4b42d1d292a0cf9cc7cf9070503ef40d72c3795f
[sbcl.git] / src / runtime / thread.c
1 /*
2  * This software is part of the SBCL system. See the README file for
3  * more information.
4  *
5  * This software is derived from the CMU CL system, which was
6  * written at Carnegie Mellon University and released into the
7  * public domain. The software is in the public domain and is
8  * provided with absolutely no warranty. See the COPYING and CREDITS
9  * files for more information.
10  */
11
12 #include "sbcl.h"
13
14 #include <stdlib.h>
15 #include <stdio.h>
16 #include <string.h>
17 #ifndef LISP_FEATURE_WIN32
18 #include <sched.h>
19 #endif
20 #include <signal.h>
21 #include <stddef.h>
22 #include <errno.h>
23 #include <sys/types.h>
24 #ifndef LISP_FEATURE_WIN32
25 #include <sys/wait.h>
26 #endif
27
28 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
29 #include <mach/mach.h>
30 #include <mach/mach_error.h>
31 #include <mach/mach_types.h>
32 #endif
33
34 #include "runtime.h"
35 #include "validate.h"           /* for BINDING_STACK_SIZE etc */
36 #include "thread.h"
37 #include "arch.h"
38 #include "target-arch-os.h"
39 #include "os.h"
40 #include "globals.h"
41 #include "dynbind.h"
42 #include "genesis/cons.h"
43 #include "genesis/fdefn.h"
44 #include "interr.h"             /* for lose() */
45 #include "alloc.h"
46 #include "gc-internal.h"
47
48 #ifdef LISP_FEATURE_WIN32
49 /*
50  * Win32 doesn't have SIGSTKSZ, and we're not switching stacks anyway,
51  * so define it arbitrarily
52  */
53 #define SIGSTKSZ 1024
54 #endif
55
56 #if defined(LISP_FEATURE_DARWIN) && defined(LISP_FEATURE_SB_THREAD)
57 #define DELAY_THREAD_POST_MORTEM 5
58 #define LOCK_CREATE_THREAD
59 #endif
60
61 #ifdef LISP_FEATURE_FREEBSD
62 #define CREATE_CLEANUP_THREAD
63 #define LOCK_CREATE_THREAD
64 #endif
65
66 #ifdef LISP_FEATURE_SB_THREAD
67 struct thread_post_mortem {
68 #ifdef DELAY_THREAD_POST_MORTEM
69     struct thread_post_mortem *next;
70 #endif
71     os_thread_t os_thread;
72     pthread_attr_t *os_attr;
73     os_vm_address_t os_address;
74 };
75
76 #ifdef DELAY_THREAD_POST_MORTEM
77 static int pending_thread_post_mortem_count = 0;
78 pthread_mutex_t thread_post_mortem_lock = PTHREAD_MUTEX_INITIALIZER;
79 #endif
80 static struct thread_post_mortem * volatile pending_thread_post_mortem = 0;
81 #endif
82
83 int dynamic_values_bytes=TLS_SIZE*sizeof(lispobj);  /* same for all threads */
84 struct thread *all_threads;
85 extern struct interrupt_data * global_interrupt_data;
86
87 #ifdef LISP_FEATURE_SB_THREAD
88 pthread_mutex_t all_threads_lock = PTHREAD_MUTEX_INITIALIZER;
89 #ifdef LOCK_CREATE_THREAD
90 static pthread_mutex_t create_thread_lock = PTHREAD_MUTEX_INITIALIZER;
91 #endif
92 #ifdef LISP_FEATURE_GCC_TLS
93 __thread struct thread *current_thread;
94 #endif
95 pthread_key_t lisp_thread = 0;
96 #endif
97
98 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
99 extern lispobj call_into_lisp_first_time(lispobj fun, lispobj *args, int nargs);
100 #endif
101
102 static void
103 link_thread(struct thread *th)
104 {
105     if (all_threads) all_threads->prev=th;
106     th->next=all_threads;
107     th->prev=0;
108     all_threads=th;
109 }
110
111 #ifdef LISP_FEATURE_SB_THREAD
112 static void
113 unlink_thread(struct thread *th)
114 {
115     if (th->prev)
116         th->prev->next = th->next;
117     else
118         all_threads = th->next;
119     if (th->next)
120         th->next->prev = th->prev;
121 }
122
123 /* Only access thread state with blockables blocked. */
124 lispobj
125 thread_state(struct thread *thread)
126 {
127     lispobj state;
128     sigset_t old;
129     block_blockable_signals(NULL, &old);
130     os_sem_wait(thread->state_sem, "thread_state");
131     state = thread->state;
132     os_sem_post(thread->state_sem, "thread_state");
133     thread_sigmask(SIG_SETMASK, &old, NULL);
134     return state;
135 }
136
137 void
138 set_thread_state(struct thread *thread, lispobj state)
139 {
140     int i, waitcount = 0;
141     sigset_t old;
142     block_blockable_signals(NULL, &old);
