1 #ifdef LISP_FEATURE_SB_THREAD
2 #include <architecture/i386/table.h>
3 #include <i386/user_ldt.h>
4 #include <mach/mach_init.h>
10 #include "interrupt.h"
11 #include "x86-darwin-os.h"
12 #include "genesis/fdefn.h"
14 #include <mach/mach.h>
15 #include <mach/mach_error.h>
16 #include <mach/mach_types.h>
17 #include <mach/sync_policy.h>
18 #include <mach/vm_region.h>
19 #include <mach/machine/thread_state.h>
20 #include <mach/machine/thread_status.h>
21 #include <sys/_types.h>
22 #include <sys/ucontext.h>
28 #ifdef LISP_FEATURE_SB_THREAD
30 pthread_mutex_t modify_ldt_lock = PTHREAD_MUTEX_INITIALIZER;
32 void set_data_desc_size(data_desc_t* desc, unsigned long size)
34 desc->limit00 = (size - 1) & 0xffff;
35 desc->limit16 = ((size - 1) >> 16) &0xf;
38 void set_data_desc_addr(data_desc_t* desc, void* addr)
40 desc->base00 = (unsigned int)addr & 0xffff;
41 desc->base16 = ((unsigned int)addr & 0xff0000) >> 16;
42 desc->base24 = ((unsigned int)addr & 0xff000000) >> 24;
47 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
48 kern_return_t mach_thread_init(mach_port_t thread_exception_port);
51 int arch_os_thread_init(struct thread *thread) {
52 #ifdef LISP_FEATURE_SB_THREAD
56 data_desc_t ldt_entry = { 0, 0, 0, DESC_DATA_WRITE,
57 3, 1, 0, DESC_DATA_32B, DESC_GRAN_BYTE, 0 };
59 set_data_desc_addr(&ldt_entry, thread);
60 set_data_desc_size(&ldt_entry, dynamic_values_bytes);
62 thread_mutex_lock(&modify_ldt_lock);
63 n = i386_set_ldt(LDT_AUTO_ALLOC, (union ldt_entry*) &ldt_entry, 1);
66 perror("i386_set_ldt");
67 lose("unexpected i386_set_ldt(..) failure\n");
69 thread_mutex_unlock(&modify_ldt_lock);
71 FSHOW_SIGNAL((stderr, "/ TLS: Allocated LDT %x\n", n));
76 __asm__ __volatile__ ("mov %0, %%fs" : : "r"(sel));
79 pthread_setspecific(specials,thread);
81 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
82 mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(thread));
85 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
88 /* Signal handlers are run on the control stack, so if it is exhausted
89 * we had better use an alternate stack for whatever signal tells us
90 * we've exhausted it */
91 sigstack.ss_sp=((void *) thread)+dynamic_values_bytes;
93 sigstack.ss_size = 32*SIGSTKSZ;
94 sigaltstack(&sigstack,0);
96 return 1; /* success */
99 int arch_os_thread_cleanup(struct thread *thread) {
100 #if defined(LISP_FEATURE_SB_THREAD)
101 int n = thread->tls_cookie;
103 /* Set the %%fs register back to 0 and free the ldt by setting it
106 FSHOW_SIGNAL((stderr, "/ TLS: Freeing LDT %x\n", n));
108 __asm__ __volatile__ ("mov %0, %%fs" : : "r"(0));
109 thread_mutex_lock(&modify_ldt_lock);
110 i386_set_ldt(n, NULL, 1);
111 thread_mutex_unlock(&modify_ldt_lock);
113 return 1; /* success */
116 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
118 void sigill_handler(int signal, siginfo_t *siginfo, os_context_t *context);
119 void sigtrap_handler(int signal, siginfo_t *siginfo, os_context_t *context);
120 void memory_fault_handler(int signal, siginfo_t *siginfo,
121 os_context_t *context);
123 /* This executes in the faulting thread as part of the signal
124 * emulation. It is passed a context with the uc_mcontext field
125 * pointing to a valid block of memory. */
126 void build_fake_signal_context(os_context_t *context,
127 x86_thread_state32_t *thread_state,
128 x86_float_state32_t *float_state) {
129 pthread_sigmask(0, NULL, &context->uc_sigmask);
130 context->uc_mcontext->SS = *thread_state;
131 context->uc_mcontext->FS = *float_state;
134 /* This executes in the faulting thread as part of the signal
135 * emulation. It is effectively the inverse operation from above. */
