0.8.2.15:
[sbcl.git] / src / runtime / purify.c
1 /*
2  * C-level stuff to implement Lisp-level PURIFY
3  */
4
5 /*
6  * This software is part of the SBCL system. See the README file for
7  * more information.
8  *
9  * This software is derived from the CMU CL system, which was
10  * written at Carnegie Mellon University and released into the
11  * public domain. The software is in the public domain and is
12  * provided with absolutely no warranty. See the COPYING and CREDITS
13  * files for more information.
14  */
15
16 #include <stdio.h>
17 #include <sys/types.h>
18 #include <stdlib.h>
19 #include <strings.h>
20 #if (defined(LISP_FEATURE_SB_THREAD) && defined(LISP_FEATURE_LINUX))
21 #include <sys/ptrace.h>
22 #include <linux/user.h>
23 #endif
24 #include <errno.h>
25
26 #include "runtime.h"
27 #include "os.h"
28 #include "sbcl.h"
29 #include "globals.h"
30 #include "validate.h"
31 #include "interrupt.h"
32 #include "purify.h"
33 #include "interr.h"
34 #include "gc.h"
35 #include "gc-internal.h"
36 #include "thread.h"
37 #include "genesis/primitive-objects.h"
38 #include "genesis/static-symbols.h"
39
40 #define PRINTNOISE
41
42 #if defined(__i386__)
43 /* again, what's so special about the x86 that this is differently
44  * visible there than on other platforms? -dan 20010125 
45  */
46 static lispobj *dynamic_space_free_pointer;
47 #endif
48 extern unsigned long bytes_consed_between_gcs;
49
50 #define gc_abort() \
51   lose("GC invariant lost, file \"%s\", line %d", __FILE__, __LINE__)
52
53 #if 1
54 #define gc_assert(ex) do { \
55         if (!(ex)) gc_abort(); \
56 } while (0)
57 #else
58 #define gc_assert(ex)
59 #endif
60
61 \f
62 /* These hold the original end of the read_only and static spaces so
63  * we can tell what are forwarding pointers. */
64
65 static lispobj *read_only_end, *static_end;
66
67 static lispobj *read_only_free, *static_free;
68
69 static lispobj *pscav(lispobj *addr, int nwords, boolean constant);
70
71 #define LATERBLOCKSIZE 1020
72 #define LATERMAXCOUNT 10
73
74 static struct
75 later {
76     struct later *next;
77     union {
78         lispobj *ptr;
79         int count;
80     } u[LATERBLOCKSIZE];
81 } *later_blocks = NULL;
82 static int later_count = 0;
83
84 #define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
85 #define NWORDS(x,y) (CEILING((x),(y)) / (y))
86
87 /* FIXME: Shouldn't this be defined in sbcl.h?  See also notes in
88  * cheneygc.c */
89
90 #ifdef sparc
91 #define FUN_RAW_ADDR_OFFSET 0
92 #else
93 #define FUN_RAW_ADDR_OFFSET (6*sizeof(lispobj) - FUN_POINTER_LOWTAG)
94 #endif
95 \f
96 static boolean
97 forwarding_pointer_p(lispobj obj)
98 {
99     lispobj *ptr = native_pointer(obj);
100
101     return ((static_end <= ptr && ptr <= static_free) ||
102             (read_only_end <= ptr && ptr <= read_only_free));
103 }
104
105 static boolean
106 dynamic_pointer_p(lispobj ptr)
107 {
108 #ifndef __i386__
109     return (ptr >= (lispobj)current_dynamic_space
110             &&
111             ptr < (lispobj)dynamic_space_free_pointer);
112 #else
113     /* Be more conservative, and remember, this is a maybe. */
114     return (ptr >= (lispobj)DYNAMIC_SPACE_START
115             &&
116             ptr < (lispobj)dynamic_space_free_pointer);
117 #endif
118 }
119
120 \f
121 #ifdef __i386__
122
123 #ifdef LISP_FEATURE_GENCGC
124 /*
125  * enhanced x86/GENCGC stack scavenging by Douglas Crosher
126  *
127  * Scavenging the stack on the i386 is problematic due to conservative
128  * roots and raw return addresses. Here it is handled in two passes:
129  * the first pass runs before any objects are moved and tries to
130  * identify valid pointers and return address on the stack, the second
131  * pass scavenges these.
132  */
133
134 static unsigned pointer_filter_verbose = 0;
135
136 /* FIXME: This is substantially the same code as
137  * possibly_valid_dynamic_space_pointer in gencgc.c.  The only
138  * relevant difference seems to be that the gencgc code also checks
139  * for raw pointers into Code objects */
140
141 static int
142 valid_dynamic_space_pointer(lispobj *pointer, lispobj *start_addr)
143 {
144     /* If it's not a return address then it needs to be a valid Lisp
145      * pointer. */
146     if (!is_lisp_pointer((lispobj)pointer))
147         return 0;
148
149     /* Check that the object pointed to is consistent with the pointer
150      * low tag. */
151     switch (lowtag_of((lispobj)pointer)) {
152     case FUN_POINTER_LOWTAG:
153         /* Start_addr should be the enclosing code object, or a closure
154          * header. */
155         switch (widetag_of(*start_addr)) {
156         case CODE_HEADER_WIDETAG:
157             /* This case is probably caught above. */
158             break;
159         case CLOSURE_HEADER_WIDETAG:
160         case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
161             if ((int)pointer != ((int)start_addr+FUN_POINTER_LOWTAG)) {
162                 if (pointer_filter_verbose) {
163                     fprintf(stderr,"*Wf2: %x %x %x\n", (unsigned int) pointer, 
164                             (unsigned int) start_addr, *start_addr);
165                 }
166                 return 0;
167             }
168             break;
169         default:
170             if (pointer_filter_verbose) {
171                 fprintf(stderr,"*Wf3: %x %x %x\n", (unsigned int) pointer, 
172                         (unsigned int) start_addr, *start_addr);
173             }
174             return 0;
175         }
176         break;
177     case LIST_POINTER_LOWTAG:
178         if ((int)pointer != ((int)start_addr+LIST_POINTER_LOWTAG)) {
179             if (pointer_filter_verbose)
180                 fprintf(stderr,"*Wl1: %x %x %x\n", (unsigned int) pointer, 
181                         (unsigned int) start_addr, *start_addr);
182             return 0;
183         }
184         /* Is it plausible cons? */
185         if ((is_lisp_pointer(start_addr[0])
186             || ((start_addr[0] & 3) == 0) /* fixnum */
187             || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
188             || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
189            && (is_lisp_pointer(start_addr[1])
190                || ((start_addr[1] & 3) == 0) /* fixnum */
191                || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
192                || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG))) {
193             break;
194         } else {
195             if (pointer_filter_verbose) {
196                 fprintf(stderr,"*Wl2: %x %x %x\n", (unsigned int) pointer, 
197                         (unsigned int) start_addr, *start_addr);
198             }
199             return 0;
200         }
201     case INSTANCE_POINTER_LOWTAG:
202         if ((int)pointer != ((int)start_addr+INSTANCE_POINTER_LOWTAG)) {
203             if (pointer_filter_verbose) {
204                 fprintf(stderr,"*Wi1: %x %x %x\n", (unsigned int) pointer, 
205                         (unsigned int) start_addr, *start_addr);
206             }
207             return 0;
208         }
