1.0.7.33: better handling of ASSOC and MEMBER on empty lists
[sbcl.git] / src / runtime / x86-darwin-os.c
1
2
3 #ifdef LISP_FEATURE_SB_THREAD
4 #include <architecture/i386/table.h>
5 #include <i386/user_ldt.h>
6 #include <mach/mach_init.h>
7 #endif
8
9 #include "thread.h"
10 #include "validate.h"
11 #include "runtime.h"
12 #include "interrupt.h"
13 #include "x86-darwin-os.h"
14 #include "genesis/fdefn.h"
15
16 #include <mach/mach.h>
17 #include <mach/mach_error.h>
18 #include <mach/mach_types.h>
19 #include <mach/sync_policy.h>
20 #include <mach/machine/thread_state.h>
21 #include <mach/machine/thread_status.h>
22 #include <sys/_types.h>
23 #include <sys/ucontext.h>
24 #include <pthread.h>
25 #include <assert.h>
26 #include <stdlib.h>
27
28 #ifdef LISP_FEATURE_SB_THREAD
29
30 pthread_mutex_t modify_ldt_lock = PTHREAD_MUTEX_INITIALIZER;
31 pthread_mutex_t mach_exception_lock = PTHREAD_MUTEX_INITIALIZER;
32
33 void set_data_desc_size(data_desc_t* desc, unsigned long size)
34 {
35     desc->limit00 = (size - 1) & 0xffff;
36     desc->limit16 = ((size - 1) >> 16) &0xf;
37 }
38
39 void set_data_desc_addr(data_desc_t* desc, void* addr)
40 {
41     desc->base00 = (unsigned int)addr & 0xffff;
42     desc->base16 = ((unsigned int)addr & 0xff0000) >> 16;
43     desc->base24 = ((unsigned int)addr & 0xff000000) >> 24;
44 }
45
46 #endif
47
48 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
49 kern_return_t mach_thread_init(mach_port_t thread_exception_port);
50 #endif
51
52 int arch_os_thread_init(struct thread *thread) {
53 #ifdef LISP_FEATURE_SB_THREAD
54     int n;
55     sel_t sel;
56
57     data_desc_t ldt_entry = { 0, 0, 0, DESC_DATA_WRITE,
58                               3, 1, 0, DESC_DATA_32B, DESC_GRAN_BYTE, 0 };
59
60     set_data_desc_addr(&ldt_entry, thread);
61     set_data_desc_size(&ldt_entry, dynamic_values_bytes);
62
63     thread_mutex_lock(&modify_ldt_lock);
64     n = i386_set_ldt(LDT_AUTO_ALLOC, (union ldt_entry*) &ldt_entry, 1);
65
66     if (n < 0) {
67         perror("i386_set_ldt");
68         lose("unexpected i386_set_ldt(..) failure\n");
69     }
70     thread_mutex_unlock(&modify_ldt_lock);
71
72     FSHOW_SIGNAL((stderr, "/ TLS: Allocated LDT %x\n", n));
73     sel.index = n;
74     sel.rpl = USER_PRIV;
75     sel.ti = SEL_LDT;
76
77     __asm__ __volatile__ ("mov %0, %%fs" : : "r"(sel));
78
79     thread->tls_cookie=n;
80     pthread_setspecific(specials,thread);
81 #endif
82 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
83     mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(thread));
84 #endif
85
86 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
87     stack_t sigstack;
88
89     /* Signal handlers are run on the control stack, so if it is exhausted
90      * we had better use an alternate stack for whatever signal tells us
91      * we've exhausted it */
92     sigstack.ss_sp=((void *) thread)+dynamic_values_bytes;
93     sigstack.ss_flags=0;
94     sigstack.ss_size = 32*SIGSTKSZ;
95     sigaltstack(&sigstack,0);
96 #endif
97     return 1;                  /* success */
98 }
99
100 int arch_os_thread_cleanup(struct thread *thread) {
101 #if defined(LISP_FEATURE_SB_THREAD)
102     int n = thread->tls_cookie;
103
104     /* Set the %%fs register back to 0 and free the the ldt
105      * by setting it to NULL.
