2 * C-level stuff to implement Lisp-level PURIFY
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 #include <sys/types.h>
20 #if (defined(LISP_FEATURE_SB_THREAD) && defined(LISP_FEATURE_LINUX))
21 #include <sys/ptrace.h>
22 #include <linux/user.h>
31 #include "interrupt.h"
35 #include "gc-internal.h"
37 #include "genesis/primitive-objects.h"
38 #include "genesis/static-symbols.h"
42 #if defined(LISP_FEATURE_X86)
43 /* again, what's so special about the x86 that this is differently
44 * visible there than on other platforms? -dan 20010125
46 static lispobj *dynamic_space_free_pointer;
48 extern unsigned long bytes_consed_between_gcs;
51 lose("GC invariant lost, file \"%s\", line %d", __FILE__, __LINE__)
54 #define gc_assert(ex) do { \
55 if (!(ex)) gc_abort(); \
62 /* These hold the original end of the read_only and static spaces so
63 * we can tell what are forwarding pointers. */
65 static lispobj *read_only_end, *static_end;
67 static lispobj *read_only_free, *static_free;
69 static lispobj *pscav(lispobj *addr, int nwords, boolean constant);
71 #define LATERBLOCKSIZE 1020
72 #define LATERMAXCOUNT 10
81 } *later_blocks = NULL;
82 static int later_count = 0;
84 #define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
85 #define NWORDS(x,y) (CEILING((x),(y)) / (y))
87 /* FIXME: Shouldn't this be defined in sbcl.h? See also notes in
91 #define FUN_RAW_ADDR_OFFSET 0
93 #define FUN_RAW_ADDR_OFFSET (6*sizeof(lispobj) - FUN_POINTER_LOWTAG)
97 forwarding_pointer_p(lispobj obj)
99 lispobj *ptr = native_pointer(obj);
101 return ((static_end <= ptr && ptr <= static_free) ||
102 (read_only_end <= ptr && ptr <= read_only_free));
106 dynamic_pointer_p(lispobj ptr)
108 #ifndef LISP_FEATURE_X86
109 return (ptr >= (lispobj)current_dynamic_space
111 ptr < (lispobj)dynamic_space_free_pointer);
113 /* Be more conservative, and remember, this is a maybe. */
114 return (ptr >= (lispobj)DYNAMIC_SPACE_START
116 ptr < (lispobj)dynamic_space_free_pointer);
121 #ifdef LISP_FEATURE_X86
123 #ifdef LISP_FEATURE_GENCGC
125 * enhanced x86/GENCGC stack scavenging by Douglas Crosher
127 * Scavenging the stack on the i386 is problematic due to conservative
128 * roots and raw return addresses. Here it is handled in two passes:
129 * the first pass runs before any objects are moved and tries to
130 * identify valid pointers and return address on the stack, the second
131 * pass scavenges these.
134 static unsigned pointer_filter_verbose = 0;
136 /* FIXME: This is substantially the same code as
137 * possibly_valid_dynamic_space_pointer in gencgc.c. The only
138 * relevant difference seems to be that the gencgc code also checks
139 * for raw pointers into Code objects */
142 valid_dynamic_space_pointer(lispobj *pointer, lispobj *start_addr)
144 /* If it's not a return address then it needs to be a valid Lisp
146 if (!is_lisp_pointer((lispobj)pointer))
149 /* Check that the object pointed to is consistent with the pointer
151 switch (lowtag_of((lispobj)pointer)) {
152 case FUN_POINTER_LOWTAG:
153 /* Start_addr should be the enclosing code object, or a closure
155 switch (widetag_of(*start_addr)) {
156 case CODE_HEADER_WIDETAG:
157 /* This case is probably caught above. */
159 case CLOSURE_HEADER_WIDETAG:
160 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
161 if ((int)pointer != ((int)start_addr+FUN_POINTER_LOWTAG)) {
162 if (pointer_filter_verbose) {
163 fprintf(stderr,"*Wf2: %x %x %x\n", (unsigned int) pointer,
164 (unsigned int) start_addr, *start_addr);
170 if (pointer_filter_verbose) {
171 fprintf(stderr,"*Wf3: %x %x %x\n", (unsigned int) pointer,
172 (unsigned int) start_addr, *start_addr);
177 case LIST_POINTER_LOWTAG:
178 if ((int)pointer != ((int)start_addr+LIST_POINTER_LOWTAG)) {
179 if (pointer_filter_verbose)
180 fprintf(stderr,"*Wl1: %x %x %x\n", (unsigned int) pointer,
181 (unsigned int) start_addr, *start_addr);
184 /* Is it plausible cons? */
185 if ((is_lisp_pointer(start_addr[0])
186 || ((start_addr[0] & 3) == 0) /* fixnum */
187 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
188 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
189 && (is_lisp_pointer(start_addr[1])
190 || ((start_addr[1] & 3) == 0) /* fixnum */
191 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
192 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG))) {
195 if (pointer_filter_verbose) {
196 fprintf(stderr,"*Wl2: %x %x %x\n", (unsigned int) pointer,
197 (unsigned int) start_addr, *start_addr);
201 case INSTANCE_POINTER_LOWTAG:
202 if ((int)pointer != ((int)start_addr+INSTANCE_POINTER_LOWTAG)) {
203 if (pointer_filter_verbose) {
204 fprintf(stderr,"*Wi1: %x %x %x\n", (unsigned int) pointer,
205 (unsigned int) start_addr, *start_addr);
209 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
210 if (pointer_filter_verbose) {
211 fprintf(stderr,"*Wi2: %x %x %x\n", (unsigned int) pointer,
212 (unsigned int) start_addr, *start_addr);
217 case OTHER_POINTER_LOWTAG:
218 if ((int)pointer != ((int)start_addr+OTHER_POINTER_LOWTAG)) {
219 if (pointer_filter_verbose) {
220 fprintf(stderr,"*Wo1: %x %x %x\n", (unsigned int) pointer,
221 (unsigned int) start_addr, *start_addr);
225 /* Is it plausible? Not a cons. XXX should check the headers. */
226 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
227 if (pointer_filter_verbose) {
228 fprintf(stderr,"*Wo2: %x %x %x\n", (unsigned int) pointer,
229 (unsigned int) start_addr, *start_addr);
233 switch (widetag_of(start_addr[0])) {
234 case UNBOUND_MARKER_WIDETAG:
235 case BASE_CHAR_WIDETAG:
236 if (pointer_filter_verbose) {
237 fprintf(stderr,"*Wo3: %x %x %x\n", (unsigned int) pointer,
238 (unsigned int) start_addr, *start_addr);
242 /* only pointed to by function pointers? */
243 case CLOSURE_HEADER_WIDETAG:
244 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
245 if (pointer_filter_verbose) {
246 fprintf(stderr,"*Wo4: %x %x %x\n", (unsigned int) pointer,
247 (unsigned int) start_addr, *start_addr);
251 case INSTANCE_HEADER_WIDETAG:
252 if (pointer_filter_verbose) {
253 fprintf(stderr,"*Wo5: %x %x %x\n", (unsigned int) pointer,
254 (unsigned int) start_addr, *start_addr);
258 /* the valid other immediate pointer objects */
259 case SIMPLE_VECTOR_WIDETAG:
261 case COMPLEX_WIDETAG:
262 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
263 case COMPLEX_SINGLE_FLOAT_WIDETAG:
265 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
266 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
268 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
269 case COMPLEX_LONG_FLOAT_WIDETAG:
271 case SIMPLE_ARRAY_WIDETAG:
272 case COMPLEX_BASE_STRING_WIDETAG:
273 case COMPLEX_VECTOR_NIL_WIDETAG:
274 case COMPLEX_BIT_VECTOR_WIDETAG:
275 case COMPLEX_VECTOR_WIDETAG:
276 case COMPLEX_ARRAY_WIDETAG:
277 case VALUE_CELL_HEADER_WIDETAG:
278 case SYMBOL_HEADER_WIDETAG:
280 case CODE_HEADER_WIDETAG:
282 case SINGLE_FLOAT_WIDETAG:
283 case DOUBLE_FLOAT_WIDETAG:
284 #ifdef LONG_FLOAT_WIDETAG
285 case LONG_FLOAT_WIDETAG:
287 case SIMPLE_ARRAY_NIL_WIDETAG:
288 case SIMPLE_BASE_STRING_WIDETAG:
289 case SIMPLE_BIT_VECTOR_WIDETAG:
290 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
291 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
292 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
293 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
294 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
295 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
296 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
297 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
298 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
299 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
300 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
302 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
303 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
305 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
306 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
308 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
309 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
311 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
312 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
313 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
314 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
316 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
317 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
319 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
320 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
322 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
323 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
326 case WEAK_POINTER_WIDETAG:
330 if (pointer_filter_verbose) {
331 fprintf(stderr,"*Wo6: %x %x %x\n", (unsigned int) pointer,
332 (unsigned int) start_addr, *start_addr);
338 if (pointer_filter_verbose) {
339 fprintf(stderr,"*W?: %x %x %x\n", (unsigned int) pointer,
340 (unsigned int) start_addr, *start_addr);
349 #define MAX_STACK_POINTERS 256
350 lispobj *valid_stack_locations[MAX_STACK_POINTERS];
351 unsigned int num_valid_stack_locations;
353 #define MAX_STACK_RETURN_ADDRESSES 128
354 lispobj *valid_stack_ra_locations[MAX_STACK_RETURN_ADDRESSES];
355 lispobj *valid_stack_ra_code_objects[MAX_STACK_RETURN_ADDRESSES];
356 unsigned int num_valid_stack_ra_locations;
358 /* Identify valid stack slots. */
360 setup_i386_stack_scav(lispobj *lowaddr, lispobj *base)
362 lispobj *sp = lowaddr;
363 num_valid_stack_locations = 0;
364 num_valid_stack_ra_locations = 0;
365 for (sp = lowaddr; sp < base; sp++) {
367 /* Find the object start address */
368 lispobj *start_addr = search_dynamic_space((void *)thing);
370 /* We need to allow raw pointers into Code objects for
371 * return addresses. This will also pick up pointers to
372 * functions in code objects. */
373 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
374 /* FIXME asserting here is a really dumb thing to do.
