125     /* Scavenge the constants. */
1126     pscav(code->constants, HeaderValue(code->header)-5, 1);
1127
1128     /* Scavenge all the functions. */
1129     pscav(&code->entry_points, 1, 1);
1130     for (func = code->entry_points;
1131          func != NIL;
1132          func = ((struct simple_fun *)native_pointer(func))->next) {
1133         gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
1134         gc_assert(!dynamic_pointer_p(func));
1135
1136 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
1137         /* Temporarily convert the self pointer to a real function
1138          * pointer. */
1139         ((struct simple_fun *)native_pointer(func))->self
1140             -= FUN_RAW_ADDR_OFFSET;
1141 #endif
1142         pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
1143 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
1144         ((struct simple_fun *)native_pointer(func))->self
1145             += FUN_RAW_ADDR_OFFSET;
1146 #endif
1147         pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
1148     }
1149
1150     return CEILING(nwords,2);
1151 }
1152 #endif
1153
1154 static lispobj *
1155 pscav(lispobj *addr, long nwords, boolean constant)
1156 {
1157     lispobj thing, *thingp, header;
1158     long count = 0; /* (0 = dummy init value to stop GCC warning) */
1159     struct vector *vector;
1160
1161     while (nwords > 0) {
1162         thing = *addr;
1163         if (is_lisp_pointer(thing)) {
1164             /* It's a pointer. Is it something we might have to move? */
1165             if (dynamic_pointer_p(thing)) {
1166                 /* Maybe. Have we already moved it? */
1167                 thingp = (lispobj *)native_pointer(thing);
1168                 header = *thingp;
1169                 if (is_lisp_pointer(header) && forwarding_pointer_p(header))
1170                     /* Yep, so just copy the forwarding pointer. */
1171                     thing = header;
1172                 else {
1173                     /* Nope, copy the object. */
1174                     switch (lowtag_of(thing)) {
1175                       case FUN_POINTER_LOWTAG:
1176                         thing = ptrans_func(thing, header);
1177                         break;
1178
1179                       case LIST_POINTER_LOWTAG:
1180                         thing = ptrans_list(thing, constant);
1181                         break;
1182
1183                       case INSTANCE_POINTER_LOWTAG:
1184                         thing = ptrans_instance(thing, header, constant);
1185                         break;
1186
1187                       case OTHER_POINTER_LOWTAG:
1188                         thing = ptrans_otherptr(thing, header, constant);
1189                         break;
1190
1191                       default:
1192                         /* It was a pointer, but not one of them? */
1193                         gc_abort();
1194                     }
1195                 }
1196                 *addr = thing;
1197             }
1198             count = 1;
1199         }
1200 #if N_WORD_BITS == 64
1201         else if (widetag_of(thing) == SINGLE_FLOAT_WIDETAG) {
1202             count = 1;
1203         }
1204 #endif
1205         else if (thing & FIXNUM_TAG_MASK) {
1206             /* It's an other immediate. Maybe the header for an unboxed */
1207             /* object. */
1208             switch (widetag_of(thing)) {
1209               case BIGNUM_WIDETAG:
1210               case SINGLE_FLOAT_WIDETAG:
1211               case DOUBLE_FLOAT_WIDETAG:
1212 #ifdef LONG_FLOAT_WIDETAG
1213               case LONG_FLOAT_WIDETAG:
1214 #endif
1215               case SAP_WIDETAG:
1216                 /* It's an unboxed simple object. */
1217                 count = CEILING(HeaderValue(thing)+1, 2);
1218                 break;
1219
1220               case SIMPLE_VECTOR_WIDETAG:
1221                   if (HeaderValue(thing) == subtype_VectorValidHashing) {
1222                     *addr = (subtype_VectorMustRehash << N_WIDETAG_BITS) |
1223                         SIMPLE_VECTOR_WIDETAG;
1224                   }
1225                 count = 2;
1226                 break;
1227
1228               case SIMPLE_ARRAY_NIL_WIDETAG:
1229                 count = 2;
1230                 break;
1231
1232               case SIMPLE_BASE_STRING_WIDETAG:
1233                 vector = (struct vector *)addr;
1234                 count = CEILING(NWORDS(fixnum_value(vector->length)+1,8)+2,2);
1235                 break;
1236
1237 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
1238             case SIMPLE_CHARACTER_STRING_WIDETAG:
1239                 vector = (struct vector *)addr;
1240                 count = CEILING(NWORDS(fixnum_value(vector->length)+1,32)+2,2);
1241                 break;
1242 #endif
1243
