0.7.1.3:
[sbcl.git] / src / compiler / ir1opt.lisp
index f1654c6..d71be0f 100644 (file)
 \f
 ;;;; interface for obtaining results of constant folding
 
-;;; Return true if the sole use of Cont is a reference to a constant leaf.
-(declaim (ftype (function (continuation) boolean) constant-continuation-p))
-(defun constant-continuation-p (cont)
-  (let ((use (continuation-use cont)))
-    (and (ref-p use)
-        (constant-p (ref-leaf use)))))
+;;; Return true for a CONTINUATION whose sole use is a reference to a
+;;; constant leaf.
+(defun constant-continuation-p (thing)
+  (and (continuation-p thing)
+       (let ((use (continuation-use thing)))
+        (and (ref-p use)
+             (constant-p (ref-leaf use))))))
 
 ;;; Return the constant value for a continuation whose only use is a
 ;;; constant node.
@@ -55,9 +56,9 @@
      (node-derived-type (continuation-use cont)))))
 
 ;;; Our best guess for the type of this continuation's value. Note
-;;; that this may be Values or Function type, which cannot be passed
+;;; that this may be VALUES or FUNCTION type, which cannot be passed
 ;;; as an argument to the normal type operations. See
-;;; Continuation-Type. This may be called on deleted continuations,
+;;; CONTINUATION-TYPE. This may be called on deleted continuations,
 ;;; always returning *.
 ;;;
 ;;; What we do is call CONTINUATION-PROVEN-TYPE and check whether the
     (cond ((values-subtypep proven asserted)
           (setf (continuation-%type-check cont) nil)
           (setf (continuation-%derived-type cont) proven))
+          ((and (values-subtypep proven (specifier-type 'function))
+                (values-subtypep asserted (specifier-type 'function)))
+          ;; It's physically impossible for a runtime type check to
+          ;; distinguish between the various subtypes of FUNCTION, so
+          ;; it'd be pointless to do more type checks here.
+           (setf (continuation-%type-check cont) nil)
+           (setf (continuation-%derived-type cont)
+                ;; FIXME: This should depend on optimization
+                ;; policy. This is for SPEED > SAFETY:
+                 #+nil (values-type-intersection asserted proven)
+                 ;; and this is for SAFETY >= SPEED:
+                 #-nil proven))
          (t
           (unless (or (continuation-%type-check cont)
                       (not (continuation-dest cont))
                     (eq int *empty-type*)
                     (not (eq rtype *empty-type*)))
            (let ((*compiler-error-context* node))
-             (compiler-warning
+             (compiler-warn
               "New inferred type ~S conflicts with old type:~
-               ~%  ~S~%*** Bug?"
+               ~%  ~S~%*** possible internal error? Please report this."
               (type-specifier rtype) (type-specifier node-type))))
          (setf (node-derived-type node) int)
          (reoptimize-continuation (node-cont node))))))
   (values))
 
-;;; Similar to Derive-Node-Type, but asserts that it is an error for
-;;; Cont's value not to be typep to Type. If we improve the assertion,
-;;; we set TYPE-CHECK and TYPE-ASSERTED to guarantee that the new
-;;; assertion will be checked.
+;;; This is similar to DERIVE-NODE-TYPE, but asserts that it is an
+;;; error for CONT's value not to be TYPEP to TYPE. If we improve the
+;;; assertion, we set TYPE-CHECK and TYPE-ASSERTED to guarantee that
+;;; the new assertion will be checked.
 (defun assert-continuation-type (cont type)
   (declare (type continuation cont) (type ctype type))
   (let ((cont-type (continuation-asserted-type cont)))
          (reoptimize-continuation cont)))))
   (values))
 
-;;; Assert that Call is to a function of the specified Type. It is
+;;; Assert that CALL is to a function of the specified TYPE. It is
 ;;; assumed that the call is legal and has only constants in the
 ;;; keyword positions.
 (defun assert-call-type (call type)
-  (declare (type combination call) (type function-type type))
-  (derive-node-type call (function-type-returns type))
+  (declare (type combination call) (type fun-type type))
+  (derive-node-type call (fun-type-returns type))
   (let ((args (combination-args call)))
-    (dolist (req (function-type-required type))
+    (dolist (req (fun-type-required type))
       (when (null args) (return-from assert-call-type))
       (let ((arg (pop args)))
        (assert-continuation-type arg req)))
-    (dolist (opt (function-type-optional type))
+    (dolist (opt (fun-type-optional type))
       (when (null args) (return-from assert-call-type))
       (let ((arg (pop args)))
        (assert-continuation-type arg opt)))
 
-    (let ((rest (function-type-rest type)))
+    (let ((rest (fun-type-rest type)))
       (when rest
        (dolist (arg args)
          (assert-continuation-type arg rest))))
 
-    (dolist (key (function-type-keywords type))
+    (dolist (key (fun-type-keywords type))
       (let ((name (key-info-name key)))
        (do ((arg args (cddr arg)))
            ((null arg))
 \f
 ;;;; IR1-OPTIMIZE
 