375 * If we've overflowed some arbitrary static limit, we
376 * should just refuse to purify, instead of killing
377 * the whole lisp session
379 gc_assert(num_valid_stack_ra_locations <
380 MAX_STACK_RETURN_ADDRESSES);
381 valid_stack_ra_locations[num_valid_stack_ra_locations] = sp;
382 valid_stack_ra_code_objects[num_valid_stack_ra_locations++] =
383 (lispobj *)((int)start_addr + OTHER_POINTER_LOWTAG);
385 if (valid_dynamic_space_pointer((void *)thing, start_addr)) {
386 gc_assert(num_valid_stack_locations < MAX_STACK_POINTERS);
387 valid_stack_locations[num_valid_stack_locations++] = sp;
392 if (pointer_filter_verbose) {
393 fprintf(stderr, "number of valid stack pointers = %d\n",
394 num_valid_stack_locations);
395 fprintf(stderr, "number of stack return addresses = %d\n",
396 num_valid_stack_ra_locations);
401 pscav_i386_stack(void)
405 for (i = 0; i < num_valid_stack_locations; i++)
406 pscav(valid_stack_locations[i], 1, 0);
408 for (i = 0; i < num_valid_stack_ra_locations; i++) {
409 lispobj code_obj = (lispobj)valid_stack_ra_code_objects[i];
410 pscav(&code_obj, 1, 0);
411 if (pointer_filter_verbose) {
412 fprintf(stderr,"*C moved RA %x to %x; for code object %x to %x\n",
413 *valid_stack_ra_locations[i],
414 (int)(*valid_stack_ra_locations[i])
415 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj),
416 (unsigned int) valid_stack_ra_code_objects[i], code_obj);
418 *valid_stack_ra_locations[i] =
419 ((int)(*valid_stack_ra_locations[i])
420 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj));
428 pscav_later(lispobj *where, int count)
432 if (count > LATERMAXCOUNT) {
433 while (count > LATERMAXCOUNT) {
434 pscav_later(where, LATERMAXCOUNT);
435 count -= LATERMAXCOUNT;
436 where += LATERMAXCOUNT;
440 if (later_blocks == NULL || later_count == LATERBLOCKSIZE ||
441 (later_count == LATERBLOCKSIZE-1 && count > 1)) {
442 new = (struct later *)malloc(sizeof(struct later));
443 new->next = later_blocks;
444 if (later_blocks && later_count < LATERBLOCKSIZE)
445 later_blocks->u[later_count].ptr = NULL;
451 later_blocks->u[later_count++].count = count;
452 later_blocks->u[later_count++].ptr = where;
457 ptrans_boxed(lispobj thing, lispobj header, boolean constant)
460 lispobj result, *new, *old;
462 nwords = 1 + HeaderValue(header);
465 old = (lispobj *)native_pointer(thing);
467 new = read_only_free;
468 read_only_free += CEILING(nwords, 2);
472 static_free += CEILING(nwords, 2);
476 bcopy(old, new, nwords * sizeof(lispobj));
478 /* Deposit forwarding pointer. */
479 result = make_lispobj(new, lowtag_of(thing));
483 pscav(new, nwords, constant);
488 /* We need to look at the layout to see whether it is a pure structure
489 * class, and only then can we transport as constant. If it is pure,
490 * we can ALWAYS transport as a constant. */
492 ptrans_instance(lispobj thing, lispobj header, boolean constant)
494 lispobj layout = ((struct instance *)native_pointer(thing))->slots[0];
495 lispobj pure = ((struct instance *)native_pointer(layout))->slots[15];
499 return (ptrans_boxed(thing, header, 1));
501 return (ptrans_boxed(thing, header, 0));
504 /* Substructure: special case for the COMPACT-INFO-ENVs,
505 * where the instance may have a point to the dynamic
506 * space placed into it (e.g. the cache-name slot), but
507 * the lists and arrays at the time of a purify can be
508 * moved to the RO space. */
510 lispobj result, *new, *old;
512 nwords = 1 + HeaderValue(header);
515 old = (lispobj *)native_pointer(thing);
517 static_free += CEILING(nwords, 2);
520 bcopy(old, new, nwords * sizeof(lispobj));
522 /* Deposit forwarding pointer. */
523 result = make_lispobj(new, lowtag_of(thing));
527 pscav(new, nwords, 1);
533 return NIL; /* dummy value: return something ... */
538 ptrans_fdefn(lispobj thing, lispobj header)
541 lispobj result, *new, *old, oldfn;
544 nwords = 1 + HeaderValue(header);
547 old = (lispobj *)native_pointer(thing);
549 static_free += CEILING(nwords, 2);
552 bcopy(old, new, nwords * sizeof(lispobj));
554 /* Deposit forwarding pointer. */
555 result = make_lispobj(new, lowtag_of(thing));
558 /* Scavenge the function. */
559 fdefn = (struct fdefn *)new;
561 pscav(&fdefn->fun, 1, 0);
562 if ((char *)oldfn + FUN_RAW_ADDR_OFFSET == fdefn->raw_addr)
563 fdefn->raw_addr = (char *)fdefn->fun + FUN_RAW_ADDR_OFFSET;
569 ptrans_unboxed(lispobj thing, lispobj header)
572 lispobj result, *new, *old;
574 nwords = 1 + HeaderValue(header);
577 old = (lispobj *)native_pointer(thing);
578 new = read_only_free;
579 read_only_free += CEILING(nwords, 2);
582 bcopy(old, new, nwords * sizeof(lispobj));
584 /* Deposit forwarding pointer. */
585 result = make_lispobj(new , lowtag_of(thing));
592 ptrans_vector(lispobj thing, int bits, int extra,
593 boolean boxed, boolean constant)
595 struct vector *vector;
597 lispobj result, *new;
599 vector = (struct vector *)native_pointer(thing);
600 nwords = 2 + (CEILING((fixnum_value(vector->length)+extra)*bits,32)>>5);
602 if (boxed && !constant) {
604 static_free += CEILING(nwords, 2);