1244               case SIMPLE_BIT_VECTOR_WIDETAG:
1245                 vector = (struct vector *)addr;
1246                 count = CEILING(NWORDS(fixnum_value(vector->length),1)+2,2);
1247                 break;
1248
1249               case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
1250                 vector = (struct vector *)addr;
1251                 count = CEILING(NWORDS(fixnum_value(vector->length),2)+2,2);
1252                 break;
1253
1254               case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
1255                 vector = (struct vector *)addr;
1256                 count = CEILING(NWORDS(fixnum_value(vector->length),4)+2,2);
1257                 break;
1258
1259               case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
1260 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
1261               case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
1262               case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
1263 #endif
1264                 vector = (struct vector *)addr;
1265                 count = CEILING(NWORDS(fixnum_value(vector->length),8)+2,2);
1266                 break;
1267
1268               case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
1269 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
1270               case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
1271               case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
1272 #endif
1273                 vector = (struct vector *)addr;
1274                 count = CEILING(NWORDS(fixnum_value(vector->length),16)+2,2);
1275                 break;
1276
1277               case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
1278 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
1279               case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
1280               case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
1281 #endif
1282 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
1283               case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
1284               case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
1285 #endif
1286                 vector = (struct vector *)addr;
1287                 count = CEILING(NWORDS(fixnum_value(vector->length),32)+2,2);
1288                 break;
1289
1290 #if N_WORD_BITS == 64
1291               case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
1292 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
1293               case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
1294               case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
1295 #endif
1296 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
1297               case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
1298               case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
1299 #endif
1300                 vector = (struct vector *)addr;
1301                 count = CEILING(NWORDS(fixnum_value(vector->length),64)+2,2);
1302                 break;
1303 #endif
1304
1305               case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
1306                 vector = (struct vector *)addr;
1307                 count = CEILING(NWORDS(fixnum_value(vector->length), 32) + 2, 
1308                                 2);
1309                 break;
1310
1311               case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
1312 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1313               case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1314 #endif
1315                 vector = (struct vector *)addr;
1316                 count = CEILING(NWORDS(fixnum_value(vector->length), 64) + 2, 
1317                                 2);
1318                 break;
1319
1320 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
1321               case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
1322                 vector = (struct vector *)addr;
1323 #ifdef LISP_FEATURE_X86
1324                 count = fixnum_value(vector->length)*3+2;
1325 #endif
1326 #ifdef sparc
1327                 count = fixnum_value(vector->length)*4+2;
1328 #endif
1329                 break;
1330 #endif
1331
1332 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1333               case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1334                 vector = (struct vector *)addr;
1335                 count = CEILING(NWORDS(fixnum_value(vector->length), 128) + 2, 
1336                                 2);
1337                 break;
1338 #endif
1339
1340 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1341               case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1342                 vector = (struct vector *)addr;
1343 #ifdef LISP_FEATURE_X86