143     os_sem_wait(thread->state_sem, "set_thread_state");
144     if (thread->state != state) {
145         if ((STATE_STOPPED==state) ||
146             (STATE_DEAD==state)) {
147             waitcount = thread->state_not_running_waitcount;
148             thread->state_not_running_waitcount = 0;
149             for (i=0; i<waitcount; i++)
150                 os_sem_post(thread->state_not_running_sem, "set_thread_state (not running)");
151         }
152         if ((STATE_RUNNING==state) ||
153             (STATE_DEAD==state)) {
154             waitcount = thread->state_not_stopped_waitcount;
155             thread->state_not_stopped_waitcount = 0;
156             for (i=0; i<waitcount; i++)
157                 os_sem_post(thread->state_not_stopped_sem, "set_thread_state (not stopped)");
158         }
159         thread->state = state;
160     }
161     os_sem_post(thread->state_sem, "set_thread_state");
162     thread_sigmask(SIG_SETMASK, &old, NULL);
163 }
164
165 void
166 wait_for_thread_state_change(struct thread *thread, lispobj state)
167 {
168     sigset_t old;
169     os_sem_t *wait_sem;
170     block_blockable_signals(NULL, &old);
171   start:
172     os_sem_wait(thread->state_sem, "wait_for_thread_state_change");
173     if (thread->state == state) {
174         switch (state) {
175         case STATE_RUNNING:
176             wait_sem = thread->state_not_running_sem;
177             thread->state_not_running_waitcount++;
178             break;
179         case STATE_STOPPED:
180             wait_sem = thread->state_not_stopped_sem;
181             thread->state_not_stopped_waitcount++;
182             break;
183         default:
184             lose("Invalid state in wait_for_thread_state_change: "OBJ_FMTX"\n", state);
185         }
186     } else {
187         wait_sem = NULL;
188     }
189     os_sem_post(thread->state_sem, "wait_for_thread_state_change");
190     if (wait_sem) {
191         os_sem_wait(wait_sem, "wait_for_thread_state_change");
192         goto start;
193     }
194     thread_sigmask(SIG_SETMASK, &old, NULL);
195 }
196 #endif
197
198 static int
199 initial_thread_trampoline(struct thread *th)
200 {
201     lispobj function;
202 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
203     lispobj *args = NULL;
204 #endif
205 #ifdef LISP_FEATURE_SB_THREAD
206     pthread_setspecific(lisp_thread, (void *)1);
207 #endif
208 #if defined(LISP_FEATURE_SB_THREAD) && defined(LISP_FEATURE_PPC)
209     /* SIG_STOP_FOR_GC defaults to blocked on PPC? */
210     unblock_gc_signals(0,0);
211 #endif
212     function = th->no_tls_value_marker;
213     th->no_tls_value_marker = NO_TLS_VALUE_MARKER_WIDETAG;
214     if(arch_os_thread_init(th)==0) return 1;
215     link_thread(th);
216     th->os_thread=thread_self();
217 #ifndef LISP_FEATURE_WIN32
218     protect_control_stack_hard_guard_page(1, NULL);
219     protect_binding_stack_hard_guard_page(1, NULL);
220     protect_alien_stack_hard_guard_page(1, NULL);
221     protect_control_stack_guard_page(1, NULL);
222     protect_binding_stack_guard_page(1, NULL);
223     protect_alien_stack_guard_page(1, NULL);
224 #endif
225
226 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
227     return call_into_lisp_first_time(function,args,0);
228 #else
229     return funcall0(function);
230 #endif
231 }
232
233 #ifdef LISP_FEATURE_SB_THREAD
234 #define THREAD_STATE_LOCK_SIZE \
235     ((sizeof(os_sem_t))+(sizeof(os_sem_t))+(sizeof(os_sem_t)))
236 #else
237 #define THREAD_STATE_LOCK_SIZE 0
238 #endif
239
240 #define THREAD_STRUCT_SIZE (thread_control_stack_size + BINDING_STACK_SIZE + \
241                             ALIEN_STACK_SIZE +                               \
242                             THREAD_STATE_LOCK_SIZE +                         \
243                             dynamic_values_bytes +                           \
244                             32 * SIGSTKSZ +                                  \
245                             THREAD_ALIGNMENT_BYTES)
246
247 #ifdef LISP_FEATURE_SB_THREAD
