1 #ifdef LISP_FEATURE_SB_THREAD
2 #include <architecture/i386/table.h>
3 #include <i386/user_ldt.h>
4 #include <mach/mach_init.h>
10 #include "interrupt.h"
11 #include "x86-64-darwin-os.h"
12 #include "genesis/fdefn.h"
14 #include <mach/mach.h>
15 #include <mach/mach_error.h>
16 #include <mach/mach_types.h>
17 #include <mach/sync_policy.h>
18 #include <mach/machine/thread_state.h>
19 #include <mach/machine/thread_status.h>
20 #include <sys/_types.h>
21 #include <sys/ucontext.h>
28 #include <sys/_structs.h>
33 typedef struct __darwin_ucontext darwin_ucontext;
34 typedef struct __darwin_mcontext64 darwin_mcontext;
47 #define faultvaddr __faultvaddr
52 #define fpu_fcw __fpu_fcw
53 #define fpu_mxcsr __fpu_mxcsr
57 typedef struct ucontext darwin_ucontext;
58 typedef struct mcontext darwin_mcontext;
62 #ifdef LISP_FEATURE_SB_THREAD
63 pthread_mutex_t mach_exception_lock = PTHREAD_MUTEX_INITIALIZER;
66 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
68 void sigill_handler(int signal, siginfo_t *siginfo, os_context_t *context);
69 void sigtrap_handler(int signal, siginfo_t *siginfo, os_context_t *context);
70 void memory_fault_handler(int signal, siginfo_t *siginfo,
71 os_context_t *context);
73 /* This executes in the faulting thread as part of the signal
74 * emulation. It is passed a context with the uc_mcontext field
75 * pointing to a valid block of memory. */
76 void build_fake_signal_context(darwin_ucontext *context,
77 x86_thread_state64_t *thread_state,
78 x86_float_state64_t *float_state) {
79 pthread_sigmask(0, NULL, &context->uc_sigmask);
80 context->uc_mcontext->ss = *thread_state;
81 context->uc_mcontext->fs = *float_state;
84 /* This executes in the faulting thread as part of the signal
85 * emulation. It is effectively the inverse operation from above. */
86 void update_thread_state_from_context(x86_thread_state64_t *thread_state,
87 x86_float_state64_t *float_state,
88 darwin_ucontext *context) {
89 *thread_state = context->uc_mcontext->ss;
90 *float_state = context->uc_mcontext->fs;
91 pthread_sigmask(SIG_SETMASK, &context->uc_sigmask, NULL);
94 /* Modify a context to push new data on its stack. */
95 void push_context(u64 data, x86_thread_state64_t *context)
99 stack_pointer = (u64*) context->rsp;
100 *(--stack_pointer) = data;
101 context->rsp = (u64) stack_pointer;
104 void align_context_stack(x86_thread_state64_t *context)
106 /* 16byte align the stack (provided that the stack is, as it
107 * should be, 8byte aligned. */
108 while (context->rsp & 15) push_context(0, context);
111 /* Stack allocation starts with a context that has a mod-4 ESP value
112 * and needs to leave a context with a mod-16 ESP that will restore
113 * the old ESP value and other register state when activated. The
114 * first part of this is the recovery trampoline, which loads ESP from
115 * EBP, pops EBP, and returns. */
116 asm(".globl _stack_allocation_recover; \
118 _stack_allocation_recover: \
119 lea -48(%rbp), %rsp; \
129 void open_stack_allocation(x86_thread_state64_t *context)
131 void stack_allocation_recover(void);
133 push_context(context->rip, context);
134 push_context(context->rbp, context);
135 context->rbp = context->rsp;
137 push_context(context->r9, context);
138 push_context(context->r8, context);
139 push_context(context->rcx, context);
140 push_context(context->rdx, context);
141 push_context(context->rsi, context);
142 push_context(context->rdi, context);
144 context->rip = (u64) stack_allocation_recover;
146 align_context_stack(context);
149 /* Stack allocation of data starts with a context with a mod-16 ESP
150 * value and reserves some space on it by manipulating the ESP
152 void *stack_allocate(x86_thread_state64_t *context, size_t size)
154 /* round up size to 16byte multiple */
155 size = (size + 15) & -16;
157 context->rsp = ((u64)context->rsp) - size;
159 return (void *)context->rsp;
162 /* Arranging to invoke a C function is tricky, as we have to assume
163 * cdecl calling conventions (caller removes args) and x86/darwin
164 * alignment requirements. The simplest way to arrange this,
165 * actually, is to open a new stack allocation.