209         if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
210             if (pointer_filter_verbose) {
211                 fprintf(stderr,"*Wi2: %x %x %x\n", (unsigned int) pointer, 
212                         (unsigned int) start_addr, *start_addr);
213             }
214             return 0;
215         }
216         break;
217     case OTHER_POINTER_LOWTAG:
218         if ((int)pointer != ((int)start_addr+OTHER_POINTER_LOWTAG)) {
219             if (pointer_filter_verbose) {
220                 fprintf(stderr,"*Wo1: %x %x %x\n", (unsigned int) pointer, 
221                         (unsigned int) start_addr, *start_addr);
222             }
223             return 0;
224         }
225         /* Is it plausible? Not a cons. XXX should check the headers. */
226         if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
227             if (pointer_filter_verbose) {
228                 fprintf(stderr,"*Wo2: %x %x %x\n", (unsigned int) pointer, 
229                         (unsigned int) start_addr, *start_addr);
230             }
231             return 0;
232         }
233         switch (widetag_of(start_addr[0])) {
234         case UNBOUND_MARKER_WIDETAG:
235         case BASE_CHAR_WIDETAG:
236             if (pointer_filter_verbose) {
237                 fprintf(stderr,"*Wo3: %x %x %x\n", (unsigned int) pointer, 
238                         (unsigned int) start_addr, *start_addr);
239             }
240             return 0;
241
242             /* only pointed to by function pointers? */
243         case CLOSURE_HEADER_WIDETAG:
244         case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
245             if (pointer_filter_verbose) {
246                 fprintf(stderr,"*Wo4: %x %x %x\n", (unsigned int) pointer, 
247                         (unsigned int) start_addr, *start_addr);
248             }
249             return 0;
250
251         case INSTANCE_HEADER_WIDETAG:
252             if (pointer_filter_verbose) {
253                 fprintf(stderr,"*Wo5: %x %x %x\n", (unsigned int) pointer, 
254                         (unsigned int) start_addr, *start_addr);
255             }
256             return 0;
257
258             /* the valid other immediate pointer objects */
259         case SIMPLE_VECTOR_WIDETAG:
260         case RATIO_WIDETAG:
261         case COMPLEX_WIDETAG:
262 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
263         case COMPLEX_SINGLE_FLOAT_WIDETAG:
264 #endif
265 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
266         case COMPLEX_DOUBLE_FLOAT_WIDETAG:
267 #endif
268 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
269         case COMPLEX_LONG_FLOAT_WIDETAG:
270 #endif
271         case SIMPLE_ARRAY_WIDETAG:
272         case COMPLEX_BASE_STRING_WIDETAG:
273         case COMPLEX_VECTOR_NIL_WIDETAG:
274         case COMPLEX_BIT_VECTOR_WIDETAG:
275         case COMPLEX_VECTOR_WIDETAG:
276         case COMPLEX_ARRAY_WIDETAG:
277         case VALUE_CELL_HEADER_WIDETAG:
278         case SYMBOL_HEADER_WIDETAG:
279         case FDEFN_WIDETAG:
280         case CODE_HEADER_WIDETAG:
281         case BIGNUM_WIDETAG:
282         case SINGLE_FLOAT_WIDETAG:
283         case DOUBLE_FLOAT_WIDETAG:
284 #ifdef LONG_FLOAT_WIDETAG
285         case LONG_FLOAT_WIDETAG:
286 #endif
287         case SIMPLE_ARRAY_NIL_WIDETAG:
288         case SIMPLE_BASE_STRING_WIDETAG:
289         case SIMPLE_BIT_VECTOR_WIDETAG:
290         case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
291         case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
292         case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
293         case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
294         case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
295         case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
296         case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
297         case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
298         case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
299 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
300         case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
301 #endif
302 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
303         case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
304 #endif
305 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
306         case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
307 #endif
308 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
309         case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
310 #endif
311         case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
312         case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
313 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
314         case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
315 #endif
316 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
317         case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
318 #endif
319 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
320         case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
321 #endif
322 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
323         case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
324 #endif
325         case SAP_WIDETAG:
326         case WEAK_POINTER_WIDETAG:
327             break;
328
329         default:
330             if (pointer_filter_verbose) {
331                 fprintf(stderr,"*Wo6: %x %x %x\n", (unsigned int) pointer, 
332                         (unsigned int) start_addr, *start_addr);
333             }
334             return 0;
335         }
336         break;
337     default:
338         if (pointer_filter_verbose) {
339             fprintf(stderr,"*W?: %x %x %x\n", (unsigned int) pointer, 
340                     (unsigned int) start_addr, *start_addr);
341         }
342         return 0;
343     }
344
345     /* looks good */
346     return 1;
347 }
348
349 #define MAX_STACK_POINTERS 256
350 lispobj *valid_stack_locations[MAX_STACK_POINTERS];
351 unsigned int num_valid_stack_locations;
352
353 #define MAX_STACK_RETURN_ADDRESSES 128
354 lispobj *valid_stack_ra_locations[MAX_STACK_RETURN_ADDRESSES];
355 lispobj *valid_stack_ra_code_objects[MAX_STACK_RETURN_ADDRESSES];
356 unsigned int num_valid_stack_ra_locations;
357
358 /* Identify valid stack slots. */
359 static void
360 setup_i386_stack_scav(lispobj *lowaddr, lispobj *base)
361 {
362     lispobj *sp = lowaddr;
363     num_valid_stack_locations = 0;
364     num_valid_stack_ra_locations = 0;
365     for (sp = lowaddr; sp < base; sp++) {
366         lispobj thing = *sp;
367         /* Find the object start address */
368         lispobj *start_addr = search_dynamic_space((void *)thing);
369         if (start_addr) {
370             /* We need to allow raw pointers into Code objects for
371              * return addresses. This will also pick up pointers to
372              * functions in code objects. */
373             if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
374                 /* FIXME asserting here is a really dumb thing to do.