248 /* THREAD POST MORTEM CLEANUP
249  *
250  * Memory allocated for the thread stacks cannot be reclaimed while
251  * the thread is still alive, so we need a mechanism for post mortem
252  * cleanups. FIXME: We actually have three, for historical reasons as
253  * the saying goes. Do we really need three? Nikodemus guesses that
254  * not anymore, now that we properly call pthread_attr_destroy before
255  * freeing the stack. */
256
257 static struct thread_post_mortem *
258 plan_thread_post_mortem(struct thread *corpse)
259 {
260     if (corpse) {
261         struct thread_post_mortem *post_mortem = malloc(sizeof(struct thread_post_mortem));
262         gc_assert(post_mortem);
263         post_mortem->os_thread = corpse->os_thread;
264         post_mortem->os_attr = corpse->os_attr;
265         post_mortem->os_address = corpse->os_address;
266 #ifdef DELAY_THREAD_POST_MORTEM
267         post_mortem->next = NULL;
268 #endif
269         return post_mortem;
270     } else {
271         /* FIXME: When does this happen? */
272         return NULL;
273     }
274 }
275
276 static void
277 perform_thread_post_mortem(struct thread_post_mortem *post_mortem)
278 {
279 #ifdef CREATE_POST_MORTEM_THREAD
280     pthread_detach(pthread_self());
281 #endif
282     if (post_mortem) {
283         gc_assert(!pthread_join(post_mortem->os_thread, NULL));
284         gc_assert(!pthread_attr_destroy(post_mortem->os_attr));
285         free(post_mortem->os_attr);
286         os_invalidate(post_mortem->os_address, THREAD_STRUCT_SIZE);
287         free(post_mortem);
288     }
289 }
290
291 static void
292 schedule_thread_post_mortem(struct thread *corpse)
293 {
294     struct thread_post_mortem *post_mortem = NULL;
295     if (corpse) {
296         post_mortem = plan_thread_post_mortem(corpse);
297
298 #ifdef DELAY_THREAD_POST_MORTEM
299         pthread_mutex_lock(&thread_post_mortem_lock);
300         /* First stick the new post mortem to the end of the queue. */
301         if (pending_thread_post_mortem) {
302             struct thread_post_mortem *next = pending_thread_post_mortem;
303             while (next->next) {
304                 next = next->next;
305             }
306             next->next = post_mortem;
307         } else {
308             pending_thread_post_mortem = post_mortem;
309         }
310         /* Then, if there are enough things in the queue, clean up one
311          * from the head -- or increment the count, and null out the
312          * post_mortem we have. */
313         if (pending_thread_post_mortem_count > DELAY_THREAD_POST_MORTEM) {
314             post_mortem = pending_thread_post_mortem;
315             pending_thread_post_mortem = post_mortem->next;
316         } else {
317             pending_thread_post_mortem_count++;
318             post_mortem = NULL;
319         }
320         pthread_mutex_unlock(&thread_post_mortem_lock);
321         /* Finally run, the cleanup, if any. */
322         perform_thread_post_mortem(post_mortem);
323 #elif defined(CREATE_POST_MORTEM_THREAD)
324         gc_assert(!pthread_create(&thread, NULL, perform_thread_post_mortem, post_mortem));
325 #else
326         post_mortem = (struct thread_post_mortem *)
327             swap_lispobjs((lispobj *)(void *)&pending_thread_post_mortem,
328                           (lispobj)post_mortem);
329         perform_thread_post_mortem(post_mortem);
330 #endif
331     }
332 }
333
334 /* this is the first thing that runs in the child (which is why the
335  * silly calling convention).  Basically it calls the user's requested
336  * lisp function after doing arch_os_thread_init and whatever other
337  * bookkeeping needs to be done
338  */
339 int
340 new_thread_trampoline(struct thread *th)
341 {
342     lispobj function;
343     int result, lock_ret;
344
345     FSHOW((stderr,"/creating thread %lu\n", thread_self()));
346     check_deferrables_blocked_or_lose(0);
347     check_gc_signals_unblocked_or_lose(0);
348     pthread_setspecific(lisp_thread, (void *)1);
349     function = th->no_tls_value_marker;