607 new = read_only_free;
608 read_only_free += CEILING(nwords, 2);
611 bcopy(vector, new, nwords * sizeof(lispobj));
613 result = make_lispobj(new, lowtag_of(thing));
614 vector->header = result;
617 pscav(new, nwords, constant);
622 #ifdef LISP_FEATURE_X86
624 apply_code_fixups_during_purify(struct code *old_code, struct code *new_code)
626 int nheader_words, ncode_words, nwords;
627 void *constants_start_addr, *constants_end_addr;
628 void *code_start_addr, *code_end_addr;
629 lispobj fixups = NIL;
630 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
631 struct vector *fixups_vector;
633 ncode_words = fixnum_value(new_code->code_size);
634 nheader_words = HeaderValue(*(lispobj *)new_code);
635 nwords = ncode_words + nheader_words;
637 constants_start_addr = (void *)new_code + 5*4;
638 constants_end_addr = (void *)new_code + nheader_words*4;
639 code_start_addr = (void *)new_code + nheader_words*4;
640 code_end_addr = (void *)new_code + nwords*4;
642 /* The first constant should be a pointer to the fixups for this
643 * code objects. Check. */
644 fixups = new_code->constants[0];
646 /* It will be 0 or the unbound-marker if there are no fixups, and
647 * will be an other-pointer to a vector if it is valid. */
649 (fixups==UNBOUND_MARKER_WIDETAG) ||
650 !is_lisp_pointer(fixups)) {
651 #ifdef LISP_FEATURE_GENCGC
652 /* Check for a possible errors. */
653 sniff_code_object(new_code,displacement);
658 fixups_vector = (struct vector *)native_pointer(fixups);
660 /* Could be pointing to a forwarding pointer. */
661 if (is_lisp_pointer(fixups) && (dynamic_pointer_p(fixups))
662 && forwarding_pointer_p(*(lispobj *)fixups_vector)) {
663 /* If so then follow it. */
665 (struct vector *)native_pointer(*(lispobj *)fixups_vector);
668 if (widetag_of(fixups_vector->header) ==
669 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
670 /* We got the fixups for the code block. Now work through the
671 * vector, and apply a fixup at each address. */
672 int length = fixnum_value(fixups_vector->length);
674 for (i=0; i<length; i++) {
675 unsigned offset = fixups_vector->data[i];
676 /* Now check the current value of offset. */
678 *(unsigned *)((unsigned)code_start_addr + offset);
680 /* If it's within the old_code object then it must be an
681 * absolute fixup (relative ones are not saved) */
682 if ((old_value>=(unsigned)old_code)
683 && (old_value<((unsigned)old_code + nwords*4)))
684 /* So add the dispacement. */
685 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
688 /* It is outside the old code object so it must be a relative
689 * fixup (absolute fixups are not saved). So subtract the
691 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
696 /* No longer need the fixups. */
697 new_code->constants[0] = 0;
699 #ifdef LISP_FEATURE_GENCGC
700 /* Check for possible errors. */
701 sniff_code_object(new_code,displacement);
707 ptrans_code(lispobj thing)
709 struct code *code, *new;
711 lispobj func, result;
713 code = (struct code *)native_pointer(thing);
714 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
716 new = (struct code *)read_only_free;
717 read_only_free += CEILING(nwords, 2);
719 bcopy(code, new, nwords * sizeof(lispobj));
721 #ifdef LISP_FEATURE_X86
722 apply_code_fixups_during_purify(code,new);
725 result = make_lispobj(new, OTHER_POINTER_LOWTAG);
727 /* Stick in a forwarding pointer for the code object. */
728 *(lispobj *)code = result;
730 /* Put in forwarding pointers for all the functions. */
731 for (func = code->entry_points;
733 func = ((struct simple_fun *)native_pointer(func))->next) {
735 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
737 *(lispobj *)native_pointer(func) = result + (func - thing);
740 /* Arrange to scavenge the debug info later. */
741 pscav_later(&new->debug_info, 1);
743 if (new->trace_table_offset & 0x3)
745 pscav(&new->trace_table_offset, 1, 0);
747 new->trace_table_offset = NIL; /* limit lifetime */
750 /* Scavenge the constants. */
751 pscav(new->constants, HeaderValue(new->header)-5, 1);
753 /* Scavenge all the functions. */
754 pscav(&new->entry_points, 1, 1);
755 for (func = new->entry_points;
757 func = ((struct simple_fun *)native_pointer(func))->next) {
758 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
759 gc_assert(!dynamic_pointer_p(func));
761 #ifdef LISP_FEATURE_X86
762 /* Temporarly convert the self pointer to a real function pointer. */
763 ((struct simple_fun *)native_pointer(func))->self
764 -= FUN_RAW_ADDR_OFFSET;
766 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
767 #ifdef LISP_FEATURE_X86
768 ((struct simple_fun *)native_pointer(func))->self
769 += FUN_RAW_ADDR_OFFSET;
771 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
778 ptrans_func(lispobj thing, lispobj header)
781 lispobj code, *new, *old, result;
782 struct simple_fun *function;
784 /* Thing can either be a function header, a closure function
785 * header, a closure, or a funcallable-instance. If it's a closure
786 * or a funcallable-instance, we do the same as ptrans_boxed.