166 * WARNING!!! THIS DOES NOT PRESERVE REGISTERS! */
167 void call_c_function_in_context(x86_thread_state64_t *context,
176 /* Set up to restore stack on exit. */
177 open_stack_allocation(context);
179 /* Have to keep stack 16byte aligned on x86/darwin. */
180 for (i = (1 & -nargs); i; i--) {
181 push_context(0, context);
184 context->rsp = ((u64)context->rsp) - nargs * 8;
185 stack_pointer = (u64 *)context->rsp;
188 if (nargs > 0) context->rdi = va_arg(ap, u64);
189 if (nargs > 1) context->rsi = va_arg(ap, u64);
190 if (nargs > 2) context->rdx = va_arg(ap, u64);
191 if (nargs > 3) context->rcx = va_arg(ap, u64);
192 if (nargs > 4) context->r8 = va_arg(ap, u64);
193 if (nargs > 5) context->r9 = va_arg(ap, u64);
194 for (i = 6; i < nargs; i++) {
195 stack_pointer[i] = va_arg(ap, u64);
199 push_context(context->rip, context);
200 context->rip = (u64) function;
203 void signal_emulation_wrapper(x86_thread_state64_t *thread_state,
204 x86_float_state64_t *float_state,
207 void (*handler)(int, siginfo_t *, void *))
210 /* CLH: FIXME **NOTE: HACK ALERT!** Ideally, we would allocate
211 * context and regs on the stack as local variables, but this
212 * causes problems for the lisp debugger. When it walks the stack
213 * for a back trace, it sees the 1) address of the local variable
214 * on the stack and thinks that is a frame pointer to a lisp
215 * frame, and, 2) the address of the sap that we alloc'ed in
216 * dynamic space and thinks that is a return address, so it,
217 * heuristicly (and wrongly), chooses that this should be
218 * interpreted as a lisp frame instead of as a C frame.
219 * We can work around this in this case by os_validating the
220 * context (and regs just for symmetry).
223 darwin_ucontext *context;
224 darwin_mcontext *regs;
226 context = (darwin_ucontext *) os_validate(0, sizeof(darwin_ucontext));
227 regs = (darwin_mcontext*) os_validate(0, sizeof(darwin_mcontext));
228 context->uc_mcontext = regs;
230 /* when BSD signals are fired, they mask they signals in sa_mask
231 which always seem to be the blockable_sigset, for us, so we
233 1) save the current sigmask
234 2) block blockable signals
235 3) call the signal handler
236 4) restore the sigmask */
238 build_fake_signal_context(context, thread_state, float_state);
240 block_blockable_signals(0, 0);
242 handler(signal, siginfo, context);
244 update_thread_state_from_context(thread_state, float_state, context);
246 os_invalidate((os_vm_address_t)context, sizeof(darwin_ucontext));
247 os_invalidate((os_vm_address_t)regs, sizeof(darwin_mcontext));
249 /* Trap to restore the signal context. */
250 asm volatile (".quad 0xffffffffffff0b0f"
251 : : "a" (thread_state), "b" (float_state));
254 #if defined DUMP_CONTEXT
255 void dump_context(x86_thread_state64_t *context)
260 printf("rax: %08lx rcx: %08lx rdx: %08lx rbx: %08lx\n",
261 context->rax, context->rcx, context->rdx, context->rbx);
262 printf("rsp: %08lx rbp: %08lx rsi: %08lx rdi: %08lx\n",
263 context->rsp, context->rbp, context->rsi, context->rdi);
264 printf("rip: %08lx eflags: %08lx\n",
265 context->rip, context->rflags);
266 printf("cs: %04hx ds: %04hx es: %04hx "
267 "ss: %04hx fs: %04hx gs: %04hx\n",
268 context->cs, context->ds, context->rs,
269 context->ss, context->fs, context->gs);
271 stack_pointer = (u64 *)context->rsp;
272 for (i = 0; i < 48; i+=4) {
273 printf("%08x: %08x %08x %08x %08x\n",
274 context->rsp + (i * 4),
284 control_stack_exhausted_handler(int signal, siginfo_t *siginfo,
285 os_context_t *context) {
286 unblock_signals_in_context_and_maybe_warn(context);
287 arrange_return_to_lisp_function
288 (context, StaticSymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
292 undefined_alien_handler(int signal, siginfo_t *siginfo, os_context_t *context) {
293 arrange_return_to_lisp_function
294 (context, StaticSymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