350     th->no_tls_value_marker = NO_TLS_VALUE_MARKER_WIDETAG;
351     if(arch_os_thread_init(th)==0) {
352         /* FIXME: handle error */
353         lose("arch_os_thread_init failed\n");
354     }
355
356     th->os_thread=thread_self();
357     protect_control_stack_guard_page(1, NULL);
358     protect_binding_stack_guard_page(1, NULL);
359     protect_alien_stack_guard_page(1, NULL);
360     /* Since GC can only know about this thread from the all_threads
361      * list and we're just adding this thread to it, there is no
362      * danger of deadlocking even with SIG_STOP_FOR_GC blocked (which
363      * it is not). */
364     lock_ret = pthread_mutex_lock(&all_threads_lock);
365     gc_assert(lock_ret == 0);
366     link_thread(th);
367     lock_ret = pthread_mutex_unlock(&all_threads_lock);
368     gc_assert(lock_ret == 0);
369
370     result = funcall0(function);
371
372     /* Block GC */
373     block_blockable_signals(0, 0);
374     set_thread_state(th, STATE_DEAD);
375
376     /* SIG_STOP_FOR_GC is blocked and GC might be waiting for this
377      * thread, but since we are already dead it won't wait long. */
378     lock_ret = pthread_mutex_lock(&all_threads_lock);
379     gc_assert(lock_ret == 0);
380
381     gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
382     unlink_thread(th);
383     pthread_mutex_unlock(&all_threads_lock);
384     gc_assert(lock_ret == 0);
385
386     if(th->tls_cookie>=0) arch_os_thread_cleanup(th);
387     os_sem_destroy(th->state_sem);
388     os_sem_destroy(th->state_not_running_sem);
389     os_sem_destroy(th->state_not_stopped_sem);
390
391     os_invalidate((os_vm_address_t)th->interrupt_data,
392                   (sizeof (struct interrupt_data)));
393
394 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
395     mach_lisp_thread_destroy(th);
396 #endif
397
398     schedule_thread_post_mortem(th);
399     FSHOW((stderr,"/exiting thread %lu\n", thread_self()));
400     return result;
401 }
402
403 #endif /* LISP_FEATURE_SB_THREAD */
404
405 static void
406 free_thread_struct(struct thread *th)
407 {
408     if (th->interrupt_data)
409         os_invalidate((os_vm_address_t) th->interrupt_data,
410                       (sizeof (struct interrupt_data)));
411     os_invalidate((os_vm_address_t) th->os_address,
412                   THREAD_STRUCT_SIZE);
413 }
414
415 #ifdef LISP_FEATURE_SB_THREAD
416 /* FIXME: should be MAX_INTERRUPTS -1 ? */
417 const unsigned int tls_index_start =
418   MAX_INTERRUPTS + sizeof(struct thread)/sizeof(lispobj);
419 #endif
420
421 /* this is called from any other thread to create the new one, and
422  * initialize all parts of it that can be initialized from another
423  * thread
424  */
425
426 static struct thread *
427 create_thread_struct(lispobj initial_function) {
428     union per_thread_data *per_thread;
429     struct thread *th=0;        /*  subdue gcc */
430     void *spaces=0;
431     void *aligned_spaces=0;
432 #ifdef LISP_FEATURE_SB_THREAD
433     unsigned int i;
434 #endif
435
436     /* May as well allocate all the spaces at once: it saves us from
437      * having to decide what to do if only some of the allocations
438      * succeed. SPACES must be appropriately aligned, since the GC
439      * expects the control stack to start at a page boundary -- and
440      * the OS may have even more rigorous requirements. We can't rely
441      * on the alignment passed from os_validate, since that might
442      * assume the current (e.g. 4k) pagesize, while we calculate with
443      * the biggest (e.g. 64k) pagesize allowed by the ABI. */
444     spaces=os_validate(0, THREAD_STRUCT_SIZE);
445     if(!spaces)
446         return NULL;
447     /* Aligning up is safe as THREAD_STRUCT_SIZE has
448      * THREAD_ALIGNMENT_BYTES padding. */
449     aligned_spaces = (void *)((((unsigned long)(char *)spaces)
450                                + THREAD_ALIGNMENT_BYTES-1)
451                               &~(unsigned long)(THREAD_ALIGNMENT_BYTES-1));
452     per_thread=(union per_thread_data *)