375                  * If we've overflowed some arbitrary static limit, we
376                  * should just refuse to purify, instead of killing
377                  * the whole lisp session
378                  */
379                 gc_assert(num_valid_stack_ra_locations <
380                           MAX_STACK_RETURN_ADDRESSES);
381                 valid_stack_ra_locations[num_valid_stack_ra_locations] = sp;
382                 valid_stack_ra_code_objects[num_valid_stack_ra_locations++] =
383                     (lispobj *)((int)start_addr + OTHER_POINTER_LOWTAG);
384             } else {
385                 if (valid_dynamic_space_pointer((void *)thing, start_addr)) {
386                     gc_assert(num_valid_stack_locations < MAX_STACK_POINTERS);
387                     valid_stack_locations[num_valid_stack_locations++] = sp;
388                 }
389             }
390         }
391     }
392     if (pointer_filter_verbose) {
393         fprintf(stderr, "number of valid stack pointers = %d\n",
394                 num_valid_stack_locations);
395         fprintf(stderr, "number of stack return addresses = %d\n",
396                 num_valid_stack_ra_locations);
397     }
398 }
399
400 static void
401 pscav_i386_stack(void)
402 {
403     int i;
404
405     for (i = 0; i < num_valid_stack_locations; i++)
406         pscav(valid_stack_locations[i], 1, 0);
407
408     for (i = 0; i < num_valid_stack_ra_locations; i++) {
409         lispobj code_obj = (lispobj)valid_stack_ra_code_objects[i];
410         pscav(&code_obj, 1, 0);
411         if (pointer_filter_verbose) {
412             fprintf(stderr,"*C moved RA %x to %x; for code object %x to %x\n",
413                     *valid_stack_ra_locations[i],
414                     (int)(*valid_stack_ra_locations[i])
415                     - ((int)valid_stack_ra_code_objects[i] - (int)code_obj),
416                     (unsigned int) valid_stack_ra_code_objects[i], code_obj);
417         }
418         *valid_stack_ra_locations[i] =
419             ((int)(*valid_stack_ra_locations[i])
420              - ((int)valid_stack_ra_code_objects[i] - (int)code_obj));
421     }
422 }
423 #endif
424 #endif
425
426 \f
427 static void
428 pscav_later(lispobj *where, int count)
429 {
430     struct later *new;
431
432     if (count > LATERMAXCOUNT) {
433         while (count > LATERMAXCOUNT) {
434             pscav_later(where, LATERMAXCOUNT);
435             count -= LATERMAXCOUNT;
436             where += LATERMAXCOUNT;
437         }
438     }
439     else {
440         if (later_blocks == NULL || later_count == LATERBLOCKSIZE ||
441             (later_count == LATERBLOCKSIZE-1 && count > 1)) {
442             new  = (struct later *)malloc(sizeof(struct later));
443             new->next = later_blocks;
444             if (later_blocks && later_count < LATERBLOCKSIZE)
445                 later_blocks->u[later_count].ptr = NULL;
446             later_blocks = new;
447             later_count = 0;
448         }
449
450         if (count != 1)
451             later_blocks->u[later_count++].count = count;
452         later_blocks->u[later_count++].ptr = where;
453     }
454 }
455
456 static lispobj
457 ptrans_boxed(lispobj thing, lispobj header, boolean constant)
458 {
459     int nwords;
460     lispobj result, *new, *old;
461
462     nwords = 1 + HeaderValue(header);
463
464     /* Allocate it */
465     old = (lispobj *)native_pointer(thing);
466     if (constant) {
467         new = read_only_free;
468         read_only_free += CEILING(nwords, 2);
469     }
470     else {
471         new = static_free;
472         static_free += CEILING(nwords, 2);
473     }
474
475     /* Copy it. */
476     bcopy(old, new, nwords * sizeof(lispobj));
477
478     /* Deposit forwarding pointer. */
479     result = make_lispobj(new, lowtag_of(thing));
480     *old = result;
481
482     /* Scavenge it. */
483     pscav(new, nwords, constant);
484
485     return result;
486 }
487
488 /* We need to look at the layout to see whether it is a pure structure
489  * class, and only then can we transport as constant. If it is pure,
490  * we can ALWAYS transport as a constant. */
491 static lispobj
492 ptrans_instance(lispobj thing, lispobj header, boolean constant)
493 {
494     lispobj layout = ((struct instance *)native_pointer(thing))->slots[0];
495     lispobj pure = ((struct instance *)native_pointer(layout))->slots[15];
496
497     switch (pure) {
498     case T:
499         return (ptrans_boxed(thing, header, 1));
500     case NIL:
501         return (ptrans_boxed(thing, header, 0));
502     case 0:
503         {
504             /* Substructure: special case for the COMPACT-INFO-ENVs,
505              * where the instance may have a point to the dynamic
506              * space placed into it (e.g. the cache-name slot), but
507              * the lists and arrays at the time of a purify can be
508              * moved to the RO space. */
509             int nwords;
510             lispobj result, *new, *old;
511
512             nwords = 1 + HeaderValue(header);
513
514             /* Allocate it */
515             old = (lispobj *)native_pointer(thing);
516             new = static_free;
517             static_free += CEILING(nwords, 2);
518
519             /* Copy it. */
520             bcopy(old, new, nwords * sizeof(lispobj));
521
522             /* Deposit forwarding pointer. */
523             result = make_lispobj(new, lowtag_of(thing));
524             *old = result;
525
526             /* Scavenge it. */
527             pscav(new, nwords, 1);
528
529             return result;
530         }
531     default:
532         gc_abort();
533         return NIL; /* dummy value: return something ... */
534     }
535 }
536
537 static lispobj
538 ptrans_fdefn(lispobj thing, lispobj header)
539 {
540     int nwords;
541     lispobj result, *new, *old, oldfn;
542     struct fdefn *fdefn;
543
544     nwords = 1 + HeaderValue(header);
545
546     /* Allocate it */
547     old = (lispobj *)native_pointer(thing);
548     new = static_free;
549     static_free += CEILING(nwords, 2);
550
551     /* Copy it. */
552     bcopy(old, new, nwords * sizeof(lispobj));
553
554     /* Deposit forwarding pointer. */
555     result = make_lispobj(new, lowtag_of(thing));
556     *old = result;
557
558     /* Scavenge the function. */
559     fdefn = (struct fdefn *)new;
560     oldfn = fdefn->fun;
561     pscav(&fdefn->fun, 1, 0);
562     if ((char *)oldfn + FUN_RAW_ADDR_OFFSET == fdefn->raw_addr)
563         fdefn->raw_addr = (char *)fdefn->fun + FUN_RAW_ADDR_OFFSET;
564
565     return result;
566 }
567
568 static lispobj
569 ptrans_unboxed(lispobj thing, lispobj header)
570 {
571     int nwords;
572     lispobj result, *new, *old;
573     
574     nwords = 1 + HeaderValue(header);
575     
576     /* Allocate it */
577     old = (lispobj *)native_pointer(thing);
578     new = read_only_free;
579     read_only_free += CEILING(nwords, 2);
580     
581     /* Copy it. */
582     bcopy(old, new, nwords * sizeof(lispobj));
583     
584     /* Deposit forwarding pointer. */