106      */
107     FSHOW_SIGNAL((stderr, "/ TLS: Freeing LDT %x\n", n));
108
109     __asm__ __volatile__ ("mov %0, %%fs" : : "r"(0));
110     thread_mutex_lock(&modify_ldt_lock);
111     i386_set_ldt(n, NULL, 1);
112     thread_mutex_unlock(&modify_ldt_lock);
113 #endif
114     return 1;                  /* success */
115 }
116
117 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
118
119 void sigill_handler(int signal, siginfo_t *siginfo, void *void_context);
120 void sigtrap_handler(int signal, siginfo_t *siginfo, void *void_context);
121 void memory_fault_handler(int signal, siginfo_t *siginfo, void *void_context);
122
123 /* exc_server handles mach exception messages from the kernel and
124  * calls catch exception raise. We use the system-provided
125  * mach_msg_server, which, I assume, calls exc_server in a loop.
126  *
127  */
128 extern boolean_t exc_server();
129
130 /* This executes in the faulting thread as part of the signal
131  * emulation.  It is passed a context with the uc_mcontext field
132  * pointing to a valid block of memory. */
133 void build_fake_signal_context(struct ucontext *context,
134                                x86_thread_state32_t *thread_state,
135                                x86_float_state32_t *float_state) {
136     pthread_sigmask(0, NULL, &context->uc_sigmask);
137     context->uc_mcontext->ss = *thread_state;
138     context->uc_mcontext->fs = *float_state;
139 }
140
141 /* This executes in the faulting thread as part of the signal
142  * emulation.  It is effectively the inverse operation from above. */
143 void update_thread_state_from_context(x86_thread_state32_t *thread_state,
144                                       x86_float_state32_t *float_state,
145                                       struct ucontext *context) {
146     *thread_state = context->uc_mcontext->ss;
147     *float_state = context->uc_mcontext->fs;
148     pthread_sigmask(SIG_SETMASK, &context->uc_sigmask, NULL);
149 }
150
151 /* Modify a context to push new data on its stack. */
152 void push_context(u32 data, x86_thread_state32_t *context)
153 {
154     u32 *stack_pointer;
155
156     stack_pointer = (u32*) context->esp;
157     *(--stack_pointer) = data;
158     context->esp = (unsigned int) stack_pointer;
159 }
160
161 void align_context_stack(x86_thread_state32_t *context)
162 {
163     /* 16byte align the stack (provided that the stack is, as it
164      * should be, 4byte aligned. */
165     while (context->esp & 15) push_context(0, context);
166 }
167
168 /* Stack allocation starts with a context that has a mod-4 ESP value
169  * and needs to leave a context with a mod-16 ESP that will restore
170  * the old ESP value and other register state when activated.  The
171  * first part of this is the recovery trampoline, which loads ESP from
172  * EBP, pops EBP, and returns. */
173 asm("_stack_allocation_recover: movl %ebp, %esp; popl %ebp; ret;");
174
175 void open_stack_allocation(x86_thread_state32_t *context)
176 {
177     void stack_allocation_recover(void);
178
179     push_context(context->eip, context);
180     push_context(context->ebp, context);
181     context->ebp = context->esp;
182     context->eip = (unsigned int) stack_allocation_recover;
183
184     align_context_stack(context);
185 }
186
187 /* Stack allocation of data starts with a context with a mod-16 ESP
188  * value and reserves some space on it by manipulating the ESP
189  * register. */
190 void *stack_allocate(x86_thread_state32_t *context, size_t size)
191 {
192     /* round up size to 16byte multiple */
193     size = (size + 15) & -16;
194
195     context->esp = ((u32)context->esp) - size;
196
197     return (void *)context->esp;
198 }
199
200 /* Arranging to invoke a C function is tricky, as we have to assume
201  * cdecl calling conventions (caller removes args) and x86/darwin
202  * alignment requirements.  The simplest way to arrange this,
203  * actually, is to open a new stack allocation.
204  * WARNING!!! THIS DOES NOT PRESERVE REGISTERS! */
205 void call_c_function_in_context(x86_thread_state32_t *context,
206                                 void *function,
207                                 int nargs,
208                                 ...)
