2 * This software is part of the SBCL system. See the README file for
5 * This software is derived from the CMU CL system, which was
6 * written at Carnegie Mellon University and released into the
7 * public domain. The software is in the public domain and is
8 * provided with absolutely no warranty. See the COPYING and CREDITS
9 * files for more information.
23 #include "interrupt.h"
25 #include "breakpoint.h"
28 #include "genesis/static-symbols.h"
29 #include "genesis/symbol.h"
31 #define BREAKPOINT_INST 0xcc /* INT3 */
33 unsigned long fast_random_state = 1;
39 * hacking signal contexts
41 * (This depends both on architecture, which determines what we might
42 * want to get to, and on OS, which determines how we get to it.)
46 context_eflags_addr(os_context_t *context)
49 /* KLUDGE: As of kernel 2.2.14 on Red Hat 6.2, there's code in the
50 * <sys/ucontext.h> file to define symbolic names for offsets into
51 * gregs[], but it's conditional on __USE_GNU and not defined, so
52 * we need to do this nasty absolute index magic number thing
54 return &context->uc_mcontext.gregs[16];
55 #elif defined __FreeBSD__
56 return &context->uc_mcontext.mc_eflags;
57 #elif defined __OpenBSD__
58 return &context->sc_eflags;
64 void arch_skip_instruction(os_context_t *context)
66 /* Assuming we get here via an INT3 xxx instruction, the PC now
67 * points to the interrupt code (a Lisp value) so we just move
68 * past it. Skip the code; after that, if the code is an
69 * error-trap or cerror-trap then skip the data bytes that follow. */
74 FSHOW((stderr, "/[arch_skip_inst at %x]\n", *os_context_pc_addr(context)));
76 /* Get and skip the Lisp interrupt code. */
77 code = *(char*)(*os_context_pc_addr(context))++;
82 /* Lisp error arg vector length */
83 vlen = *(char*)(*os_context_pc_addr(context))++;
84 /* Skip Lisp error arg data bytes. */
86 ( (char*)(*os_context_pc_addr(context)) )++;
90 case trap_Breakpoint: /* not tested */
91 case trap_FunEndBreakpoint: /* not tested */
94 case trap_PendingInterrupt:
96 /* only needed to skip the Code */
100 fprintf(stderr,"[arch_skip_inst invalid code %d\n]\n",code);
105 "/[arch_skip_inst resuming at %x]\n",
106 *os_context_pc_addr(context)));
110 arch_internal_error_arguments(os_context_t *context)
112 return 1 + (unsigned char *)(*os_context_pc_addr(context));
116 arch_pseudo_atomic_atomic(os_context_t *context)
118 return SymbolValue(PSEUDO_ATOMIC_ATOMIC);
122 arch_set_pseudo_atomic_interrupted(os_context_t *context)
124 SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(1));
128 * This stuff seems to get called for TRACE and debug activity.
132 arch_install_breakpoint(void *pc)
134 unsigned long result = *(unsigned long*)pc;
136 *(char*)pc = BREAKPOINT_INST; /* x86 INT3 */
137 *((char*)pc+1) = trap_Breakpoint; /* Lisp trap code */
143 arch_remove_breakpoint(void *pc, unsigned long orig_inst)
145 *((char *)pc) = orig_inst & 0xff;
146 *((char *)pc + 1) = (orig_inst & 0xff00) >> 8;
149 /* When single stepping, single_stepping holds the original instruction
151 unsigned int *single_stepping = NULL;
152 #ifdef CANNOT_GET_TO_SINGLE_STEP_FLAG
153 unsigned int single_step_save1;
154 unsigned int single_step_save2;
155 unsigned int single_step_save3;
159 arch_do_displaced_inst(os_context_t *context, unsigned int orig_inst)
161 unsigned int *pc = (unsigned int*)(*os_context_pc_addr(context));
163 /* Put the original instruction back. */
164 *((char *)pc) = orig_inst & 0xff;
165 *((char *)pc + 1) = (orig_inst & 0xff00) >> 8;
167 #ifdef CANNOT_GET_TO_SINGLE_STEP_FLAG
168 /* Install helper instructions for the single step:
169 * pushf; or [esp],0x100; popf. */
170 single_step_save1 = *(pc-3);
171 single_step_save2 = *(pc-2);
172 single_step_save3 = *(pc-1);
173 *(pc-3) = 0x9c909090;
174 *(pc-2) = 0x00240c81;
175 *(pc-1) = 0x9d000001;
177 *context_eflags_addr(context) |= 0x100;
180 single_stepping = (unsigned int*)pc;
182 #ifdef CANNOT_GET_TO_SINGLE_STEP_FLAG
183 *os_context_pc_addr(context) = (char *)pc - 9;
188 sigtrap_handler(int signal, siginfo_t *info, void *void_context)
190 int code = info->si_code;
191 os_context_t *context = (os_context_t*)void_context;
194 if (single_stepping && (signal==SIGTRAP))
196 /* fprintf(stderr,"* single step trap %x\n", single_stepping); */
198 #ifdef CANNOT_GET_TO_SINGLE_STEP_FLAG
199 /* Un-install single step helper instructions. */
200 *(single_stepping-3) = single_step_save1;
201 *(single_stepping-2) = single_step_save2;
202 *(single_stepping-1) = single_step_save3;
204 *context_eflags_addr(context) ^= 0x100;
206 /* Re-install the breakpoint if possible. */
207 if (*os_context_pc_addr(context) == (int)single_stepping + 1) {
208 fprintf(stderr, "warning: couldn't reinstall breakpoint\n");
210 *((char *)single_stepping) = BREAKPOINT_INST; /* x86 INT3 */
211 *((char *)single_stepping+1) = trap_Breakpoint;
214 single_stepping = NULL;
218 /* This is just for info in case the monitor wants to print an
220 current_control_stack_pointer =
221 (lispobj *)*os_context_sp_addr(context);
223 /* FIXME: CMUCL puts the float control restoration code here.