585     result = make_lispobj(new , lowtag_of(thing));
586     *old = result;
587
588     return result;
589 }
590
591 static lispobj
592 ptrans_vector(lispobj thing, int bits, int extra,
593               boolean boxed, boolean constant)
594 {
595     struct vector *vector;
596     int nwords;
597     lispobj result, *new;
598
599     vector = (struct vector *)native_pointer(thing);
600     nwords = 2 + (CEILING((fixnum_value(vector->length)+extra)*bits,32)>>5);
601
602     if (boxed && !constant) {
603         new = static_free;
604         static_free += CEILING(nwords, 2);
605     }
606     else {
607         new = read_only_free;
608         read_only_free += CEILING(nwords, 2);
609     }
610
611     bcopy(vector, new, nwords * sizeof(lispobj));
612
613     result = make_lispobj(new, lowtag_of(thing));
614     vector->header = result;
615
616     if (boxed)
617         pscav(new, nwords, constant);
618
619     return result;
620 }
621
622 #ifdef __i386__
623 static void
624 apply_code_fixups_during_purify(struct code *old_code, struct code *new_code)
625 {
626     int nheader_words, ncode_words, nwords;
627     void  *constants_start_addr, *constants_end_addr;
628     void  *code_start_addr, *code_end_addr;
629     lispobj fixups = NIL;
630     unsigned  displacement = (unsigned)new_code - (unsigned)old_code;
631     struct vector *fixups_vector;
632
633     ncode_words = fixnum_value(new_code->code_size);
634     nheader_words = HeaderValue(*(lispobj *)new_code);
635     nwords = ncode_words + nheader_words;
636
637     constants_start_addr = (void *)new_code + 5*4;
638     constants_end_addr = (void *)new_code + nheader_words*4;
639     code_start_addr = (void *)new_code + nheader_words*4;
640     code_end_addr = (void *)new_code + nwords*4;
641
642     /* The first constant should be a pointer to the fixups for this
643      * code objects. Check. */
644     fixups = new_code->constants[0];
645
646     /* It will be 0 or the unbound-marker if there are no fixups, and
647      * will be an other-pointer to a vector if it is valid. */
648     if ((fixups==0) ||
649         (fixups==UNBOUND_MARKER_WIDETAG) ||
650         !is_lisp_pointer(fixups)) {
651 #ifdef LISP_FEATURE_GENCGC
652         /* Check for a possible errors. */
653         sniff_code_object(new_code,displacement);
654 #endif
655         return;
656     }
657
658     fixups_vector = (struct vector *)native_pointer(fixups);
659
660     /* Could be pointing to a forwarding pointer. */
661     if (is_lisp_pointer(fixups) && (dynamic_pointer_p(fixups))
662         && forwarding_pointer_p(*(lispobj *)fixups_vector)) {
663         /* If so then follow it. */
664         fixups_vector =
665             (struct vector *)native_pointer(*(lispobj *)fixups_vector);
666     }
667
668     if (widetag_of(fixups_vector->header) ==
669         SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
670         /* We got the fixups for the code block. Now work through the
671          * vector, and apply a fixup at each address. */
672         int length = fixnum_value(fixups_vector->length);
673         int i;
674         for (i=0; i<length; i++) {
675             unsigned offset = fixups_vector->data[i];
676             /* Now check the current value of offset. */
677             unsigned old_value =
678                 *(unsigned *)((unsigned)code_start_addr + offset);
679
680             /* If it's within the old_code object then it must be an
681              * absolute fixup (relative ones are not saved) */
682             if ((old_value>=(unsigned)old_code)
683                 && (old_value<((unsigned)old_code + nwords*4)))
684                 /* So add the dispacement. */
685                 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
686                     + displacement;
687             else
688                 /* It is outside the old code object so it must be a relative
689                  * fixup (absolute fixups are not saved). So subtract the
690                  * displacement. */
691                 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
692                     - displacement;
693         }
694     }
695
696     /* No longer need the fixups. */
697     new_code->constants[0] = 0;
698
699 #ifdef LISP_FEATURE_GENCGC
700     /* Check for possible errors. */
701     sniff_code_object(new_code,displacement);
702 #endif
703 }
704 #endif
705
706 static lispobj
707 ptrans_code(lispobj thing)
708 {
709     struct code *code, *new;
710     int nwords;
711     lispobj func, result;
712
713     code = (struct code *)native_pointer(thing);
714     nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
715
716     new = (struct code *)read_only_free;
717     read_only_free += CEILING(nwords, 2);
718
719     bcopy(code, new, nwords * sizeof(lispobj));
720
721 #ifdef LISP_FEATURE_X86
722     apply_code_fixups_during_purify(code,new);
723 #endif
724
725     result = make_lispobj(new, OTHER_POINTER_LOWTAG);
726
727     /* Stick in a forwarding pointer for the code object. */
728     *(lispobj *)code = result;
729
730     /* Put in forwarding pointers for all the functions. */
731     for (func = code->entry_points;
732          func != NIL;
733          func = ((struct simple_fun *)native_pointer(func))->next) {
734
735         gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
736
737         *(lispobj *)native_pointer(func) = result + (func - thing);
738     }
739
740     /* Arrange to scavenge the debug info later. */
741     pscav_later(&new->debug_info, 1);
742
743     if (new->trace_table_offset & 0x3)
744 #if 0
745       pscav(&new->trace_table_offset, 1, 0);
746 #else
747       new->trace_table_offset = NIL; /* limit lifetime */
748 #endif
749
750     /* Scavenge the constants. */
751     pscav(new->constants, HeaderValue(new->header)-5, 1);
752
753     /* Scavenge all the functions. */
754     pscav(&new->entry_points, 1, 1);
755     for (func = new->entry_points;
756          func != NIL;
757          func = ((struct simple_fun *)native_pointer(func))->next) {
758         gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
759         gc_assert(!dynamic_pointer_p(func));
760
761 #ifdef __i386__
762         /* Temporarly convert the self pointer to a real function pointer. */
763         ((struct simple_fun *)native_pointer(func))->self
764             -= FUN_RAW_ADDR_OFFSET;
765 #endif
766         pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
767 #ifdef __i386__
768         ((struct simple_fun *)native_pointer(func))->self
769             += FUN_RAW_ADDR_OFFSET;
770 #endif
771         pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
772     }
773
774     return result;
775 }
776
777 static lispobj
778 ptrans_func(lispobj thing, lispobj header)
779 {
780     int nwords;
781     lispobj code, *new, *old, result;
782     struct simple_fun *function;
783
784     /* Thing can either be a function header, a closure function
785      * header, a closure, or a funcallable-instance. If it's a closure
786      * or a funcallable-instance, we do the same as ptrans_boxed.