136 void update_thread_state_from_context(x86_thread_state32_t *thread_state,
137 x86_float_state32_t *float_state,
138 os_context_t *context) {
139 *thread_state = context->uc_mcontext->SS;
140 *float_state = context->uc_mcontext->FS;
141 pthread_sigmask(SIG_SETMASK, &context->uc_sigmask, NULL);
144 /* Modify a context to push new data on its stack. */
145 void push_context(u32 data, x86_thread_state32_t *thread_state)
149 stack_pointer = (u32*) thread_state->ESP;
150 *(--stack_pointer) = data;
151 thread_state->ESP = (unsigned int) stack_pointer;
154 void align_context_stack(x86_thread_state32_t *thread_state)
156 /* 16byte align the stack (provided that the stack is, as it
157 * should be, 4byte aligned. */
158 while (thread_state->ESP & 15) push_context(0, thread_state);
161 /* Stack allocation starts with a context that has a mod-4 ESP value
162 * and needs to leave a context with a mod-16 ESP that will restore
163 * the old ESP value and other register state when activated. The
164 * first part of this is the recovery trampoline, which loads ESP from
165 * EBP, pops EBP, and returns. */
166 asm("_stack_allocation_recover: movl %ebp, %esp; popl %ebp; ret;");
168 void open_stack_allocation(x86_thread_state32_t *thread_state)
170 void stack_allocation_recover(void);
172 push_context(thread_state->EIP, thread_state);
173 push_context(thread_state->EBP, thread_state);
174 thread_state->EBP = thread_state->ESP;
175 thread_state->EIP = (unsigned int) stack_allocation_recover;
177 align_context_stack(thread_state);
180 /* Stack allocation of data starts with a context with a mod-16 ESP
181 * value and reserves some space on it by manipulating the ESP
183 void *stack_allocate(x86_thread_state32_t *thread_state, size_t size)
185 /* round up size to 16byte multiple */
186 size = (size + 15) & -16;
188 thread_state->ESP = ((u32)thread_state->ESP) - size;
190 return (void *)thread_state->ESP;
193 /* Arranging to invoke a C function is tricky, as we have to assume
194 * cdecl calling conventions (caller removes args) and x86/darwin
195 * alignment requirements. The simplest way to arrange this,
196 * actually, is to open a new stack allocation.
197 * WARNING!!! THIS DOES NOT PRESERVE REGISTERS! */
198 void call_c_function_in_context(x86_thread_state32_t *thread_state,
207 /* Set up to restore stack on exit. */
208 open_stack_allocation(thread_state);
210 /* Have to keep stack 16byte aligned on x86/darwin. */
211 for (i = (3 & -nargs); i; i--) {
212 push_context(0, thread_state);
215 thread_state->ESP = ((u32)thread_state->ESP) - nargs * 4;
216 stack_pointer = (u32 *)thread_state->ESP;
219 for (i = 0; i < nargs; i++) {
220 //push_context(va_arg(ap, u32), thread_state);
221 stack_pointer[i] = va_arg(ap, u32);
225 push_context(thread_state->EIP, thread_state);
226 thread_state->EIP = (unsigned int) function;
229 void signal_emulation_wrapper(x86_thread_state32_t *thread_state,
230 x86_float_state32_t *float_state,
233 void (*handler)(int, siginfo_t *, void *))
236 /* CLH: FIXME **NOTE: HACK ALERT!** Ideally, we would allocate
237 * context and regs on the stack as local variables, but this
238 * causes problems for the lisp debugger. When it walks the stack
239 * for a back trace, it sees the 1) address of the local variable
240 * on the stack and thinks that is a frame pointer to a lisp
241 * frame, and, 2) the address of the sap that we alloc'ed in
242 * dynamic space and thinks that is a return address, so it,
243 * heuristicly (and wrongly), chooses that this should be
244 * interpreted as a lisp frame instead of as a C frame.
245 * We can work around this in this case by os_validating the
246 * context (and regs just for symmetry).