787 * Otherwise we have to do something strange, 'cause it is buried
788 * inside a code object. */
790 if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG) {
792 /* We can only end up here if the code object has not been
793 * scavenged, because if it had been scavenged, forwarding pointers
794 * would have been left behind for all the entry points. */
796 function = (struct simple_fun *)native_pointer(thing);
799 ((native_pointer(thing) -
800 (HeaderValue(function->header))), OTHER_POINTER_LOWTAG);
802 /* This will cause the function's header to be replaced with a
803 * forwarding pointer. */
807 /* So we can just return that. */
808 return function->header;
811 /* It's some kind of closure-like thing. */
812 nwords = 1 + HeaderValue(header);
813 old = (lispobj *)native_pointer(thing);
815 /* Allocate the new one. */
816 if (widetag_of(header) == FUNCALLABLE_INSTANCE_HEADER_WIDETAG) {
817 /* FINs *must* not go in read_only space. */
819 static_free += CEILING(nwords, 2);
822 /* Closures can always go in read-only space, 'cause they
825 new = read_only_free;
826 read_only_free += CEILING(nwords, 2);
829 bcopy(old, new, nwords * sizeof(lispobj));
831 /* Deposit forwarding pointer. */
832 result = make_lispobj(new, lowtag_of(thing));
836 pscav(new, nwords, 0);
843 ptrans_returnpc(lispobj thing, lispobj header)
847 /* Find the corresponding code object. */
848 code = thing - HeaderValue(header)*sizeof(lispobj);
850 /* Make sure it's been transported. */
851 new = *(lispobj *)native_pointer(code);
852 if (!forwarding_pointer_p(new))
853 new = ptrans_code(code);
855 /* Maintain the offset: */
856 return new + (thing - code);
859 #define WORDS_PER_CONS CEILING(sizeof(struct cons) / sizeof(lispobj), 2)
862 ptrans_list(lispobj thing, boolean constant)
864 struct cons *old, *new, *orig;
868 orig = (struct cons *)read_only_free;
870 orig = (struct cons *)static_free;
874 /* Allocate a new cons cell. */
875 old = (struct cons *)native_pointer(thing);
877 new = (struct cons *)read_only_free;
878 read_only_free += WORDS_PER_CONS;
881 new = (struct cons *)static_free;
882 static_free += WORDS_PER_CONS;
885 /* Copy the cons cell and keep a pointer to the cdr. */
887 thing = new->cdr = old->cdr;
889 /* Set up the forwarding pointer. */
890 *(lispobj *)old = make_lispobj(new, LIST_POINTER_LOWTAG);
892 /* And count this cell. */
894 } while (lowtag_of(thing) == LIST_POINTER_LOWTAG &&
895 dynamic_pointer_p(thing) &&
896 !(forwarding_pointer_p(*(lispobj *)native_pointer(thing))));
898 /* Scavenge the list we just copied. */
899 pscav((lispobj *)orig, length * WORDS_PER_CONS, constant);
901 return make_lispobj(orig, LIST_POINTER_LOWTAG);
905 ptrans_otherptr(lispobj thing, lispobj header, boolean constant)
907 switch (widetag_of(header)) {
908 /* FIXME: this needs a reindent */
910 case SINGLE_FLOAT_WIDETAG:
911 case DOUBLE_FLOAT_WIDETAG:
912 #ifdef LONG_FLOAT_WIDETAG
913 case LONG_FLOAT_WIDETAG:
915 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
916 case COMPLEX_SINGLE_FLOAT_WIDETAG:
918 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
919 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
921 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
922 case COMPLEX_LONG_FLOAT_WIDETAG:
925 return ptrans_unboxed(thing, header);
928 case COMPLEX_WIDETAG:
929 case SIMPLE_ARRAY_WIDETAG:
930 case COMPLEX_BASE_STRING_WIDETAG:
931 case COMPLEX_BIT_VECTOR_WIDETAG:
932 case COMPLEX_VECTOR_NIL_WIDETAG:
933 case COMPLEX_VECTOR_WIDETAG:
934 case COMPLEX_ARRAY_WIDETAG:
935 return ptrans_boxed(thing, header, constant);
937 case VALUE_CELL_HEADER_WIDETAG:
938 case WEAK_POINTER_WIDETAG:
939 return ptrans_boxed(thing, header, 0);
941 case SYMBOL_HEADER_WIDETAG:
942 return ptrans_boxed(thing, header, 0);
944 case SIMPLE_ARRAY_NIL_WIDETAG:
945 return ptrans_vector(thing, 0, 0, 0, constant);
947 case SIMPLE_BASE_STRING_WIDETAG:
948 return ptrans_vector(thing, 8, 1, 0, constant);
950 case SIMPLE_BIT_VECTOR_WIDETAG:
951 return ptrans_vector(thing, 1, 0, 0, constant);
953 case SIMPLE_VECTOR_WIDETAG:
954 return ptrans_vector(thing, 32, 0, 1, constant);
956 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
957 return ptrans_vector(thing, 2, 0, 0, constant);
959 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
960 return ptrans_vector(thing, 4, 0, 0, constant);
962 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
963 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
964 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
965 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
967 return ptrans_vector(thing, 8, 0, 0, constant);