787      * Otherwise we have to do something strange, 'cause it is buried
788      * inside a code object. */
789
790     if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG ||
791         widetag_of(header) == CLOSURE_FUN_HEADER_WIDETAG) {
792
793         /* We can only end up here if the code object has not been
794          * scavenged, because if it had been scavenged, forwarding pointers
795          * would have been left behind for all the entry points. */
796
797         function = (struct simple_fun *)native_pointer(thing);
798         code =
799             make_lispobj
800             ((native_pointer(thing) -
801               (HeaderValue(function->header))), OTHER_POINTER_LOWTAG);
802         
803         /* This will cause the function's header to be replaced with a 
804          * forwarding pointer. */
805
806         ptrans_code(code);
807
808         /* So we can just return that. */
809         return function->header;
810     }
811     else {
812         /* It's some kind of closure-like thing. */
813         nwords = 1 + HeaderValue(header);
814         old = (lispobj *)native_pointer(thing);
815
816         /* Allocate the new one. */
817         if (widetag_of(header) == FUNCALLABLE_INSTANCE_HEADER_WIDETAG) {
818             /* FINs *must* not go in read_only space. */
819             new = static_free;
820             static_free += CEILING(nwords, 2);
821         }
822         else {
823             /* Closures can always go in read-only space, 'cause they
824              * never change. */
825
826             new = read_only_free;
827             read_only_free += CEILING(nwords, 2);
828         }
829         /* Copy it. */
830         bcopy(old, new, nwords * sizeof(lispobj));
831
832         /* Deposit forwarding pointer. */
833         result = make_lispobj(new, lowtag_of(thing));
834         *old = result;
835
836         /* Scavenge it. */
837         pscav(new, nwords, 0);
838
839         return result;
840     }
841 }
842
843 static lispobj
844 ptrans_returnpc(lispobj thing, lispobj header)
845 {
846     lispobj code, new;
847
848     /* Find the corresponding code object. */
849     code = thing - HeaderValue(header)*sizeof(lispobj);
850
851     /* Make sure it's been transported. */
852     new = *(lispobj *)native_pointer(code);
853     if (!forwarding_pointer_p(new))
854         new = ptrans_code(code);
855
856     /* Maintain the offset: */
857     return new + (thing - code);
858 }
859
860 #define WORDS_PER_CONS CEILING(sizeof(struct cons) / sizeof(lispobj), 2)
861
862 static lispobj
863 ptrans_list(lispobj thing, boolean constant)
864 {
865     struct cons *old, *new, *orig;
866     int length;
867
868     if (constant)
869         orig = (struct cons *)read_only_free;
870     else
871         orig = (struct cons *)static_free;
872     length = 0;
873
874     do {
875         /* Allocate a new cons cell. */
876         old = (struct cons *)native_pointer(thing);
877         if (constant) {
878             new = (struct cons *)read_only_free;
879             read_only_free += WORDS_PER_CONS;
880         }
881         else {
882             new = (struct cons *)static_free;
883             static_free += WORDS_PER_CONS;
884         }
885
886         /* Copy the cons cell and keep a pointer to the cdr. */
887         new->car = old->car;
888         thing = new->cdr = old->cdr;
889
890         /* Set up the forwarding pointer. */
891         *(lispobj *)old = make_lispobj(new, LIST_POINTER_LOWTAG);
892
893         /* And count this cell. */
894         length++;
895     } while (lowtag_of(thing) == LIST_POINTER_LOWTAG &&
896              dynamic_pointer_p(thing) &&
897              !(forwarding_pointer_p(*(lispobj *)native_pointer(thing))));
898
899     /* Scavenge the list we just copied. */
900     pscav((lispobj *)orig, length * WORDS_PER_CONS, constant);
901
902     return make_lispobj(orig, LIST_POINTER_LOWTAG);
903 }
904
905 static lispobj
906 ptrans_otherptr(lispobj thing, lispobj header, boolean constant)
907 {
908     switch (widetag_of(header)) {
909         /* FIXME: this needs a reindent */
910       case BIGNUM_WIDETAG:
911       case SINGLE_FLOAT_WIDETAG:
912       case DOUBLE_FLOAT_WIDETAG:
913 #ifdef LONG_FLOAT_WIDETAG
914       case LONG_FLOAT_WIDETAG:
915 #endif
916 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
917       case COMPLEX_SINGLE_FLOAT_WIDETAG:
918 #endif
919 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
920       case COMPLEX_DOUBLE_FLOAT_WIDETAG:
921 #endif
922 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
923       case COMPLEX_LONG_FLOAT_WIDETAG:
924 #endif
925       case SAP_WIDETAG:
926           return ptrans_unboxed(thing, header);
927
928       case RATIO_WIDETAG:
929       case COMPLEX_WIDETAG:
930       case SIMPLE_ARRAY_WIDETAG:
931       case COMPLEX_BASE_STRING_WIDETAG:
932       case COMPLEX_BIT_VECTOR_WIDETAG:
933       case COMPLEX_VECTOR_NIL_WIDETAG:
934       case COMPLEX_VECTOR_WIDETAG:
935       case COMPLEX_ARRAY_WIDETAG:
936         return ptrans_boxed(thing, header, constant);
937         
938       case VALUE_CELL_HEADER_WIDETAG:
939       case WEAK_POINTER_WIDETAG:
940         return ptrans_boxed(thing, header, 0);
941
942       case SYMBOL_HEADER_WIDETAG:
943         return ptrans_boxed(thing, header, 0);
944
945       case SIMPLE_ARRAY_NIL_WIDETAG:
946         return ptrans_vector(thing, 0, 0, 0, constant);
947
948       case SIMPLE_BASE_STRING_WIDETAG:
949         return ptrans_vector(thing, 8, 1, 0, constant);
950
951       case SIMPLE_BIT_VECTOR_WIDETAG:
952         return ptrans_vector(thing, 1, 0, 0, constant);
953
954       case SIMPLE_VECTOR_WIDETAG:
955         return ptrans_vector(thing, 32, 0, 1, constant);
956
957       case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
958         return ptrans_vector(thing, 2, 0, 0, constant);
959
960       case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
961         return ptrans_vector(thing, 4, 0, 0, constant);
962
963       case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
964 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
965       case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
966       case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
967 #endif
968         return ptrans_vector(thing, 8, 0, 0, constant);
969
970       case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
971 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
972       case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
973       case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
974 #endif
975         return ptrans_vector(thing, 16, 0, 0, constant);
976
977       case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
978 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
979       case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