1344                 count = fixnum_value(vector->length)*6+2;
1345 #endif
1346 #ifdef sparc
1347                 count = fixnum_value(vector->length)*8+2;
1348 #endif
1349                 break;
1350 #endif
1351
1352               case CODE_HEADER_WIDETAG:
1353 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
1354                 gc_abort(); /* no code headers in static space */
1355 #else
1356                 count = pscav_code((struct code*)addr);
1357 #endif
1358                 break;
1359
1360               case SIMPLE_FUN_HEADER_WIDETAG:
1361               case RETURN_PC_HEADER_WIDETAG:
1362                 /* We should never hit any of these, 'cause they occur
1363                  * buried in the middle of code objects. */
1364                 gc_abort();
1365                 break;
1366
1367 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
1368               case CLOSURE_HEADER_WIDETAG:
1369               case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
1370                 /* The function self pointer needs special care on the
1371                  * x86 because it is the real entry point. */
1372                 {
1373                   lispobj fun = ((struct closure *)addr)->fun
1374                     - FUN_RAW_ADDR_OFFSET;
1375                   pscav(&fun, 1, constant);
1376                   ((struct closure *)addr)->fun = fun + FUN_RAW_ADDR_OFFSET;
1377                 }
1378                 count = 2;
1379                 break;
1380 #endif
1381
1382               case WEAK_POINTER_WIDETAG:
1383                 /* Weak pointers get preserved during purify, 'cause I
1384                  * don't feel like figuring out how to break them. */
1385                 pscav(addr+1, 2, constant);
1386                 count = 4;
1387                 break;
1388
1389               case FDEFN_WIDETAG:
1390                 /* We have to handle fdefn objects specially, so we
1391                  * can fix up the raw function address. */
1392                 count = pscav_fdefn((struct fdefn *)addr);
1393                 break;
1394
1395               default:
1396                 count = 1;
1397                 break;
1398             }
1399         }
1400         else {
1401             /* It's a fixnum. */
1402             count = 1;
1403         }
1404
1405         addr += count;
1406         nwords -= count;
1407     }
1408
1409     return addr;
1410 }
1411
1412 int
1413 purify(lispobj static_roots, lispobj read_only_roots)
1414 {
1415     lispobj *clean;
1416     long count, i;
1417     struct later *laters, *next;
1418     struct thread *thread;
1419
1420     if(all_threads->next) {
1421         /* FIXME: there should be _some_ sensible error reporting 
1422          * convention.  See following comment too */
1423         fprintf(stderr,"Can't purify when more than one thread exists\n");
1424         fflush(stderr);
1425         return 0;
1426     }
1427
1428 #ifdef PRINTNOISE
1429     printf("[doing purification:");
1430     fflush(stdout);
1431 #endif
1432 #ifdef LISP_FEATURE_GENCGC
1433     gc_alloc_update_all_page_tables();
1434 #endif
1435     for_each_thread(thread)
1436         if (fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread)) != 0) {
1437         /* FIXME: 1. What does this mean? 2. It shouldn't be reporting
1438          * its error simply by a. printing a string b. to stdout instead
1439          * of stderr. */
1440         printf(" Ack! Can't purify interrupt contexts. ");
1441         fflush(stdout);
1442         return 0;
1443     }
1444
1445 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
1446     dynamic_space_free_pointer =
1447       (lispobj*)SymbolValue(ALLOCATION_POINTER,0);
1448 #endif
1449
1450     read_only_end = read_only_free =
1451         (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
1452     static_end = static_free =
1453         (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
1454
1455 #ifdef PRINTNOISE
1456     printf(" roots");
1457     fflush(stdout);
1458 #endif
1459
1460 #if defined(LISP_FEATURE_GENCGC) && (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
1461     /* note this expects only one thread to be active.  We'd have to 
1462      * stop all the others in the same way as GC does if we wanted 
1463      * PURIFY to work when >1 thread exists */
1464     setup_i386_stack_scav(((&static_roots)-2),
1465                           ((void *)all_threads->control_stack_end));
1466 #endif
1467
1468     pscav(&static_roots, 1, 0);
1469     pscav(&read_only_roots, 1, 1);
1470
1471 #ifdef PRINTNOISE
1472     printf(" handlers");
1473     fflush(stdout);
1474 #endif
1475     pscav((lispobj *) all_threads->interrupt_data->interrupt_handlers,
1476           sizeof(all_threads->interrupt_data->interrupt_handlers)