249 os_context_t *context;
252 context = (os_context_t*) os_validate(0, sizeof(os_context_t));
253 regs = (mcontext_t*) os_validate(0, sizeof(mcontext_t));
254 context->uc_mcontext = regs;
256 /* when BSD signals are fired, they mask they signals in sa_mask
257 which always seem to be the blockable_sigset, for us, so we
259 1) save the current sigmask
260 2) block blockable signals
261 3) call the signal handler
262 4) restore the sigmask */
264 build_fake_signal_context(context, thread_state, float_state);
266 block_blockable_signals(0, 0);
268 handler(signal, siginfo, context);
270 update_thread_state_from_context(thread_state, float_state, context);
272 os_invalidate((os_vm_address_t)context, sizeof(os_context_t));
273 os_invalidate((os_vm_address_t)regs, sizeof(mcontext_t));
275 /* Trap to restore the signal context. */
276 asm volatile (".long 0xffff0b0f"
277 : : "a" (thread_state), "c" (float_state));
280 /* Convenience wrapper for the above */
281 void call_handler_on_thread(mach_port_t thread,
282 x86_thread_state32_t *thread_state,
285 void (*handler)(int, siginfo_t *, void *))
287 x86_thread_state32_t new_state;
288 x86_thread_state32_t *save_thread_state;
289 x86_float_state32_t *save_float_state;
290 mach_msg_type_number_t state_count;
291 siginfo_t *save_siginfo;
293 /* Initialize the new state */
294 new_state = *thread_state;
295 open_stack_allocation(&new_state);
296 stack_allocate(&new_state, 256);
298 save_thread_state = (x86_thread_state32_t *)stack_allocate(&new_state, sizeof(*save_thread_state));
299 *save_thread_state = *thread_state;
300 /* Save float state */
301 save_float_state = (x86_float_state32_t *)stack_allocate(&new_state, sizeof(*save_float_state));
302 state_count = x86_FLOAT_STATE32_COUNT;
303 if ((ret = thread_get_state(thread,
305 (thread_state_t)save_float_state,
306 &state_count)) != KERN_SUCCESS)
307 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
309 save_siginfo = stack_allocate(&new_state, sizeof(*siginfo));
311 save_siginfo = siginfo;
313 *save_siginfo = *siginfo;
314 /* Prepare to call */
315 call_c_function_in_context(&new_state,
316 signal_emulation_wrapper,
323 /* Update the thread state */
324 state_count = x86_THREAD_STATE32_COUNT;
325 if ((ret = thread_set_state(thread,
327 (thread_state_t)&new_state,
328 state_count)) != KERN_SUCCESS)
329 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
333 #if defined DUMP_CONTEXT
334 void dump_context(x86_thread_state32_t *thread_state)
339 printf("eax: %08lx ecx: %08lx edx: %08lx ebx: %08lx\n",
340 thread_state->EAX, thread_state->ECX, thread_state->EDX, thread_state->EAX);
341 printf("esp: %08lx ebp: %08lx esi: %08lx edi: %08lx\n",
342 thread_state->ESP, thread_state->EBP, thread_state->ESI, thread_state->EDI);
343 printf("eip: %08lx eflags: %08lx\n",
344 thread_state->EIP, thread_state->EFLAGS);
345 printf("cs: %04hx ds: %04hx es: %04hx "
346 "ss: %04hx fs: %04hx gs: %04hx\n",
354 stack_pointer = (u32 *)thread_state->ESP;
355 for (i = 0; i < 48; i+=4) {
356 printf("%08x: %08x %08x %08x %08x\n",
357 thread_state->ESP + (i * 4),
367 control_stack_exhausted_handler(int signal, siginfo_t *siginfo,
368 os_context_t *context) {
370 unblock_signals_in_context_and_maybe_warn(context);
371 arrange_return_to_lisp_function
372 (context, StaticSymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
376 undefined_alien_handler(int signal, siginfo_t *siginfo, os_context_t *context) {
377 arrange_return_to_lisp_function
378 (context, StaticSymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
382 catch_exception_raise(mach_port_t exception_port,
385 exception_type_t exception,
386 exception_data_t code_vector,
387 mach_msg_type_number_t code_count)