980       case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
981 #endif
982 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
983       case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
984       case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
985 #endif
986         return ptrans_vector(thing, 32, 0, 0, constant);
987
988       case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
989         return ptrans_vector(thing, 32, 0, 0, constant);
990
991       case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
992         return ptrans_vector(thing, 64, 0, 0, constant);
993
994 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
995       case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
996 #ifdef __i386__
997         return ptrans_vector(thing, 96, 0, 0, constant);
998 #endif
999 #ifdef sparc
1000         return ptrans_vector(thing, 128, 0, 0, constant);
1001 #endif
1002 #endif
1003
1004 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1005       case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1006         return ptrans_vector(thing, 64, 0, 0, constant);
1007 #endif
1008
1009 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1010       case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1011         return ptrans_vector(thing, 128, 0, 0, constant);
1012 #endif
1013
1014 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1015       case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1016 #ifdef __i386__
1017         return ptrans_vector(thing, 192, 0, 0, constant);
1018 #endif
1019 #ifdef sparc
1020         return ptrans_vector(thing, 256, 0, 0, constant);
1021 #endif
1022 #endif
1023
1024       case CODE_HEADER_WIDETAG:
1025         return ptrans_code(thing);
1026
1027       case RETURN_PC_HEADER_WIDETAG:
1028         return ptrans_returnpc(thing, header);
1029
1030       case FDEFN_WIDETAG:
1031         return ptrans_fdefn(thing, header);
1032
1033       default:
1034         /* Should only come across other pointers to the above stuff. */
1035         gc_abort();
1036         return NIL;
1037     }
1038 }
1039
1040 static int
1041 pscav_fdefn(struct fdefn *fdefn)
1042 {
1043     boolean fix_func;
1044
1045     fix_func = ((char *)(fdefn->fun+FUN_RAW_ADDR_OFFSET) == fdefn->raw_addr);
1046     pscav(&fdefn->name, 1, 1);
1047     pscav(&fdefn->fun, 1, 0);
1048     if (fix_func)
1049         fdefn->raw_addr = (char *)(fdefn->fun + FUN_RAW_ADDR_OFFSET);
1050     return sizeof(struct fdefn) / sizeof(lispobj);
1051 }
1052
1053 #ifdef __i386__
1054 /* now putting code objects in static space */
1055 static int
1056 pscav_code(struct code*code)
1057 {
1058     int nwords;
1059     lispobj func;
1060     nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
1061
1062     /* Arrange to scavenge the debug info later. */
1063     pscav_later(&code->debug_info, 1);
1064
1065     /* Scavenge the constants. */
1066     pscav(code->constants, HeaderValue(code->header)-5, 1);
1067
1068     /* Scavenge all the functions. */
1069     pscav(&code->entry_points, 1, 1);
1070     for (func = code->entry_points;
1071          func != NIL;
1072          func = ((struct simple_fun *)native_pointer(func))->next) {
1073         gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
1074         gc_assert(!dynamic_pointer_p(func));
1075
1076 #ifdef __i386__
1077         /* Temporarily convert the self pointer to a real function
1078          * pointer. */
1079         ((struct simple_fun *)native_pointer(func))->self
1080             -= FUN_RAW_ADDR_OFFSET;
1081 #endif
1082         pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
1083 #ifdef __i386__
1084         ((struct simple_fun *)native_pointer(func))->self
1085             += FUN_RAW_ADDR_OFFSET;
1086 #endif
1087         pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
1088     }
1089
1090     return CEILING(nwords,2);
1091 }
1092 #endif
1093
1094 static lispobj *
1095 pscav(lispobj *addr, int nwords, boolean constant)
1096 {
1097     lispobj thing, *thingp, header;
1098     int count = 0; /* (0 = dummy init value to stop GCC warning) */
1099     struct vector *vector;
1100
1101     while (nwords > 0) {
1102         thing = *addr;
1103         if (is_lisp_pointer(thing)) {
1104             /* It's a pointer. Is it something we might have to move? */
1105             if (dynamic_pointer_p(thing)) {
1106                 /* Maybe. Have we already moved it? */
1107                 thingp = (lispobj *)native_pointer(thing);
1108                 header = *thingp;
1109                 if (is_lisp_pointer(header) && forwarding_pointer_p(header))
1110                     /* Yep, so just copy the forwarding pointer. */
1111                     thing = header;
1112                 else {
1113                     /* Nope, copy the object. */
1114                     switch (lowtag_of(thing)) {
1115                       case FUN_POINTER_LOWTAG:
1116                         thing = ptrans_func(thing, header);
1117                         break;
1118
1119                       case LIST_POINTER_LOWTAG:
1120                         thing = ptrans_list(thing, constant);
1121                         break;
1122
1123                       case INSTANCE_POINTER_LOWTAG:
1124                         thing = ptrans_instance(thing, header, constant);
1125                         break;
1126
1127                       case OTHER_POINTER_LOWTAG:
1128                         thing = ptrans_otherptr(thing, header, constant);
1129                         break;
1130
1131                       default:
1132                         /* It was a pointer, but not one of them? */
1133                         gc_abort();
1134                     }
1135                 }
1136                 *addr = thing;
1137             }
1138             count = 1;
1139         }
1140         else if (thing & 3) {
1141             /* It's an other immediate. Maybe the header for an unboxed */
1142             /* object. */
1143             switch (widetag_of(thing)) {
1144               case BIGNUM_WIDETAG:
1145               case SINGLE_FLOAT_WIDETAG:
1146               case DOUBLE_FLOAT_WIDETAG:
1147 #ifdef LONG_FLOAT_WIDETAG
1148               case LONG_FLOAT_WIDETAG:
1149 #endif
1150               case SAP_WIDETAG:
1151                 /* It's an unboxed simple object. */
1152                 count = HeaderValue(thing)+1;
1153                 break;
1154
1155               case SIMPLE_VECTOR_WIDETAG:
1156                   if (HeaderValue(thing) == subtype_VectorValidHashing) {
1157                     *addr = (subtype_VectorMustRehash << N_WIDETAG_BITS) |
1158                         SIMPLE_VECTOR_WIDETAG;
1159                   }
1160                 count = 1;
1161                 break;
1162
1163               case SIMPLE_ARRAY_NIL_WIDETAG:
1164                 count = 2;