969 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
970 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
971 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
972 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
974 return ptrans_vector(thing, 16, 0, 0, constant);
976 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
977 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
978 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
979 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
981 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
982 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
983 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
985 return ptrans_vector(thing, 32, 0, 0, constant);
987 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
988 return ptrans_vector(thing, 32, 0, 0, constant);
990 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
991 return ptrans_vector(thing, 64, 0, 0, constant);
993 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
994 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
995 #ifdef LISP_FEATURE_X86
996 return ptrans_vector(thing, 96, 0, 0, constant);
999 return ptrans_vector(thing, 128, 0, 0, constant);
1003 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1004 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1005 return ptrans_vector(thing, 64, 0, 0, constant);
1008 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1009 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1010 return ptrans_vector(thing, 128, 0, 0, constant);
1013 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1014 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1015 #ifdef LISP_FEATURE_X86
1016 return ptrans_vector(thing, 192, 0, 0, constant);
1019 return ptrans_vector(thing, 256, 0, 0, constant);
1023 case CODE_HEADER_WIDETAG:
1024 return ptrans_code(thing);
1026 case RETURN_PC_HEADER_WIDETAG:
1027 return ptrans_returnpc(thing, header);
1030 return ptrans_fdefn(thing, header);
1033 /* Should only come across other pointers to the above stuff. */
1040 pscav_fdefn(struct fdefn *fdefn)
1044 fix_func = ((char *)(fdefn->fun+FUN_RAW_ADDR_OFFSET) == fdefn->raw_addr);
1045 pscav(&fdefn->name, 1, 1);
1046 pscav(&fdefn->fun, 1, 0);
1048 fdefn->raw_addr = (char *)(fdefn->fun + FUN_RAW_ADDR_OFFSET);
1049 return sizeof(struct fdefn) / sizeof(lispobj);
1052 #ifdef LISP_FEATURE_X86
1053 /* now putting code objects in static space */
1055 pscav_code(struct code*code)
1059 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
1061 /* Arrange to scavenge the debug info later. */
1062 pscav_later(&code->debug_info, 1);
1064 /* Scavenge the constants. */
1065 pscav(code->constants, HeaderValue(code->header)-5, 1);
1067 /* Scavenge all the functions. */
1068 pscav(&code->entry_points, 1, 1);
1069 for (func = code->entry_points;
1071 func = ((struct simple_fun *)native_pointer(func))->next) {
1072 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
1073 gc_assert(!dynamic_pointer_p(func));
1075 #ifdef LISP_FEATURE_X86
1076 /* Temporarily convert the self pointer to a real function
1078 ((struct simple_fun *)native_pointer(func))->self
1079 -= FUN_RAW_ADDR_OFFSET;
1081 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
1082 #ifdef LISP_FEATURE_X86
1083 ((struct simple_fun *)native_pointer(func))->self
1084 += FUN_RAW_ADDR_OFFSET;
1086 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
1089 return CEILING(nwords,2);
1094 pscav(lispobj *addr, int nwords, boolean constant)
1096 lispobj thing, *thingp, header;
1097 int count = 0; /* (0 = dummy init value to stop GCC warning) */
1098 struct vector *vector;
1100 while (nwords > 0) {
1102 if (is_lisp_pointer(thing)) {
1103 /* It's a pointer. Is it something we might have to move? */
1104 if (dynamic_pointer_p(thing)) {
1105 /* Maybe. Have we already moved it? */
1106 thingp = (lispobj *)native_pointer(thing);
1108 if (is_lisp_pointer(header) && forwarding_pointer_p(header))
1109 /* Yep, so just copy the forwarding pointer. */
1112 /* Nope, copy the object. */
1113 switch (lowtag_of(thing)) {
1114 case FUN_POINTER_LOWTAG:
1115 thing = ptrans_func(thing, header);
1118 case LIST_POINTER_LOWTAG:
1119 thing = ptrans_list(thing, constant);
1122 case INSTANCE_POINTER_LOWTAG:
1123 thing = ptrans_instance(thing, header, constant);
1126 case OTHER_POINTER_LOWTAG:
1127 thing = ptrans_otherptr(thing, header, constant);
1131 /* It was a pointer, but not one of them? */
1139 else if (thing & 3) {
1140 /* It's an other immediate. Maybe the header for an unboxed */
1142 switch (widetag_of(thing)) {
1143 case BIGNUM_WIDETAG:
1144 case SINGLE_FLOAT_WIDETAG:
1145 case DOUBLE_FLOAT_WIDETAG:
1146 #ifdef LONG_FLOAT_WIDETAG
1147 case LONG_FLOAT_WIDETAG:
1150 /* It's an unboxed simple object. */
1151 count = HeaderValue(thing)+1;
1154 case SIMPLE_VECTOR_WIDETAG:
1155 if (HeaderValue(thing) == subtype_VectorValidHashing) {
1156 *addr = (subtype_VectorMustRehash << N_WIDETAG_BITS) |
1157 SIMPLE_VECTOR_WIDETAG;
1162 case SIMPLE_ARRAY_NIL_WIDETAG:
1166 case SIMPLE_BASE_STRING_WIDETAG:
1167 vector = (struct vector *)addr;
1168 count = CEILING(NWORDS(fixnum_value(vector->length)+1,4)+2,2);
1171 case SIMPLE_BIT_VECTOR_WIDETAG:
1172 vector = (struct vector *)addr;
1173 count = CEILING(NWORDS(fixnum_value(vector->length),32)+2,2);
1176 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
1177 vector = (struct vector *)addr;
1178 count = CEILING(NWORDS(fixnum_value(vector->length),16)+2,2);
1181 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
1182 vector = (struct vector *)addr;
1183 count = CEILING(NWORDS(fixnum_value(vector->length),8)+2,2);
1186 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
1187 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
1188 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
1189 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
1191 vector = (struct vector *)addr;
1192 count = CEILING(NWORDS(fixnum_value(vector->length),4)+2,2);
1195 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
1196 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
1197 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
1198 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
1200 vector = (struct vector *)addr;
1201 count = CEILING(NWORDS(fixnum_value(vector->length),2)+2,2);
1204 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
1205 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
1206 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
1207 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
1209 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
1210 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
1211 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
1213 vector = (struct vector *)addr;
1214 count = CEILING(fixnum_value(vector->length)+2,2);
1217 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
1218 vector = (struct vector *)addr;
1219 count = CEILING(fixnum_value(vector->length)+2,2);
1222 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
1223 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1224 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1226 vector = (struct vector *)addr;
1227 count = fixnum_value(vector->length)*2+2;
1230 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
1231 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
1232 vector = (struct vector *)addr;
1233 #ifdef LISP_FEATURE_X86
1234 count = fixnum_value(vector->length)*3+2;
1237 count = fixnum_value(vector->length)*4+2;
1242 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1243 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1244 vector = (struct vector *)addr;
1245 count = fixnum_value(vector->length)*4+2;
1249 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1250 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1251 vector = (struct vector *)addr;
1252 #ifdef LISP_FEATURE_X86
1253 count = fixnum_value(vector->length)*6+2;
1256 count = fixnum_value(vector->length)*8+2;
1261 case CODE_HEADER_WIDETAG:
1262 #ifndef LISP_FEATURE_X86
1263 gc_abort(); /* no code headers in static space */
1265 count = pscav_code((struct code*)addr);
1269 case SIMPLE_FUN_HEADER_WIDETAG:
1270 case RETURN_PC_HEADER_WIDETAG:
1271 /* We should never hit any of these, 'cause they occur
1272 * buried in the middle of code objects. */
1276 #ifdef LISP_FEATURE_X86
1277 case CLOSURE_HEADER_WIDETAG:
1278 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
1279 /* The function self pointer needs special care on the
1280 * x86 because it is the real entry point. */
1282 lispobj fun = ((struct closure *)addr)->fun
1283 - FUN_RAW_ADDR_OFFSET;
1284 pscav(&fun, 1, constant);
1285 ((struct closure *)addr)->fun = fun + FUN_RAW_ADDR_OFFSET;
1291 case WEAK_POINTER_WIDETAG:
1292 /* Weak pointers get preserved during purify, 'cause I
1293 * don't feel like figuring out how to break them. */
1294 pscav(addr+1, 2, constant);
1299 /* We have to handle fdefn objects specially, so we
1300 * can fix up the raw function address. */
1301 count = pscav_fdefn((struct fdefn *)addr);
1310 /* It's a fixnum. */
1322 purify(lispobj static_roots, lispobj read_only_roots)
1326 struct later *laters, *next;
1327 struct thread *thread;
1330 printf("[doing purification:");
1333 #ifdef LISP_FEATURE_GENCGC