453         (aligned_spaces+
454          thread_control_stack_size+
455          BINDING_STACK_SIZE+
456          ALIEN_STACK_SIZE +
457          THREAD_STATE_LOCK_SIZE);
458
459 #ifdef LISP_FEATURE_SB_THREAD
460     for(i = 0; i < (dynamic_values_bytes / sizeof(lispobj)); i++)
461         per_thread->dynamic_values[i] = NO_TLS_VALUE_MARKER_WIDETAG;
462     if (all_threads == 0) {
463         if(SymbolValue(FREE_TLS_INDEX,0)==UNBOUND_MARKER_WIDETAG) {
464             SetSymbolValue(FREE_TLS_INDEX,tls_index_start << WORD_SHIFT,0);
465             SetSymbolValue(TLS_INDEX_LOCK,make_fixnum(0),0);
466         }
467 #define STATIC_TLS_INIT(sym,field) \
468   ((struct symbol *)(sym-OTHER_POINTER_LOWTAG))->tls_index= \
469   (THREAD_SLOT_OFFSET_WORDS(field) << WORD_SHIFT)
470
471         STATIC_TLS_INIT(BINDING_STACK_START,binding_stack_start);
472 #ifdef BINDING_STACK_POINTER
473         STATIC_TLS_INIT(BINDING_STACK_POINTER,binding_stack_pointer);
474 #endif
475         STATIC_TLS_INIT(CONTROL_STACK_START,control_stack_start);
476         STATIC_TLS_INIT(CONTROL_STACK_END,control_stack_end);
477 #ifdef ALIEN_STACK
478         STATIC_TLS_INIT(ALIEN_STACK,alien_stack_pointer);
479 #endif
480 #if defined(LISP_FEATURE_X86) || defined (LISP_FEATURE_X86_64)
481         STATIC_TLS_INIT(PSEUDO_ATOMIC_BITS,pseudo_atomic_bits);
482 #endif
483 #undef STATIC_TLS_INIT
484     }
485 #endif
486
487     th=&per_thread->thread;
488     th->os_address = spaces;
489     th->control_stack_start = aligned_spaces;
490     th->binding_stack_start=
491         (lispobj*)((void*)th->control_stack_start+thread_control_stack_size);
492     th->control_stack_end = th->binding_stack_start;
493     th->control_stack_guard_page_protected = T;
494     th->alien_stack_start=
495         (lispobj*)((void*)th->binding_stack_start+BINDING_STACK_SIZE);
496     set_binding_stack_pointer(th,th->binding_stack_start);
497     th->this=th;
498     th->os_thread=0;
499 #ifdef LISP_FEATURE_SB_THREAD
500     th->os_attr=malloc(sizeof(pthread_attr_t));
501     th->state_sem=(os_sem_t *)((void *)th->alien_stack_start + ALIEN_STACK_SIZE);
502     th->state_not_running_sem=(os_sem_t *)
503         ((void *)th->state_sem + (sizeof(os_sem_t)));
504     th->state_not_stopped_sem=(os_sem_t *)
505         ((void *)th->state_not_running_sem + (sizeof(os_sem_t)));
506     th->state_not_running_waitcount = 0;
507     th->state_not_stopped_waitcount = 0;
508     os_sem_init(th->state_sem, 1);
509     os_sem_init(th->state_not_running_sem, 0);
510     os_sem_init(th->state_not_stopped_sem, 0);
511 #endif
512     th->state=STATE_RUNNING;
513 #ifdef LISP_FEATURE_STACK_GROWS_DOWNWARD_NOT_UPWARD
514     th->alien_stack_pointer=((void *)th->alien_stack_start
515                              + ALIEN_STACK_SIZE-N_WORD_BYTES);
516 #else
517     th->alien_stack_pointer=((void *)th->alien_stack_start);
518 #endif
519 #if defined(LISP_FEATURE_X86) || defined (LISP_FEATURE_X86_64) || defined(LISP_FEATURE_SB_THREAD)
520     th->pseudo_atomic_bits=0;
521 #endif
522 #ifdef LISP_FEATURE_GENCGC
523     gc_set_region_empty(&th->alloc_region);
524 #endif
525 #ifdef LISP_FEATURE_SB_THREAD
526     /* This parallels the same logic in globals.c for the
527      * single-threaded foreign_function_call_active, KLUDGE and
528      * all. */
529 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
530     th->foreign_function_call_active = 0;
531 #else
532     th->foreign_function_call_active = 1;
533 #endif
534 #endif
535
536 #ifndef LISP_FEATURE_SB_THREAD
537     /* the tls-points-into-struct-thread trick is only good for threaded
538      * sbcl, because unithread sbcl doesn't have tls.  So, we copy the
539      * appropriate values from struct thread here, and make sure that
540      * we use the appropriate SymbolValue macros to access any of the
541      * variable quantities from the C runtime.  It's not quite OAOOM,
542      * it just feels like it */
543     SetSymbolValue(BINDING_STACK_START,(lispobj)th->binding_stack_start,th);