1165                 break;
1166
1167               case SIMPLE_BASE_STRING_WIDETAG:
1168                 vector = (struct vector *)addr;
1169                 count = CEILING(NWORDS(fixnum_value(vector->length)+1,4)+2,2);
1170                 break;
1171
1172               case SIMPLE_BIT_VECTOR_WIDETAG:
1173                 vector = (struct vector *)addr;
1174                 count = CEILING(NWORDS(fixnum_value(vector->length),32)+2,2);
1175                 break;
1176
1177               case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
1178                 vector = (struct vector *)addr;
1179                 count = CEILING(NWORDS(fixnum_value(vector->length),16)+2,2);
1180                 break;
1181
1182               case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
1183                 vector = (struct vector *)addr;
1184                 count = CEILING(NWORDS(fixnum_value(vector->length),8)+2,2);
1185                 break;
1186
1187               case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
1188 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
1189               case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
1190               case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
1191 #endif
1192                 vector = (struct vector *)addr;
1193                 count = CEILING(NWORDS(fixnum_value(vector->length),4)+2,2);
1194                 break;
1195
1196               case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
1197 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
1198               case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
1199               case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
1200 #endif
1201                 vector = (struct vector *)addr;
1202                 count = CEILING(NWORDS(fixnum_value(vector->length),2)+2,2);
1203                 break;
1204
1205               case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
1206 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
1207               case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
1208               case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
1209 #endif
1210 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
1211               case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
1212               case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
1213 #endif
1214                 vector = (struct vector *)addr;
1215                 count = CEILING(fixnum_value(vector->length)+2,2);
1216                 break;
1217
1218               case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
1219                 vector = (struct vector *)addr;
1220                 count = CEILING(fixnum_value(vector->length)+2,2);
1221                 break;
1222
1223               case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
1224 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1225               case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1226 #endif
1227                 vector = (struct vector *)addr;
1228                 count = fixnum_value(vector->length)*2+2;
1229                 break;
1230
1231 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
1232               case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
1233                 vector = (struct vector *)addr;
1234 #ifdef __i386__
1235                 count = fixnum_value(vector->length)*3+2;
1236 #endif
1237 #ifdef sparc
1238                 count = fixnum_value(vector->length)*4+2;
1239 #endif
1240                 break;
1241 #endif
1242
1243 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1244               case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1245                 vector = (struct vector *)addr;
1246                 count = fixnum_value(vector->length)*4+2;
1247                 break;
1248 #endif
1249
1250 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1251               case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1252                 vector = (struct vector *)addr;
1253 #ifdef __i386__
1254                 count = fixnum_value(vector->length)*6+2;
1255 #endif
1256 #ifdef sparc
1257                 count = fixnum_value(vector->length)*8+2;
1258 #endif
1259                 break;
1260 #endif
1261
1262               case CODE_HEADER_WIDETAG:
1263 #ifndef __i386__
1264                 gc_abort(); /* no code headers in static space */
1265 #else
1266                 count = pscav_code((struct code*)addr);
1267 #endif
1268                 break;
1269
1270               case SIMPLE_FUN_HEADER_WIDETAG:
1271               case CLOSURE_FUN_HEADER_WIDETAG:
1272               case RETURN_PC_HEADER_WIDETAG:
1273                 /* We should never hit any of these, 'cause they occur
1274                  * buried in the middle of code objects. */
1275                 gc_abort();
1276                 break;
1277
1278 #ifdef __i386__
1279               case CLOSURE_HEADER_WIDETAG:
1280               case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
1281                 /* The function self pointer needs special care on the
1282                  * x86 because it is the real entry point. */
1283                 {
1284                   lispobj fun = ((struct closure *)addr)->fun
1285                     - FUN_RAW_ADDR_OFFSET;
1286                   pscav(&fun, 1, constant);
1287                   ((struct closure *)addr)->fun = fun + FUN_RAW_ADDR_OFFSET;
1288                 }
1289                 count = 2;
1290                 break;
1291 #endif
1292
1293               case WEAK_POINTER_WIDETAG:
1294                 /* Weak pointers get preserved during purify, 'cause I
1295                  * don't feel like figuring out how to break them. */
1296                 pscav(addr+1, 2, constant);
1297                 count = 4;
1298                 break;
1299
1300               case FDEFN_WIDETAG:
1301                 /* We have to handle fdefn objects specially, so we
1302                  * can fix up the raw function address. */
1303                 count = pscav_fdefn((struct fdefn *)addr);
1304                 break;
1305
1306               default:
1307                 count = 1;
1308                 break;
1309             }
1310         }
1311         else {
1312             /* It's a fixnum. */
1313             count = 1;
1314         }
1315
1316         addr += count;
1317         nwords -= count;
1318     }
1319
1320     return addr;
1321 }
1322
1323 int
1324 purify(lispobj static_roots, lispobj read_only_roots)
1325 {
1326     lispobj *clean;
1327     int count, i;
1328     struct later *laters, *next;
1329     struct thread *thread;
1330
1331 #ifdef PRINTNOISE
1332     printf("[doing purification:");
1333     fflush(stdout);
1334 #endif
1335 #ifdef LISP_FEATURE_GENCGC