209 {
210     va_list ap;
211     int i;
212     u32 *stack_pointer;
213
214     /* Set up to restore stack on exit. */
215     open_stack_allocation(context);
216
217     /* Have to keep stack 16byte aligned on x86/darwin. */
218     for (i = (3 & -nargs); i; i--) {
219         push_context(0, context);
220     }
221
222     context->esp = ((u32)context->esp) - nargs * 4;
223     stack_pointer = (u32 *)context->esp;
224
225     va_start(ap, nargs);
226     for (i = 0; i < nargs; i++) {
227         //push_context(va_arg(ap, u32), context);
228         stack_pointer[i] = va_arg(ap, u32);
229     }
230     va_end(ap);
231
232     push_context(context->eip, context);
233     context->eip = (unsigned int) function;
234 }
235
236 void signal_emulation_wrapper(x86_thread_state32_t *thread_state,
237                               x86_float_state32_t *float_state,
238                               int signal,
239                               siginfo_t *siginfo,
240                               void (*handler)(int, siginfo_t *, void *))
241 {
242
243     /* CLH: FIXME **NOTE: HACK ALERT!** Ideally, we would allocate
244      * context and regs on the stack as local variables, but this
245      * causes problems for the lisp debugger. When it walks the stack
246      * for a back trace, it sees the 1) address of the local variable
247      * on the stack and thinks that is a frame pointer to a lisp
248      * frame, and, 2) the address of the sap that we alloc'ed in
249      * dynamic space and thinks that is a return address, so it,
250      * heuristicly (and wrongly), chooses that this should be
251      * interpreted as a lisp frame instead of as a C frame.
252      * We can work around this in this case by os_validating the
253      * context (and regs just for symmetry).
254      */
255
256     struct ucontext *context;
257     struct mcontext *regs;
258
259     context = (struct ucontext*) os_validate(0, sizeof(struct ucontext));
260     regs = (struct mcontext*) os_validate(0, sizeof(struct mcontext));
261     context->uc_mcontext = regs;
262
263     /* when BSD signals are fired, they mask they signals in sa_mask
264        which always seem to be the blockable_sigset, for us, so we
265        need to:
266        1) save the current sigmask
267        2) block blockable signals
268        3) call the signal handler
269        4) restore the sigmask */
270
271     build_fake_signal_context(context, thread_state, float_state);
272
273     block_blockable_signals();
274
275     handler(signal, siginfo, context);
276
277     update_thread_state_from_context(thread_state, float_state, context);
278
279     os_invalidate((os_vm_address_t)context, sizeof(struct ucontext));
280     os_invalidate((os_vm_address_t)regs, sizeof(struct mcontext));
281
282     /* Trap to restore the signal context. */
283     asm volatile ("movl %0, %%eax; movl %1, %%ebx; .long 0xffff0b0f"
284                   : : "r" (thread_state), "r" (float_state));
285 }
286
287 #if defined DUMP_CONTEXT
288 void dump_context(x86_thread_state32_t *context)
289 {
290     int i;
291     u32 *stack_pointer;
292
293     printf("eax: %08lx  ecx: %08lx  edx: %08lx  ebx: %08lx\n",
294            context->eax, context->ecx, context->edx, context->ebx);
295     printf("esp: %08lx  ebp: %08lx  esi: %08lx  edi: %08lx\n",
296            context->esp, context->ebp, context->esi, context->edi);
297     printf("eip: %08lx  eflags: %08lx\n",
298            context->eip, context->eflags);
299     printf("cs: %04hx  ds: %04hx  es: %04hx  "
300            "ss: %04hx  fs: %04hx  gs: %04hx\n",
301            context->cs, context->ds, context->es,
302            context->ss, context->fs, context->gs);
303
304     stack_pointer = (u32 *)context->esp;
305     for (i = 0; i < 48; i+=4) {
306         printf("%08x:  %08x %08x %08x %08x\n",
307                context->esp + (i * 4),
308                stack_pointer[i],
309                stack_pointer[i+1],
310                stack_pointer[i+2],
311                stack_pointer[i+3]);
312     }
313 }
314 #endif
315
316 void
317 control_stack_exhausted_handler(int signal, siginfo_t *siginfo, void *void_context) {
318     os_context_t *context = arch_os_get_context(&void_context);
319
320     arrange_return_to_lisp_function
321         (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
322 }
323
324 void
325 undefined_alien_handler(int signal, siginfo_t *siginfo, void *void_context) {
326     os_context_t *context = arch_os_get_context(&void_context);
327
328     arrange_return_to_lisp_function
329         (context, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
330 }
331
332 kern_return_t
333 catch_exception_raise(mach_port_t exception_port,
334                       mach_port_t thread,
335                       mach_port_t task,
336                       exception_type_t exception,
337                       exception_data_t code_vector,
338                       mach_msg_type_number_t code_count)
339 {
340     kern_return_t ret;
341     int signal;
342     siginfo_t* siginfo;
343
344     thread_mutex_lock(&mach_exception_lock);
345
346     x86_thread_state32_t thread_state;
347     mach_msg_type_number_t thread_state_count = x86_THREAD_STATE32_COUNT;
348
349     x86_float_state32_t float_state;