544     SetSymbolValue(CONTROL_STACK_START,(lispobj)th->control_stack_start,th);
545     SetSymbolValue(CONTROL_STACK_END,(lispobj)th->control_stack_end,th);
546 #if defined(LISP_FEATURE_X86) || defined (LISP_FEATURE_X86_64)
547     SetSymbolValue(ALIEN_STACK,(lispobj)th->alien_stack_pointer,th);
548     SetSymbolValue(PSEUDO_ATOMIC_BITS,(lispobj)th->pseudo_atomic_bits,th);
549 #endif
550 #endif
551     bind_variable(CURRENT_CATCH_BLOCK,make_fixnum(0),th);
552     bind_variable(CURRENT_UNWIND_PROTECT_BLOCK,make_fixnum(0),th);
553     bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,make_fixnum(0),th);
554     bind_variable(INTERRUPT_PENDING, NIL,th);
555     bind_variable(INTERRUPTS_ENABLED,T,th);
556     bind_variable(ALLOW_WITH_INTERRUPTS,T,th);
557     bind_variable(GC_PENDING,NIL,th);
558     bind_variable(ALLOC_SIGNAL,NIL,th);
559 #ifdef PINNED_OBJECTS
560     bind_variable(PINNED_OBJECTS,NIL,th);
561 #endif
562 #ifdef LISP_FEATURE_SB_THREAD
563     bind_variable(STOP_FOR_GC_PENDING,NIL,th);
564 #endif
565 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
566     access_control_stack_pointer(th)=th->control_stack_start;
567 #endif
568
569     th->interrupt_data = (struct interrupt_data *)
570         os_validate(0,(sizeof (struct interrupt_data)));
571     if (!th->interrupt_data) {
572         free_thread_struct(th);
573         return 0;
574     }
575     th->interrupt_data->pending_handler = 0;
576     th->interrupt_data->gc_blocked_deferrables = 0;
577 #ifdef LISP_FEATURE_PPC
578     th->interrupt_data->allocation_trap_context = 0;
579 #endif
580     th->no_tls_value_marker=initial_function;
581
582     th->stepping = NIL;
583     return th;
584 }
585
586 void create_initial_thread(lispobj initial_function) {
587     struct thread *th=create_thread_struct(initial_function);
588 #ifdef LISP_FEATURE_SB_THREAD
589     pthread_key_create(&lisp_thread, 0);
590 #endif
591     if(th) {
592         initial_thread_trampoline(th); /* no return */
593     } else lose("can't create initial thread\n");
594 }
595
596 #ifdef LISP_FEATURE_SB_THREAD
597
598 #ifndef __USE_XOPEN2K
599 extern int pthread_attr_setstack (pthread_attr_t *__attr, void *__stackaddr,
600                                   size_t __stacksize);
601 #endif
602
603 boolean create_os_thread(struct thread *th,os_thread_t *kid_tid)
604 {
605     /* The new thread inherits the restrictive signal mask set here,
606      * and enables signals again when it is set up properly. */
607     sigset_t oldset;
608     boolean r=1;
609     int retcode = 0, initcode;
610
611     FSHOW_SIGNAL((stderr,"/create_os_thread: creating new thread\n"));
612
613     /* Blocking deferrable signals is enough, no need to block
614      * SIG_STOP_FOR_GC because the child process is not linked onto
615      * all_threads until it's ready. */
616     block_deferrable_signals(0, &oldset);
617
618 #ifdef LOCK_CREATE_THREAD
619     retcode = pthread_mutex_lock(&create_thread_lock);
620     gc_assert(retcode == 0);
621     FSHOW_SIGNAL((stderr,"/create_os_thread: got lock\n"));
622 #endif
623
624     if((initcode = pthread_attr_init(th->os_attr)) ||
625        /* call_into_lisp_first_time switches the stack for the initial
626         * thread. For the others, we use this. */
627        (pthread_attr_setstack(th->os_attr,th->control_stack_start,
628                               thread_control_stack_size)) ||
629        (retcode = pthread_create
630         (kid_tid,th->os_attr,(void *(*)(void *))new_thread_trampoline,th))) {
631         FSHOW_SIGNAL((stderr, "init = %d\n", initcode));
632         FSHOW_SIGNAL((stderr, "pthread_create returned %d, errno %d\n",
633                       retcode, errno));
634         if(retcode < 0) {
635             perror("create_os_thread");
636         }
637         r=0;
638     }
639
640 #ifdef LOCK_CREATE_THREAD
641     retcode = pthread_mutex_unlock(&create_thread_lock);
642     gc_assert(retcode == 0);
643     FSHOW_SIGNAL((stderr,"/create_os_thread: released lock\n"));
644 #endif