1336     gc_alloc_update_all_page_tables();
1337 #endif
1338     for_each_thread(thread)
1339         if (fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread)) != 0) {
1340         /* FIXME: 1. What does this mean? 2. It shouldn't be reporting
1341          * its error simply by a. printing a string b. to stdout instead
1342          * of stderr. */
1343         printf(" Ack! Can't purify interrupt contexts. ");
1344         fflush(stdout);
1345         return 0;
1346     }
1347
1348 #if defined(__i386__)
1349     dynamic_space_free_pointer =
1350       (lispobj*)SymbolValue(ALLOCATION_POINTER,0);
1351 #endif
1352
1353     read_only_end = read_only_free =
1354         (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
1355     static_end = static_free =
1356         (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
1357
1358 #ifdef PRINTNOISE
1359     printf(" roots");
1360     fflush(stdout);
1361 #endif
1362
1363 #if (defined(LISP_FEATURE_GENCGC) && defined(LISP_FEATURE_X86))
1364 #if 0
1365     /* This is what we should do, but can't unless the threads in
1366      * question are suspended with ptrace.  That's right, purify is not
1367      * threadsafe
1368      */
1369     for_each_thread(thread) {
1370         void **ptr;
1371         struct user_regs_struct regs;
1372         if(ptrace(PTRACE_GETREGS,thread->pid,0,&regs)){
1373             fprintf(stderr,"child pid %d, %s\n",thread->pid,strerror(errno));
1374             lose("PTRACE_GETREGS");
1375         }
1376         setup_i386_stack_scav(regs.ebp,
1377                               ((void *)thread->control_stack_end));
1378     }
1379 #endif /* 0 */
1380     /* stopgap until we can set things up as in preceding comment */
1381     setup_i386_stack_scav(((&static_roots)-2),
1382                           ((void *)all_threads->control_stack_end));
1383 #endif
1384
1385     pscav(&static_roots, 1, 0);
1386     pscav(&read_only_roots, 1, 1);
1387
1388 #ifdef PRINTNOISE
1389     printf(" handlers");
1390     fflush(stdout);
1391 #endif
1392     pscav((lispobj *) all_threads->interrupt_data->interrupt_handlers,
1393           sizeof(all_threads->interrupt_data->interrupt_handlers)
1394           / sizeof(lispobj),
1395           0);
1396
1397 #ifdef PRINTNOISE
1398     printf(" stack");
1399     fflush(stdout);
1400 #endif
1401 #ifndef __i386__
1402     pscav((lispobj *)all_threads->control_stack_start,
1403           current_control_stack_pointer - 
1404           all_threads->control_stack_start,
1405           0);
1406 #else
1407 #ifdef LISP_FEATURE_GENCGC
1408     pscav_i386_stack();
1409 #endif
1410 #endif
1411
1412 #ifdef PRINTNOISE
1413     printf(" bindings");
1414     fflush(stdout);
1415 #endif
1416 #if !defined(__i386__)
1417     pscav( (lispobj *)all_threads->binding_stack_start,
1418           (lispobj *)current_binding_stack_pointer -
1419            all_threads->binding_stack_start,
1420           0);
1421 #else
1422     for_each_thread(thread) {
1423         pscav( (lispobj *)thread->binding_stack_start,
1424                (lispobj *)SymbolValue(BINDING_STACK_POINTER,thread) -
1425                (lispobj *)thread->binding_stack_start,
1426           0);
1427         pscav( (lispobj *) (thread+1),
1428                fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
1429                (sizeof (struct thread))/(sizeof (lispobj)),
1430           0);
1431     }
1432
1433
1434 #endif
1435
1436     /* The original CMU CL code had scavenge-read-only-space code
1437      * controlled by the Lisp-level variable
1438      * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
1439      * wasn't documented under what circumstances it was useful or
1440      * safe to turn it on, so it's been turned off in SBCL. If you
1441      * want/need this functionality, and can test and document it,
1442      * please submit a patch. */
1443 #if 0
1444     if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != UNBOUND_MARKER_WIDETAG
1445         && SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
1446       unsigned  read_only_space_size =
1447           (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
1448           (lispobj *)READ_ONLY_SPACE_START;
1449       fprintf(stderr,
1450               "scavenging read only space: %d bytes\n",
1451               read_only_space_size * sizeof(lispobj));
1452       pscav( (lispobj *)READ_ONLY_SPACE_START, read_only_space_size, 0);
1453     }
1454 #endif
1455
1456 #ifdef PRINTNOISE
1457     printf(" static");
1458     fflush(stdout);
1459 #endif
1460     clean = (lispobj *)STATIC_SPACE_START;
1461     do {
1462         while (clean != static_free)
1463             clean = pscav(clean, static_free - clean, 0);
1464         laters = later_blocks;
1465         count = later_count;
1466         later_blocks = NULL;
1467         later_count = 0;
1468         while (laters != NULL) {
1469             for (i = 0; i < count; i++) {
1470                 if (laters->u[i].count == 0) {
1471                     ;
1472                 } else if (laters->u[i].count <= LATERMAXCOUNT) {
1473                     pscav(laters->u[i+1].ptr, laters->u[i].count, 1);
1474                     i++;
1475                 } else {
1476                     pscav(laters->u[i].ptr, 1, 1);
1477                 }
1478             }
1479             next = laters->next;
1480             free(laters);
1481             laters = next;
1482             count = LATERBLOCKSIZE;
1483         }
1484     } while (clean != static_free || later_blocks != NULL);
1485
1486 #ifdef PRINTNOISE
1487     printf(" cleanup");
1488     fflush(stdout);
1489 #endif
1490
1491     os_zero((os_vm_address_t) current_dynamic_space,
1492             (os_vm_size_t) DYNAMIC_SPACE_SIZE);
1493
1494     /* Zero the stack. Note that the stack is also zeroed by SUB-GC
1495      * calling SCRUB-CONTROL-STACK - this zeros the stack on the x86. */
1496 #ifndef __i386__
1497     os_zero((os_vm_address_t) current_control_stack_pointer,
1498             (os_vm_size_t)
1499             ((all_threads->control_stack_end -
1500               current_control_stack_pointer) * sizeof(lispobj)));
1501 #endif
1502
1503     /* It helps to update the heap free pointers so that free_heap can
1504      * verify after it's done. */
1505     SetSymbolValue(READ_ONLY_SPACE_FREE_POINTER, (lispobj)read_only_free,0);
1506     SetSymbolValue(STATIC_SPACE_FREE_POINTER, (lispobj)static_free,0);
1507
1508 #if !defined(__i386__)
1509     dynamic_space_free_pointer = current_dynamic_space;
1510     set_auto_gc_trigger(bytes_consed_between_gcs);
1511 #else
1512 #if defined LISP_FEATURE_GENCGC
1513     gc_free_heap();
1514 #else
1515 #error unsupported case /* in CMU CL, was "ibmrt using GC" */
1516 #endif
1517 #endif
1518
1519 #ifdef PRINTNOISE
1520     printf(" done]\n");
1521     fflush(stdout);
1522 #endif
1523     return 0;
1524 }