1 ;;;; tests related to sequences
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; While most of SBCL is derived from the CMU CL system, the test
7 ;;;; files (like this one) were written from scratch after the fork
10 ;;;; This software is in the public domain and is provided with
11 ;;;; absolutely no warranty. See the COPYING and CREDITS files for
12 ;;;; more information.
14 ;;; As reported by Paul Dietz from his ansi-test suite for gcl, REMOVE
15 ;;; malfunctioned when given :START, :END and :FROM-END arguments.
16 ;;; Make sure it doesn't happen again.
17 (let* ((orig '(1 2 3 2 6 1 2 4 1 3 2 7))
19 (y (remove 3 x :from-end t :start 1 :end 5))
20 (z (remove 2 x :from-end t :start 1 :end 5)))
21 (assert (equalp orig x))
22 (assert (equalp y '(1 2 2 6 1 2 4 1 3 2 7)))
23 (assert (equalp z '(1 3 6 1 2 4 1 3 2 7))))
25 ;;; Similarly, NSUBSTITUTE and friends were getting things wrong with
26 ;;; :START, :END and :FROM-END:
28 (loop for i from 0 to 9 always
29 (loop for j from i to 10 always
30 (loop for c from 0 to (- j i) always
31 (let* ((orig '(a a a a a a a a a a))
33 (y (nsubstitute 'x 'a x :start i :end j :count c)))
34 (equal y (nconc (make-list i :initial-element 'a)
35 (make-list c :initial-element 'x)
36 (make-list (- 10 (+ i c))
37 :initial-element 'a))))))))
40 (loop for i from 0 to 9 always
41 (loop for j from i to 10 always
42 (loop for c from 0 to (- j i) always
43 (let* ((orig '(a a a a a a a a a a))
45 (y (nsubstitute-if 'x (lambda (x) (eq x 'a)) x
47 :count c :from-end t)))
48 (equal y (nconc (make-list (- j c) :initial-element 'a)
49 (make-list c :initial-element 'x)
51 :initial-element 'a))))))))
53 (loop for i from 0 to 9 always
54 (loop for j from i to 10 always
55 (loop for c from 0 to (- j i) always
56 (let* ((orig '(a a a a a a a a a a))
58 (y (nsubstitute-if-not 'x (lambda (x)
61 :count c :from-end t)))
62 (equal y (nconc (make-list (- j c) :initial-element 'a)
63 (make-list c :initial-element 'x)
65 :initial-element 'a))))))))
67 ;;; And equally similarly, REMOVE-DUPLICATES misbehaved when given
70 (let ((orig (list 0 1 2 0 1 2 0 1 2 0 1 2)))
71 (assert (equalp (remove-duplicates orig :start 3 :end 9) '(0 1 2 0 1 2 0 1 2)))
72 (assert (equalp (delete-duplicates orig :start 3 :end 9) '(0 1 2 0 1 2 0 1 2))))
75 (assert (= 1 (count 1 '(1 2 3))))
76 (assert (= 2 (count 'z #(z 1 2 3 z))))
77 (assert (= 0 (count 'y '(z 1 2 3 z))))
79 ;;; tests of COUNT-IF and COUNT-IF-NOT
80 (macrolet (;; the guts of CCI, abstracted over whether we're testing
81 ;; COUNT-IF or COUNT-IF-NOT
82 (%cci (expected count-if test sequence-as-list &rest keys)
83 `(let* ((list ',sequence-as-list)
84 (simple-vector (coerce list 'simple-vector))
85 (length (length list))
86 (vector (make-array (* 2 length) :fill-pointer length)))
87 (replace vector list :end1 length)
88 (dolist (seq (list list simple-vector vector))
89 (assert (= ,expected (,count-if ,test seq ,@keys))))))
91 (cci (expected test sequence-as-list &rest keys)
93 (format t "~&SEQUENCE-AS-LIST=~S~%" ',sequence-as-list)
104 (cci 1 #'consp (1 (12) 1))
105 (cci 3 #'consp (1 (2) 3 (4) (5) 6))
106 (cci 3 #'consp (1 (2) 3 (4) (5) 6) :from-end t)
107 (cci 2 #'consp (1 (2) 3 (4) (5) 6) :start 2)
108 (cci 0 #'consp (1 (2) 3 (4) (5) 6) :start 2 :end 3)
109 (cci 1 #'consp (1 (2) 3 (4) (5) 6) :start 1 :end 3)
110 (cci 1 #'consp (1 (2) 3 (4) (5) 6) :start 1 :end 2)
111 (cci 0 #'consp (1 (2) 3 (4) (5) 6) :start 2 :end 2)
112 (cci 2 #'zerop (0 10 0 11 12))