645     thread_sigmask(SIG_SETMASK,&oldset,0);
646     return r;
647 }
648
649 os_thread_t create_thread(lispobj initial_function) {
650     struct thread *th, *thread = arch_os_get_current_thread();
651     os_thread_t kid_tid = 0;
652
653     /* Must defend against async unwinds. */
654     if (SymbolValue(INTERRUPTS_ENABLED, thread) != NIL)
655         lose("create_thread is not safe when interrupts are enabled.\n");
656
657     /* Assuming that a fresh thread struct has no lisp objects in it,
658      * linking it to all_threads can be left to the thread itself
659      * without fear of gc lossage. initial_function violates this
660      * assumption and must stay pinned until the child starts up. */
661     th = create_thread_struct(initial_function);
662     if (th && !create_os_thread(th,&kid_tid)) {
663         free_thread_struct(th);
664         kid_tid = 0;
665     }
666     return kid_tid;
667 }
668
669 /* stopping the world is a two-stage process.  From this thread we signal
670  * all the others with SIG_STOP_FOR_GC.  The handler for this signal does
671  * the usual pseudo-atomic checks (we don't want to stop a thread while
672  * it's in the middle of allocation) then waits for another SIG_STOP_FOR_GC.
673  */
674
675 /* To avoid deadlocks when gc stops the world all clients of each
676  * mutex must enable or disable SIG_STOP_FOR_GC for the duration of
677  * holding the lock, but they must agree on which. */
678 void gc_stop_the_world()
679 {
680     struct thread *p,*th=arch_os_get_current_thread();
681     int status, lock_ret;
682 #ifdef LOCK_CREATE_THREAD
683     /* KLUDGE: Stopping the thread during pthread_create() causes deadlock
684      * on FreeBSD. */
685     FSHOW_SIGNAL((stderr,"/gc_stop_the_world:waiting on create_thread_lock\n"));
686     lock_ret = pthread_mutex_lock(&create_thread_lock);
687     gc_assert(lock_ret == 0);
688     FSHOW_SIGNAL((stderr,"/gc_stop_the_world:got create_thread_lock\n"));
689 #endif
690     FSHOW_SIGNAL((stderr,"/gc_stop_the_world:waiting on lock\n"));
691     /* keep threads from starting while the world is stopped. */
692     lock_ret = pthread_mutex_lock(&all_threads_lock);      \
693     gc_assert(lock_ret == 0);
694
695     FSHOW_SIGNAL((stderr,"/gc_stop_the_world:got lock\n"));
696     /* stop all other threads by sending them SIG_STOP_FOR_GC */
697     for(p=all_threads; p; p=p->next) {
698         gc_assert(p->os_thread != 0);
699         FSHOW_SIGNAL((stderr,"/gc_stop_the_world: thread=%lu, state=%x\n",
700                       p->os_thread, thread_state(p)));
701         if((p!=th) && ((thread_state(p)==STATE_RUNNING))) {
702             FSHOW_SIGNAL((stderr,"/gc_stop_the_world: suspending thread %lu\n",
703                           p->os_thread));
704             /* We already hold all_thread_lock, P can become DEAD but
705              * cannot exit, ergo it's safe to use pthread_kill. */
706             status=pthread_kill(p->os_thread,SIG_STOP_FOR_GC);
707             if (status==ESRCH) {
708                 /* This thread has exited. */
709                 gc_assert(thread_state(p)==STATE_DEAD);
710             } else if (status) {
711                 lose("cannot send suspend thread=%lu: %d, %s\n",
712                      p->os_thread,status,strerror(status));
713             }
714         }
715     }
716     FSHOW_SIGNAL((stderr,"/gc_stop_the_world:signals sent\n"));
717     for(p=all_threads;p;p=p->next) {
718         if (p!=th) {
719             FSHOW_SIGNAL
720                 ((stderr,
721                   "/gc_stop_the_world: waiting for thread=%lu: state=%x\n",
722                   p->os_thread, thread_state(p)));
723             wait_for_thread_state_change(p, STATE_RUNNING);
724             if (p->state == STATE_RUNNING)
725                 lose("/gc_stop_the_world: unexpected state");
726         }
727     }
728     FSHOW_SIGNAL((stderr,"/gc_stop_the_world:end\n"));
729 }
730
731 void gc_start_the_world()
732 {
733     struct thread *p,*th=arch_os_get_current_thread();
734     int lock_ret;