1477           / sizeof(lispobj),
1478           0);
1479
1480 #ifdef PRINTNOISE
1481     printf(" stack");
1482     fflush(stdout);
1483 #endif
1484 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
1485     pscav((lispobj *)all_threads->control_stack_start,
1486           current_control_stack_pointer - 
1487           all_threads->control_stack_start,
1488           0);
1489 #else
1490 #ifdef LISP_FEATURE_GENCGC
1491     pscav_i386_stack();
1492 #endif
1493 #endif
1494
1495 #ifdef PRINTNOISE
1496     printf(" bindings");
1497     fflush(stdout);
1498 #endif
1499 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
1500     pscav( (lispobj *)all_threads->binding_stack_start,
1501           (lispobj *)current_binding_stack_pointer -
1502            all_threads->binding_stack_start,
1503           0);
1504 #else
1505     for_each_thread(thread) {
1506         pscav( (lispobj *)thread->binding_stack_start,
1507                (lispobj *)SymbolValue(BINDING_STACK_POINTER,thread) -
1508                (lispobj *)thread->binding_stack_start,
1509           0);
1510         pscav( (lispobj *) (thread+1),
1511                fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
1512                (sizeof (struct thread))/(sizeof (lispobj)),
1513           0);
1514     }
1515
1516
1517 #endif
1518
1519     /* The original CMU CL code had scavenge-read-only-space code
1520      * controlled by the Lisp-level variable
1521      * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
1522      * wasn't documented under what circumstances it was useful or
1523      * safe to turn it on, so it's been turned off in SBCL. If you
1524      * want/need this functionality, and can test and document it,
1525      * please submit a patch. */
1526 #if 0
1527     if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != UNBOUND_MARKER_WIDETAG
1528         && SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
1529       unsigned  read_only_space_size =
1530           (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
1531           (lispobj *)READ_ONLY_SPACE_START;
1532       fprintf(stderr,
1533               "scavenging read only space: %d bytes\n",
1534               read_only_space_size * sizeof(lispobj));
1535       pscav( (lispobj *)READ_ONLY_SPACE_START, read_only_space_size, 0);
1536     }
1537 #endif
1538
1539 #ifdef PRINTNOISE
1540     printf(" static");
1541     fflush(stdout);
1542 #endif
1543     clean = (lispobj *)STATIC_SPACE_START;
1544     do {
1545         while (clean != static_free)
1546             clean = pscav(clean, static_free - clean, 0);
1547         laters = later_blocks;
1548         count = later_count;
1549         later_blocks = NULL;
1550         later_count = 0;
1551         while (laters != NULL) {
1552             for (i = 0; i < count; i++) {
1553                 if (laters->u[i].count == 0) {
1554                     ;
1555                 } else if (laters->u[i].count <= LATERMAXCOUNT) {
1556                     pscav(laters->u[i+1].ptr, laters->u[i].count, 1);
1557                     i++;
1558                 } else {
1559                     pscav(laters->u[i].ptr, 1, 1);
1560                 }
1561             }
1562             next = laters->next;
1563             free(laters);
1564             laters = next;
1565             count = LATERBLOCKSIZE;
1566         }
1567     } while (clean != static_free || later_blocks != NULL);
1568
1569 #ifdef PRINTNOISE
1570     printf(" cleanup");
1571     fflush(stdout);
1572 #endif
1573
1574     os_zero((os_vm_address_t) current_dynamic_space,
1575             (os_vm_size_t) DYNAMIC_SPACE_SIZE);
1576
1577     /* Zero the stack. Note that the stack is also zeroed by SUB-GC
1578      * calling SCRUB-CONTROL-STACK - this zeros the stack on the x86. */
1579 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
1580     os_zero((os_vm_address_t) current_control_stack_pointer,
1581             (os_vm_size_t)
1582             ((all_threads->control_stack_end -
1583               current_control_stack_pointer) * sizeof(lispobj)));
1584 #endif
1585
1586     /* It helps to update the heap free pointers so that free_heap can
1587      * verify after it's done. */
1588     SetSymbolValue(READ_ONLY_SPACE_FREE_POINTER, (lispobj)read_only_free,0);
1589     SetSymbolValue(STATIC_SPACE_FREE_POINTER, (lispobj)static_free,0);
1590
1591 #if !defined(ALLOCATION_POINTER)
1592     dynamic_space_free_pointer = current_dynamic_space;
1593     set_auto_gc_trigger(bytes_consed_between_gcs);
1594 #else
1595 #if defined LISP_FEATURE_GENCGC
1596     gc_free_heap();
1597 #else
1598 #error unsupported case /* in CMU CL, was "ibmrt using GC" */
1599 #endif
1600 #endif
1601
1602 #ifdef PRINTNOISE
1603     printf(" done]\n");
1604     fflush(stdout);
1605 #endif
1606     return 0;
1607 }