113 (cci 1 #'zerop (0 10 0 11 12) :start 1)
114 (cci 2 #'minusp (0 10 0 11 12) :key #'1-)
115 (cci 1 #'minusp (0 10 0 11 12) :key #'1- :end 2))
116 (multiple-value-bind (v e)
117 (ignore-errors (count-if #'zerop '(0 a 0 b c) :start 1))
119 (assert (eql (type-error-datum e) 'a)))
120 (multiple-value-bind (v e)
121 (ignore-errors (count-if #'zerop #(0 a 0 b c) :start 1 :from-end 11))
123 (assert (eql (type-error-datum e) 'c)))
125 ;;; :COUNT may be negative and BIGNUM
126 (assert (equal (remove 1 '(1 2 3 1) :count 1) '(2 3 1)))
127 (assert (equal (remove 1 '(1 2 3 1) :count (* 2 most-positive-fixnum)) '(2 3)))
128 (assert (equal (remove 1 '(1 2 3 1) :count (* -2 most-positive-fixnum)) '(1 2 3 1)))
130 ;;; bug reported by Wolfgang Jenkner on sbcl-devel 2003-01-04:
131 ;;; embedded calls of SORT do not work
132 (assert (equal (sort (list 0 0 0) (lambda (x y) (sort (list 0 0 0) #'<) nil))
134 (assert (equal (sort (list 0 0 0 0 0)
136 (declare (ignore x y))
138 (sort (make-list 11 :initial-element 1)
141 (declare (ignore x y))
142 (when (= (decf counter) 0)
143 (return-from compare nil))
147 ;;; miscellaneous sanity checks on stuff which could've been broken by
148 ;;; changes in MERGE-LIST* in sbcl-0.7.11.*
149 (assert (equal (merge 'list () () '<) ()))
150 (assert (equal (merge 'list () (list 1) #'< :key 'identity) '(1)))
151 (assert (equal (merge 'list (list 2) () '>) '(2)))
152 (assert (equal (merge 'list (list 1 2 4) (list 2 3 7) '<) '(1 2 2 3 4 7)))
153 (assert (equal (merge 'list (list 1 2 4) (list -2 3 7) #'<) '(-2 1 2 3 4 7)))
154 (assert (equal (merge 'list (list 1 2 4) (vector -2 3 7) '< :key 'abs)
156 (assert (equal (merge 'list (list 1 -2 4) (list -2 3 7) '< :key #'abs)
158 (assert (equal (stable-sort (list 1 10 2 12 13 3) '<) '(1 2 3 10 12 13)))
159 (assert (equal (stable-sort (list 1 10 2 12 13 3) #'< :key '-)
161 (assert (equal (stable-sort (list 1 10 2 12 13 3) '> :key #'-)
163 (assert (equal (stable-sort (list 1 2 3 -3 -2 -1) '< :key 'abs)
166 ;;; CSR broke FILL by not returning the sequence argument in a transform.
167 (let* ((s1 (copy-seq "abcde"))
170 (assert (string= s2 "zzzzz")))
172 ;;; POSITION on displaced arrays with non-zero offset has been broken
173 ;;; for quite a while...
174 (let ((fn (compile nil '(lambda (x) (position x)))))
176 (y (make-array 2 :displaced-to x :displaced-index-offset 1)))
177 (assert (= (position 2 y) 0))))
179 ;;; (SIMPLE-STRING) is a legal type specifier for creation functions
180 (let ((a (make-sequence '(simple-string) 5))
181 (b (concatenate '(simple-string) "a" "bdec"))
182 (c (map '(simple-string) 'identity "abcde"))
183 (d (merge '(simple-string) (copy-seq "acd") (copy-seq "be") 'char>))
184 (e (coerce '(#\a #\b #\c #\e #\d) '(simple-string))))
185 (assert (= (length a) 5))
186 (assert (string= b "abdec"))
187 (assert (string= c "abcde"))
188 (assert (string= d "beacd"))
189 (assert (string= e "abced")))
191 ;;; COPY-SEQ "should be prepared to signal an error if sequence is not
192 ;;; a proper sequence".
193 (locally (declare (optimize safety))
194 (multiple-value-bind (seq err) (ignore-errors (copy-seq '(1 2 3 . 4)))
196 (assert (typep err 'type-error))))
198 ;;; UBX-BASH-COPY transform had an inconsistent return type
199 (let ((sb-c::*check-consistency* t))
200 (handler-bind ((warning #'error))
203 (declare (type fixnum l))
205 (b1 (make-array bsize :element-type '(unsigned-byte 8)))
206 (b2 (make-array l :element-type '(unsigned-byte 8))))
207 (replace b1 b2 :start2 0 :end2 l))))))