350     mach_msg_type_number_t float_state_count = x86_FLOAT_STATE32_COUNT;
351
352     x86_exception_state32_t exception_state;
353     mach_msg_type_number_t exception_state_count = x86_EXCEPTION_STATE32_COUNT;
354
355     x86_thread_state32_t backup_thread_state;
356     x86_thread_state32_t *target_thread_state;
357     x86_float_state32_t *target_float_state;
358
359     os_vm_address_t addr;
360
361     struct thread *th = (struct thread*) exception_port;
362
363     FSHOW((stderr,"/entering catch_exception_raise with exception: %d\n", exception));
364
365     switch (exception) {
366
367     case EXC_BAD_ACCESS:
368         signal = SIGBUS;
369         ret = thread_get_state(thread,
370                                x86_THREAD_STATE32,
371                                (thread_state_t)&thread_state,
372                                &thread_state_count);
373         ret = thread_get_state(thread,
374                                x86_FLOAT_STATE32,
375                                (thread_state_t)&float_state,
376                                &float_state_count);
377         ret = thread_get_state(thread,
378                                x86_EXCEPTION_STATE32,
379                                (thread_state_t)&exception_state,
380                                &exception_state_count);
381         addr = (void*)exception_state.faultvaddr;
382
383
384         /* note the os_context hackery here.  When the signal handler returns,
385          * it won't go back to what it was doing ... */
386         if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
387            addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
388             /* We hit the end of the control stack: disable guard page
389              * protection so the error handler has some headroom, protect the
390              * previous page so that we can catch returns from the guard page
391              * and restore it. */
392             protect_control_stack_guard_page_thread(0, th);
393             protect_control_stack_return_guard_page_thread(1, th);
394
395             backup_thread_state = thread_state;
396             open_stack_allocation(&thread_state);
397
398             /* Save thread state */
399             target_thread_state =
400                 stack_allocate(&thread_state, sizeof(*target_thread_state));
401             (*target_thread_state) = backup_thread_state;
402
403             /* Save float state */
404             target_float_state =
405                 stack_allocate(&thread_state, sizeof(*target_float_state));
406             (*target_float_state) = float_state;
407
408             /* Set up siginfo */
409             siginfo = stack_allocate(&thread_state, sizeof(*siginfo));
410             /* what do we need to put in our fake siginfo?  It looks like
411              * the x86 code only uses si_signo and si_adrr. */
412             siginfo->si_signo = signal;
413             siginfo->si_addr = (void*)exception_state.faultvaddr;
414
415             call_c_function_in_context(&thread_state,
416                                        signal_emulation_wrapper,
417                                        5,
418                                        target_thread_state,
419                                        target_float_state,
420                                        signal,
421                                        siginfo,
422                                        control_stack_exhausted_handler);
423         }
424         else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
425                 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
426             /* We're returning from the guard page: reprotect it, and
427              * unprotect this one. This works even if we somehow missed
428              * the return-guard-page, and hit it on our way to new
429              * exhaustion instead. */
430             protect_control_stack_guard_page_thread(1, th);
431             protect_control_stack_return_guard_page_thread(0, th);
432         }
433         else if (addr >= undefined_alien_address &&
434                  addr < undefined_alien_address + os_vm_page_size) {
435             backup_thread_state = thread_state;
436             open_stack_allocation(&thread_state);
437
438             /* Save thread state */
439             target_thread_state =
440                 stack_allocate(&thread_state, sizeof(*target_thread_state));
441             (*target_thread_state) = backup_thread_state;
442
443             target_float_state =
444                 stack_allocate(&thread_state, sizeof(*target_float_state));
445             (*target_float_state) = float_state;
446
447             /* Set up siginfo */
448             siginfo = stack_allocate(&thread_state, sizeof(*siginfo));
449             /* what do we need to put in our fake siginfo?  It looks like
450              * the x86 code only uses si_signo and si_adrr. */
451             siginfo->si_signo = signal;
452             siginfo->si_addr = (void*)exception_state.faultvaddr;
453
454             call_c_function_in_context(&thread_state,
455                                        signal_emulation_wrapper,
456                                        5,
457                                        target_thread_state,
458                                        target_float_state,