298 catch_exception_raise(mach_port_t exception_port,
301 exception_type_t exception,
302 exception_data_t code_vector,
303 mach_msg_type_number_t code_count)
305 kern_return_t ret, dealloc_ret;
309 #ifdef LISP_FEATURE_SB_THREAD
310 thread_mutex_lock(&mach_exception_lock);
313 x86_thread_state64_t thread_state;
314 mach_msg_type_number_t thread_state_count = x86_THREAD_STATE64_COUNT;
316 x86_float_state64_t float_state;
317 mach_msg_type_number_t float_state_count = x86_FLOAT_STATE64_COUNT;
319 x86_exception_state64_t exception_state;
320 mach_msg_type_number_t exception_state_count = x86_EXCEPTION_STATE64_COUNT;
322 x86_thread_state64_t backup_thread_state;
323 x86_thread_state64_t *target_thread_state;
324 x86_float_state64_t *target_float_state;
326 os_vm_address_t addr;
330 FSHOW((stderr,"/entering catch_exception_raise with exception: %d\n", exception));
331 th = *(struct thread**)exception_port;
337 ret = thread_get_state(thread,
339 (thread_state_t)&thread_state,
340 &thread_state_count);
341 ret = thread_get_state(thread,
343 (thread_state_t)&float_state,
345 ret = thread_get_state(thread,
346 x86_EXCEPTION_STATE64,
347 (thread_state_t)&exception_state,
348 &exception_state_count);
349 addr = (void*)exception_state.faultvaddr;
350 /* note the os_context hackery here. When the signal handler returns,
351 * it won't go back to what it was doing ... */
352 if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
353 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
354 /* We hit the end of the control stack: disable guard page
355 * protection so the error handler has some headroom, protect the
356 * previous page so that we can catch returns from the guard page
358 lower_thread_control_stack_guard_page(th);
360 backup_thread_state = thread_state;
361 open_stack_allocation(&thread_state);
362 /* Reserve a 256 byte zone for signal handlers
363 * to use on the interrupted thread stack.
365 stack_allocate(&thread_state, 256);
367 /* Save thread state */
368 target_thread_state =
369 stack_allocate(&thread_state, sizeof(*target_thread_state));
370 (*target_thread_state) = backup_thread_state;
372 /* Save float state */
374 stack_allocate(&thread_state, sizeof(*target_float_state));
375 (*target_float_state) = float_state;
378 siginfo = stack_allocate(&thread_state, sizeof(*siginfo));
379 /* what do we need to put in our fake siginfo? It looks like
380 * the x86 code only uses si_signo and si_adrr. */
381 siginfo->si_signo = signal;
382 siginfo->si_addr = (void*)exception_state.faultvaddr;
384 call_c_function_in_context(&thread_state,
385 signal_emulation_wrapper,
391 control_stack_exhausted_handler);
393 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
394 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
395 /* We're returning from the guard page: reprotect it, and
396 * unprotect this one. This works even if we somehow missed
397 * the return-guard-page, and hit it on our way to new
398 * exhaustion instead. */
399 reset_thread_control_stack_guard_page(th);
401 else if (addr >= undefined_alien_address &&
402 addr < undefined_alien_address + os_vm_page_size) {
403 backup_thread_state = thread_state;
404 open_stack_allocation(&thread_state);
405 stack_allocate(&thread_state, 256);
407 /* Save thread state */
408 target_thread_state =
409 stack_allocate(&thread_state, sizeof(*target_thread_state));
410 (*target_thread_state) = backup_thread_state;
413 stack_allocate(&thread_state, sizeof(*target_float_state));
414 (*target_float_state) = float_state;
417 siginfo = stack_allocate(&thread_state, sizeof(*siginfo));
418 /* what do we need to put in our fake siginfo? It looks like
419 * the x86 code only uses si_signo and si_adrr. */
420 siginfo->si_signo = signal;
421 siginfo->si_addr = (void*)exception_state.faultvaddr;
423 call_c_function_in_context(&thread_state,
424 signal_emulation_wrapper,
430 undefined_alien_handler);