224 Thus, it seems to me that single-stepping won't restore the
225 float control. Since SBCL currently doesn't support
226 single-stepping (as far as I can tell) this is somewhat moot,
227 but it might be worth either moving this code up or deleting
228 the single-stepping code entirely. -- CSR, 2002-07-15 */
229 #ifdef LISP_FEATURE_LINUX
230 os_restore_fp_control(context);
233 /* On entry %eip points just after the INT3 byte and aims at the
234 * 'kind' value (eg trap_Cerror). For error-trap and Cerror-trap a
235 * number of bytes will follow, the first is the length of the byte
236 * arguments to follow. */
237 trap = *(unsigned char *)(*os_context_pc_addr(context));
240 case trap_PendingInterrupt:
241 FSHOW((stderr, "/<trap pending interrupt>\n"));
242 arch_skip_instruction(context);
243 interrupt_handle_pending(context);
247 /* Note: the old CMU CL code tried to save FPU state
248 * here, and restore it after we do our thing, but there
249 * seems to be no point in doing that, since we're just
250 * going to lose(..) anyway. */
251 fake_foreign_function_call(context);
252 lose("%%PRIMITIVE HALT called; the party is over.");
256 FSHOW((stderr, "<trap error/cerror %d>\n", code));
257 interrupt_internal_error(signal, info, context, code==trap_Cerror);
260 case trap_Breakpoint:
261 (char*)(*os_context_pc_addr(context)) -= 1;
262 handle_breakpoint(signal, info, context);
265 case trap_FunEndBreakpoint:
266 (char*)(*os_context_pc_addr(context)) -= 1;
267 *os_context_pc_addr(context) =
268 (int)handle_fun_end_breakpoint(signal, info, context);
272 FSHOW((stderr,"/[C--trap default %d %d %x]\n",
273 signal, code, context));
274 interrupt_handle_now(signal, info, context);
280 sigill_handler(int signal, siginfo_t *siginfo, void *void_context) {
281 os_context_t *context = (os_context_t*)void_context;
282 fake_foreign_function_call(context);
283 monitor_or_something();
287 arch_install_interrupt_handlers()
289 SHOW("entering arch_install_interrupt_handlers()");
291 /* Note: The old CMU CL code here used sigtrap_handler() to handle
292 * SIGILL as well as SIGTRAP. I couldn't see any reason to do
293 * things that way. So, I changed to separate handlers when
294 * debugging a problem on OpenBSD, where SBCL wasn't catching
295 * SIGILL properly, but was instead letting the process be
296 * terminated with an "Illegal instruction" output. If this change
297 * turns out to break something (maybe breakpoint handling on some
298 * OS I haven't tested on?) and we have to go back to the old CMU
299 * CL way, I hope there will at least be a comment to explain
300 * why.. -- WHN 2001-06-07 */
301 undoably_install_low_level_interrupt_handler(SIGILL , sigill_handler);
302 undoably_install_low_level_interrupt_handler(SIGTRAP, sigtrap_handler);
304 SHOW("returning from arch_install_interrupt_handlers()");
307 /* This is implemented in assembly language and called from C: */
309 call_into_lisp(lispobj fun, lispobj *args, int nargs);
311 /* These functions are an interface to the Lisp call-in facility.
312 * Since this is C we can know nothing about the calling environment.
313 * The control stack might be the C stack if called from the monitor
314 * or the Lisp stack if called as a result of an interrupt or maybe
315 * even a separate stack. The args are most likely on that stack but
316 * could be in registers depending on what the compiler likes. So we
317 * copy the args into a portable vector and let the assembly language
318 * call-in function figure it out. */
320 funcall0(lispobj function)
322 lispobj *args = NULL;
324 FSHOW((stderr, "/entering funcall0(0x%lx)\n", (long)function));
325 return call_into_lisp(function, args, 0);
328 funcall1(lispobj function, lispobj arg0)
332 return call_into_lisp(function, args, 1);
335 funcall2(lispobj function, lispobj arg0, lispobj arg1)
340 return call_into_lisp(function, args, 2);
343 funcall3(lispobj function, lispobj arg0, lispobj arg1, lispobj arg2)
349 return call_into_lisp(function, args, 3);