389 struct thread *th = (struct thread*) exception_port;
390 x86_thread_state32_t thread_state;
391 mach_msg_type_number_t state_count;
392 vm_address_t region_addr;
393 vm_size_t region_size;
394 vm_region_basic_info_data_t region_info;
395 mach_msg_type_number_t info_count;
396 mach_port_t region_name;
399 void (*handler)(int, siginfo_t *, void *) = NULL;
401 kern_return_t ret, dealloc_ret;
403 /* Get state and info */
404 state_count = x86_THREAD_STATE32_COUNT;
405 if ((ret = thread_get_state(thread,
407 (thread_state_t)&thread_state,
408 &state_count)) != KERN_SUCCESS)
409 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
413 /* Check if write protection fault */
414 if ((code_vector[0] & OS_VM_PROT_ALL) == 0) {
415 ret = KERN_INVALID_RIGHT;
418 addr = (void*)code_vector[1];
419 /* Undefined alien */
420 if (os_trunc_to_page(addr) == undefined_alien_address) {
421 handler = undefined_alien_handler;
425 if (os_trunc_to_page(addr) == CONTROL_STACK_GUARD_PAGE(th)) {
426 lower_thread_control_stack_guard_page(th);
427 handler = control_stack_exhausted_handler;
430 /* Return from stack guard */
431 if (os_trunc_to_page(addr) == CONTROL_STACK_RETURN_GUARD_PAGE(th)) {
432 reset_thread_control_stack_guard_page(th);
435 /* Regular memory fault */
436 handler = memory_fault_handler;
438 case EXC_BAD_INSTRUCTION:
440 /* Check if illegal instruction trap */
441 if (code_vector[0] != EXC_I386_INVOP) {
442 ret = KERN_INVALID_RIGHT;
445 /* Check if UD2 instruction */
446 if (*(unsigned short *)thread_state.EIP != 0x0b0f) {
447 /* KLUDGE: There are two ways we could get here:
448 * 1) We're executing data and we've hit some truly
449 * illegal opcode, of which there are a few, see
450 * Intel 64 and IA-32 Architectures
451 * Sofware Developer's Manual
452 * Volume 3A page 5-34)
453 * 2) The kernel started an unrelated signal handler
454 * before we got a chance to run. The context that
455 * caused the exception is saved in a stack frame
456 * somewhere down below.
457 * In either case we rely on the exception to retrigger,
458 * eventually bailing out if we're spinning on case 2).
460 static mach_port_t last_thread;
461 static unsigned int last_eip;
462 if (last_thread == thread && last_eip == thread_state.EIP)
463 ret = KERN_INVALID_RIGHT;
466 last_thread = thread;
467 last_eip = thread_state.EIP;
470 /* Skip the trap code */
471 thread_state.EIP += 2;
472 /* Return from handler? */
473 if (*(unsigned short *)thread_state.EIP == 0xffff) {
474 if ((ret = thread_set_state(thread,
476 (thread_state_t)thread_state.EAX,
477 x86_THREAD_STATE32_COUNT)) != KERN_SUCCESS)
478 lose("thread_set_state (x86_THREAD_STATE32) failed %d\n", ret);
479 if ((ret = thread_set_state(thread,
481 (thread_state_t)thread_state.ECX,
482 x86_FLOAT_STATE32_COUNT)) != KERN_SUCCESS)
483 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
487 handler = sigtrap_handler;
490 ret = KERN_INVALID_RIGHT;
494 siginfo.si_signo = signal;
495 siginfo.si_addr = addr;
496 call_handler_on_thread(thread, &thread_state, signal, &siginfo, handler);
499 dealloc_ret = mach_port_deallocate (current_mach_task, thread);
501 lose("mach_port_deallocate (thread) failed with return_code %d\n", dealloc_ret);
504 dealloc_ret = mach_port_deallocate (current_mach_task, task);
506 lose("mach_port_deallocate (task) failed with return_code %d\n", dealloc_ret);
513 os_restore_fp_control(os_context_t *context)
515 /* KLUDGE: The x87 FPU control word is some nasty bitfield struct
516 * thing. Rather than deal with that, just grab it as a 16-bit
518 unsigned short fpu_control_word =
519 *((unsigned short *)&context->uc_mcontext->FS.FPU_FCW);
520 /* reset exception flags and restore control flags on x87 FPU */
521 asm ("fldcw %0" : : "m" (fpu_control_word));