1334 gc_alloc_update_all_page_tables();
1336 for_each_thread(thread)
1337 if (fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread)) != 0) {
1338 /* FIXME: 1. What does this mean? 2. It shouldn't be reporting
1339 * its error simply by a. printing a string b. to stdout instead
1341 printf(" Ack! Can't purify interrupt contexts. ");
1346 #if defined(LISP_FEATURE_X86)
1347 dynamic_space_free_pointer =
1348 (lispobj*)SymbolValue(ALLOCATION_POINTER,0);
1351 read_only_end = read_only_free =
1352 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
1353 static_end = static_free =
1354 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
1361 #if (defined(LISP_FEATURE_GENCGC) && defined(LISP_FEATURE_X86))
1363 /* This is what we should do, but can't unless the threads in
1364 * question are suspended with ptrace. That's right, purify is not
1367 for_each_thread(thread) {
1369 struct user_regs_struct regs;
1370 if(ptrace(PTRACE_GETREGS,thread->pid,0,®s)){
1371 fprintf(stderr,"child pid %d, %s\n",thread->pid,strerror(errno));
1372 lose("PTRACE_GETREGS");
1374 setup_i386_stack_scav(regs.ebp,
1375 ((void *)thread->control_stack_end));
1378 /* stopgap until we can set things up as in preceding comment */
1379 setup_i386_stack_scav(((&static_roots)-2),
1380 ((void *)all_threads->control_stack_end));
1383 pscav(&static_roots, 1, 0);
1384 pscav(&read_only_roots, 1, 1);
1387 printf(" handlers");
1390 pscav((lispobj *) all_threads->interrupt_data->interrupt_handlers,
1391 sizeof(all_threads->interrupt_data->interrupt_handlers)
1399 #ifndef LISP_FEATURE_X86
1400 pscav((lispobj *)all_threads->control_stack_start,
1401 current_control_stack_pointer -
1402 all_threads->control_stack_start,
1405 #ifdef LISP_FEATURE_GENCGC
1411 printf(" bindings");
1414 #if !defined(LISP_FEATURE_X86)
1415 pscav( (lispobj *)all_threads->binding_stack_start,
1416 (lispobj *)current_binding_stack_pointer -
1417 all_threads->binding_stack_start,
1420 for_each_thread(thread) {
1421 pscav( (lispobj *)thread->binding_stack_start,
1422 (lispobj *)SymbolValue(BINDING_STACK_POINTER,thread) -
1423 (lispobj *)thread->binding_stack_start,
1425 pscav( (lispobj *) (thread+1),
1426 fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
1427 (sizeof (struct thread))/(sizeof (lispobj)),
1434 /* The original CMU CL code had scavenge-read-only-space code
1435 * controlled by the Lisp-level variable
1436 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
1437 * wasn't documented under what circumstances it was useful or
1438 * safe to turn it on, so it's been turned off in SBCL. If you
1439 * want/need this functionality, and can test and document it,
1440 * please submit a patch. */
1442 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != UNBOUND_MARKER_WIDETAG
1443 && SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
1444 unsigned read_only_space_size =
1445 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
1446 (lispobj *)READ_ONLY_SPACE_START;
1448 "scavenging read only space: %d bytes\n",
1449 read_only_space_size * sizeof(lispobj));
1450 pscav( (lispobj *)READ_ONLY_SPACE_START, read_only_space_size, 0);
1458 clean = (lispobj *)STATIC_SPACE_START;
1460 while (clean != static_free)
1461 clean = pscav(clean, static_free - clean, 0);
1462 laters = later_blocks;
1463 count = later_count;
1464 later_blocks = NULL;
1466 while (laters != NULL) {
1467 for (i = 0; i < count; i++) {
1468 if (laters->u[i].count == 0) {
1470 } else if (laters->u[i].count <= LATERMAXCOUNT) {
1471 pscav(laters->u[i+1].ptr, laters->u[i].count, 1);
1474 pscav(laters->u[i].ptr, 1, 1);
1477 next = laters->next;
1480 count = LATERBLOCKSIZE;
1482 } while (clean != static_free || later_blocks != NULL);
1489 os_zero((os_vm_address_t) current_dynamic_space,
1490 (os_vm_size_t) DYNAMIC_SPACE_SIZE);
1492 /* Zero the stack. Note that the stack is also zeroed by SUB-GC
1493 * calling SCRUB-CONTROL-STACK - this zeros the stack on the x86. */
1494 #ifndef LISP_FEATURE_X86
1495 os_zero((os_vm_address_t) current_control_stack_pointer,
1497 ((all_threads->control_stack_end -
1498 current_control_stack_pointer) * sizeof(lispobj)));
1501 /* It helps to update the heap free pointers so that free_heap can
1502 * verify after it's done. */
1503 SetSymbolValue(READ_ONLY_SPACE_FREE_POINTER, (lispobj)read_only_free,0);
1504 SetSymbolValue(STATIC_SPACE_FREE_POINTER, (lispobj)static_free,0);
1506 #if !defined(LISP_FEATURE_X86)
1507 dynamic_space_free_pointer = current_dynamic_space;
1508 set_auto_gc_trigger(bytes_consed_between_gcs);
1510 #if defined LISP_FEATURE_GENCGC
1513 #error unsupported case /* in CMU CL, was "ibmrt using GC" */