735     /* if a resumed thread creates a new thread before we're done with
736      * this loop, the new thread will get consed on the front of
737      * all_threads, but it won't have been stopped so won't need
738      * restarting */
739     FSHOW_SIGNAL((stderr,"/gc_start_the_world:begin\n"));
740     for(p=all_threads;p;p=p->next) {
741         gc_assert(p->os_thread!=0);
742         if (p!=th) {
743             lispobj state = thread_state(p);
744             if (state != STATE_DEAD) {
745                 if(state != STATE_STOPPED) {
746                     lose("gc_start_the_world: wrong thread state is %d\n",
747                          fixnum_value(state));
748                 }
749                 FSHOW_SIGNAL((stderr, "/gc_start_the_world: resuming %lu\n",
750                               p->os_thread));
751                 set_thread_state(p, STATE_RUNNING);
752             }
753         }
754     }
755
756     lock_ret = pthread_mutex_unlock(&all_threads_lock);
757     gc_assert(lock_ret == 0);
758 #ifdef LOCK_CREATE_THREAD
759     lock_ret = pthread_mutex_unlock(&create_thread_lock);
760     gc_assert(lock_ret == 0);
761 #endif
762
763     FSHOW_SIGNAL((stderr,"/gc_start_the_world:end\n"));
764 }
765 #endif
766
767 int
768 thread_yield()
769 {
770 #ifdef LISP_FEATURE_SB_THREAD
771     return sched_yield();
772 #else
773     return 0;
774 #endif
775 }
776
777 /* If the thread id given does not belong to a running thread (it has
778  * exited or never even existed) pthread_kill _may_ fail with ESRCH,
779  * but it is also allowed to just segfault, see
780  * <http://udrepper.livejournal.com/16844.html>.
781  *
782  * Relying on thread ids can easily backfire since ids are recycled
783  * (NPTL recycles them extremely fast) so a signal can be sent to
784  * another process if the one it was sent to exited.
785  *
786  * We send signals in two places: signal_interrupt_thread sends a
787  * signal that's harmless if delivered to another thread, but
788  * SIG_STOP_FOR_GC is fatal.
789  *
790  * For these reasons, we must make sure that the thread is still alive
791  * when the pthread_kill is called and return if the thread is
792  * exiting. */
793 int
794 kill_safely(os_thread_t os_thread, int signal)
795 {
796     FSHOW_SIGNAL((stderr,"/kill_safely: %lu, %d\n", os_thread, signal));
797     {
798 #ifdef LISP_FEATURE_SB_THREAD
799         sigset_t oldset;
800         struct thread *thread;
801         /* pthread_kill is not async signal safe and we don't want to be
802          * interrupted while holding the lock. */
803         block_deferrable_signals(0, &oldset);
804         pthread_mutex_lock(&all_threads_lock);
805         for (thread = all_threads; thread; thread = thread->next) {
806             if (thread->os_thread == os_thread) {
807                 int status = pthread_kill(os_thread, signal);
808                 if (status)
809                     lose("kill_safely: pthread_kill failed with %d\n", status);
810                 break;
811             }
812         }
813         pthread_mutex_unlock(&all_threads_lock);
814         thread_sigmask(SIG_SETMASK,&oldset,0);
815         if (thread)
816             return 0;
817         else
818             return -1;
819 #else
820         int status;
821         if (os_thread != 0)
822             lose("kill_safely: who do you want to kill? %d?\n", os_thread);
823         /* Dubious (as in don't know why it works) workaround for the
824          * signal sometimes not being generated on darwin. */
825 #ifdef LISP_FEATURE_DARWIN
826         {
827             sigset_t oldset;
828             sigprocmask(SIG_BLOCK, &deferrable_sigset, &oldset);
829             status = raise(signal);
830             sigprocmask(SIG_SETMASK,&oldset,0);
831         }
832 #else
833         status = raise(signal);
834 #endif
835         if (status == 0) {
836             return 0;
837         } else {
838             lose("cannot raise signal %d, %d %s\n",
839                  signal, status, strerror(errno));
840         }
841 #endif
842     }
843 }