459                                        signal,
460                                        siginfo,
461                                        undefined_alien_handler);
462         } else {
463
464             backup_thread_state = thread_state;
465             open_stack_allocation(&thread_state);
466
467             /* Save thread state */
468             target_thread_state =
469                 stack_allocate(&thread_state, sizeof(*target_thread_state));
470             (*target_thread_state) = backup_thread_state;
471
472             target_float_state =
473                 stack_allocate(&thread_state, sizeof(*target_float_state));
474             (*target_float_state) = float_state;
475
476             /* Set up siginfo */
477             siginfo = stack_allocate(&thread_state, sizeof(*siginfo));
478             /* what do we need to put in our fake siginfo?  It looks like
479              * the x86 code only uses si_signo and si_adrr. */
480             siginfo->si_signo = signal;
481             siginfo->si_addr = (void*)exception_state.faultvaddr;
482
483             call_c_function_in_context(&thread_state,
484                                        signal_emulation_wrapper,
485                                        5,
486                                        target_thread_state,
487                                        target_float_state,
488                                        signal,
489                                        siginfo,
490                                        memory_fault_handler);
491         }
492         ret = thread_set_state(thread,
493                                x86_THREAD_STATE32,
494                                (thread_state_t)&thread_state,
495                                thread_state_count);
496
497         ret = thread_set_state(thread,
498                                x86_FLOAT_STATE32,
499                                (thread_state_t)&float_state,
500                                float_state_count);
501         thread_mutex_unlock(&mach_exception_lock);
502         return KERN_SUCCESS;
503
504     case EXC_BAD_INSTRUCTION:
505
506         ret = thread_get_state(thread,
507                                x86_THREAD_STATE32,
508                                (thread_state_t)&thread_state,
509                                &thread_state_count);
510         ret = thread_get_state(thread,
511                                x86_FLOAT_STATE32,
512                                (thread_state_t)&float_state,
513                                &float_state_count);
514         ret = thread_get_state(thread,
515                                x86_EXCEPTION_STATE32,
516                                (thread_state_t)&exception_state,
517                                &exception_state_count);
518         if (0xffff0b0f == *((u32 *)thread_state.eip)) {
519             /* fake sigreturn. */
520
521             /* When we get here, thread_state.eax is a pointer to a
522              * thread_state to restore. */
523             /* thread_state = *((thread_state_t *)thread_state.eax); */
524
525             ret = thread_set_state(thread,
526                                    x86_THREAD_STATE32,
527                                    (thread_state_t) thread_state.eax,
528                                    /* &thread_state, */
529                                    thread_state_count);
530
531             ret = thread_set_state(thread,
532                                    x86_FLOAT_STATE32,
533                                    (thread_state_t) thread_state.ebx,
534                                    /* &thread_state, */
535                                    float_state_count);
536         } else {
537
538             backup_thread_state = thread_state;
539             open_stack_allocation(&thread_state);
540
541             /* Save thread state */
542             target_thread_state =
543                 stack_allocate(&thread_state, sizeof(*target_thread_state));
544             (*target_thread_state) = backup_thread_state;
545
546             target_float_state =
547                 stack_allocate(&thread_state, sizeof(*target_float_state));
548             (*target_float_state) = float_state;
549
550             /* Set up siginfo */
551             siginfo = stack_allocate(&thread_state, sizeof(*siginfo));
552             /* what do we need to put in our fake siginfo?  It looks like
553              * the x86 code only uses si_signo and si_adrr. */
554             if (*((unsigned short *)target_thread_state->eip) == 0x0b0f) {
555                 signal = SIGTRAP;
556                 siginfo->si_signo = signal;
557                 siginfo->si_addr = (void*)exception_state.faultvaddr;
558                 target_thread_state->eip += 2;
559                 call_c_function_in_context(&thread_state,
560                                            signal_emulation_wrapper,
561                                            5,
562                                            target_thread_state,
563                                            target_float_state,
564                                            signal,
565                                            siginfo,
566                                            sigtrap_handler);