433 backup_thread_state = thread_state;
434 open_stack_allocation(&thread_state);
435 stack_allocate(&thread_state, 256);
437 /* Save thread state */
438 target_thread_state =
439 stack_allocate(&thread_state, sizeof(*target_thread_state));
440 (*target_thread_state) = backup_thread_state;
443 stack_allocate(&thread_state, sizeof(*target_float_state));
444 (*target_float_state) = float_state;
447 siginfo = stack_allocate(&thread_state, sizeof(*siginfo));
448 /* what do we need to put in our fake siginfo? It looks like
449 * the x86 code only uses si_signo and si_adrr. */
450 siginfo->si_signo = signal;
451 siginfo->si_addr = (void*)exception_state.faultvaddr;
453 call_c_function_in_context(&thread_state,
454 signal_emulation_wrapper,
460 memory_fault_handler);
462 ret = thread_set_state(thread,
464 (thread_state_t)&thread_state,
467 ret = thread_set_state(thread,
469 (thread_state_t)&float_state,
471 #ifdef LISP_FEATURE_SB_THREAD
472 thread_mutex_unlock(&mach_exception_lock);
477 case EXC_BAD_INSTRUCTION:
479 ret = thread_get_state(thread,
481 (thread_state_t)&thread_state,
482 &thread_state_count);
483 ret = thread_get_state(thread,
485 (thread_state_t)&float_state,
487 ret = thread_get_state(thread,
488 x86_EXCEPTION_STATE64,
489 (thread_state_t)&exception_state,
490 &exception_state_count);
491 if (0xffffffffffff0b0f == *((u64 *)thread_state.rip)) {
492 /* fake sigreturn. */
494 /* When we get here, thread_state.rax is a pointer to a
495 * thread_state to restore. */
496 /* thread_state = *((thread_state_t *)thread_state.rax); */
498 ret = thread_set_state(thread,
500 (thread_state_t) thread_state.rax,
504 ret = thread_set_state(thread,
506 (thread_state_t) thread_state.rbx,
511 backup_thread_state = thread_state;
512 open_stack_allocation(&thread_state);
513 stack_allocate(&thread_state, 256);
515 /* Save thread state */
516 target_thread_state =
517 stack_allocate(&thread_state, sizeof(*target_thread_state));
518 (*target_thread_state) = backup_thread_state;
521 stack_allocate(&thread_state, sizeof(*target_float_state));
522 (*target_float_state) = float_state;
525 siginfo = stack_allocate(&thread_state, sizeof(*siginfo));
526 /* what do we need to put in our fake siginfo? It looks like
527 * the x86 code only uses si_signo and si_adrr. */
528 if (*((unsigned short *)target_thread_state->rip) == 0x0b0f) {
530 siginfo->si_signo = signal;
531 siginfo->si_addr = (void*)exception_state.faultvaddr;
532 target_thread_state->rip += 2;
533 call_c_function_in_context(&thread_state,
534 signal_emulation_wrapper,
543 siginfo->si_signo = signal;
544 siginfo->si_addr = (void*)exception_state.faultvaddr;
546 call_c_function_in_context(&thread_state,
547 signal_emulation_wrapper,
555 ret = thread_set_state(thread,
557 (thread_state_t)&thread_state,
559 ret = thread_set_state(thread,
561 (thread_state_t)&float_state,
564 #ifdef LISP_FEATURE_SB_THREAD
565 thread_mutex_unlock(&mach_exception_lock);
571 #ifdef LISP_FEATURE_SB_THREAD
572 thread_mutex_unlock(&mach_exception_lock);
574 ret = KERN_INVALID_RIGHT;
577 dealloc_ret = mach_port_deallocate (current_mach_task, thread);
579 lose("mach_port_deallocate (thread) failed with return_code %d\n", dealloc_ret);
582 dealloc_ret = mach_port_deallocate (current_mach_task, task);
584 lose("mach_port_deallocate (task) failed with return_code %d\n", dealloc_ret);
591 os_restore_fp_control(os_context_t *context)
593 /* KLUDGE: The x87 FPU control word is some nasty bitfield struct
594 * thing. Rather than deal with that, just grab it as a 16-bit
596 unsigned short fpu_control_word =
597 *((unsigned short *)&context->uc_mcontext->fs.fpu_fcw);
598 /* reset exception flags and restore control flags on SSE2 FPU */
599 unsigned int temp = (context->uc_mcontext->fs.fpu_mxcsr) & ~0x3F;
600 asm ("ldmxcsr %0" : : "m" (temp));
601 /* same for x87 FPU. */
602 asm ("fldcw %0" : : "m" (fpu_control_word));