567             } else {
568                 signal = SIGILL;
569                 siginfo->si_signo = signal;
570                 siginfo->si_addr = (void*)exception_state.faultvaddr;
571
572                 call_c_function_in_context(&thread_state,
573                                            signal_emulation_wrapper,
574                                            5,
575                                            target_thread_state,
576                                            target_float_state,
577                                            signal,
578                                            siginfo,
579                                            sigill_handler);
580             }
581             ret = thread_set_state(thread,
582                                    x86_THREAD_STATE32,
583                                    (thread_state_t)&thread_state,
584                                    thread_state_count);
585             ret = thread_set_state(thread,
586                                    x86_FLOAT_STATE32,
587                                    (thread_state_t)&float_state,
588                                    float_state_count);
589         }
590         thread_mutex_unlock(&mach_exception_lock);
591         return KERN_SUCCESS;
592
593     default:
594         thread_mutex_unlock(&mach_exception_lock);
595         return KERN_INVALID_RIGHT;
596     }
597 }
598
599 void *
600 mach_exception_handler(void *port)
601 {
602   mach_msg_server(exc_server, 2048, (mach_port_t) port, 0);
603   /* mach_msg_server should never return, but it should dispatch mach
604    * exceptions to our catch_exception_raise function
605    */
606   abort();
607 }
608
609 #endif
610
611 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
612
613 /* Sets up the thread that will listen for mach exceptions. note that
614    the exception handlers will be run on this thread. This is
615    different from the BSD-style signal handling situation in which the
616    signal handlers run in the relevant thread directly. */
617
618 mach_port_t mach_exception_handler_port_set = MACH_PORT_NULL;
619
620 pthread_t
621 setup_mach_exception_handling_thread()
622 {
623     kern_return_t ret;
624     pthread_t mach_exception_handling_thread = NULL;
625     pthread_attr_t attr;
626
627     /* allocate a mach_port for this process */
628     ret = mach_port_allocate(mach_task_self(),
629                              MACH_PORT_RIGHT_PORT_SET,
630                              &mach_exception_handler_port_set);
631
632     /* create the thread that will receive the mach exceptions */
633
634     FSHOW((stderr, "Creating mach_exception_handler thread!\n"));
635
636     pthread_attr_init(&attr);
637     pthread_create(&mach_exception_handling_thread,
638                    &attr,
639                    mach_exception_handler,
640                    (void*) mach_exception_handler_port_set);
641     pthread_attr_destroy(&attr);
642
643     return mach_exception_handling_thread;
644 }
645
646 /* tell the kernel that we want EXC_BAD_ACCESS exceptions sent to the
647    exception port (which is being listened to do by the mach
648    exception handling thread). */
649 kern_return_t
650 mach_thread_init(mach_port_t thread_exception_port)
651 {
652     kern_return_t ret;
653     /* allocate a named port for the thread */
654
655     FSHOW((stderr, "Allocating mach port %x\n", thread_exception_port));
656
657     ret = mach_port_allocate_name(mach_task_self(),
658                                   MACH_PORT_RIGHT_RECEIVE,
659                                   thread_exception_port);
660     if (ret) {
661         lose("mach_port_allocate_name failed with return_code %d\n", ret);
662     }
663
664     /* establish the right for the thread_exception_port to send messages */
665     ret = mach_port_insert_right(mach_task_self(),
666                                  thread_exception_port,
667                                  thread_exception_port,
668                                  MACH_MSG_TYPE_MAKE_SEND);
669     if (ret) {
670         lose("mach_port_insert_right failed with return_code %d\n", ret);
671     }
672
673     ret = thread_set_exception_ports(mach_thread_self(),
674                                      EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION,
675                                      thread_exception_port,
676                                      EXCEPTION_DEFAULT,
677                                      THREAD_STATE_NONE);
678     if (ret) {
679         lose("thread_set_exception_port failed with return_code %d\n", ret);
680     }
681
682     ret = mach_port_move_member(mach_task_self(),
683                                 thread_exception_port,
684                                 mach_exception_handler_port_set);
685     if (ret) {
686         lose("mach_port_ failed with return_code %d\n", ret);
687     }
688
689     return ret;
690 }
691
692 void
693 setup_mach_exceptions() {
694     setup_mach_exception_handling_thread();
695     mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(all_threads));
696 }
697
698 pid_t
699 mach_fork() {
700     pid_t pid = fork();
701     if (pid == 0) {
702         setup_mach_exceptions();
703         return pid;
704     } else {
705         return pid;
706     }
707 }
708
709 #endif