-;;; Do one forward pass over Component, deleting unreachable blocks
+;;; Do one forward pass over COMPONENT, deleting unreachable blocks
 ;;; and doing IR1 optimizations. We can ignore all blocks that don't
-;;; have the Reoptimize flag set. If Component-Reoptimize is true when
+;;; have the REOPTIMIZE flag set. If COMPONENT-REOPTIMIZE is true when
 ;;; we are done, then another iteration would be beneficial.
 ;;;
 ;;; We delete blocks when there is either no predecessor or the block
 
   (values))
 
-;;; Loop over the nodes in Block, looking for stuff that needs to be
+;;; Loop over the nodes in BLOCK, looking for stuff that needs to be
 ;;; optimized. We dispatch off of the type of each node with its
 ;;; reoptimize flag set:
 
-;;; -- With a combination, we call Propagate-Function-Change whenever
-;;;    the function changes, and call IR1-Optimize-Combination if any
+;;; -- With a COMBINATION, we call PROPAGATE-FUN-CHANGE whenever
+;;;    the function changes, and call IR1-OPTIMIZE-COMBINATION if any
 ;;;    argument changes.
-;;; -- With an Exit, we derive the node's type from the Value's type.
-;;;    We don't propagate Cont's assertion to the Value, since if we
-;;;    did, this would move the checking of Cont's assertion to the
-;;;    exit. This wouldn't work with Catch and UWP, where the Exit
+;;; -- With an EXIT, we derive the node's type from the VALUE's type.
+;;;    We don't propagate CONT's assertion to the VALUE, since if we
+;;;    did, this would move the checking of CONT's assertion to the
+;;;    exit. This wouldn't work with CATCH and UWP, where the EXIT
 ;;;    node is just a placeholder for the actual unknown exit.
 ;;;
 ;;; Note that we clear the node & block reoptimize flags *before*
         (ir1-optimize-set node)))))
   (values))
 
+;;; Try to join with a successor block. If we succeed, we return true,
+;;; otherwise false.
+;;;
 ;;; We cannot combine with a successor block if:
 ;;;  1. The successor has more than one predecessor.
 ;;;  2. The last node's CONT is also used somewhere else.
 ;;;  3. The successor is the current block (infinite loop).
-;;;  4. The next block has a different cleanup, and thus we may want to 
-;;;     insert cleanup code between the two blocks at some point.
-;;;  5. The next block has a different home lambda, and thus the control
-;;;     transfer is a non-local exit.
-;;;
-;;; If we succeed, we return true, otherwise false.
+;;;  4. The next block has a different cleanup, and thus we may want 
+;;;     to insert cleanup code between the two blocks at some point.
+;;;  5. The next block has a different home lambda, and thus the
+;;;     control transfer is a non-local exit.
 ;;;
-;;; Joining is easy when the successor's Start continuation is the
-;;; same from our Last's Cont. If they differ, then we can still join
+;;; Joining is easy when the successor's START continuation is the
+;;; same from our LAST's CONT. If they differ, then we can still join
 ;;; when the last continuation has no next and the next continuation
 ;;; has no uses. In this case, we replace the next continuation with
 ;;; the last before joining the blocks.
              ((and (null (block-start-uses next))
                    (eq (continuation-kind last-cont) :inside-block))
               (let ((next-node (continuation-next next-cont)))
-                ;; If next-cont does have a dest, it must be
+                ;; If NEXT-CONT does have a dest, it must be
                 ;; unreachable, since there are no uses.
                 ;; DELETE-CONTINUATION will mark the dest block as
-                ;; delete-p [and also this block, unless it is no
+                ;; DELETE-P [and also this block, unless it is no
                 ;; longer backward reachable from the dest block.]
                 (delete-continuation next-cont)
                 (setf (node-prev next-node) last-cont)
               nil))))))
 
 ;;; Join together two blocks which have the same ending/starting
-;;; continuation. The code in Block2 is moved into Block1 and Block2
+;;; continuation. The code in BLOCK2 is moved into BLOCK1 and BLOCK2
 ;;; is deleted from the DFO. We combine the optimize flags for the two
 ;;; blocks so that any indicated optimization gets done.
 (defun join-blocks (block1 block2)
         (unlink-node node))
        (combination
         (let ((info (combination-kind node)))
-          (when (function-info-p info)
-            (let ((attr (function-info-attributes info)))
+          (when (fun-info-p info)
+            (let ((attr (fun-info-attributes info)))
               (when (and (ir1-attributep attr flushable)
                          (not (ir1-attributep attr call)))
                 (flush-dest (combination-fun node))
 (defun ir1-optimize-return (node)
   (declare (type creturn node))
   (let* ((tails (lambda-tail-set (return-lambda node)))
-        (funs (tail-set-functions tails)))
+        (funs (tail-set-funs tails)))
     (collect ((res *empty-type* values-type-union))
       (dolist (fun funs)
        (let ((return (lambda-return fun)))
 
       (when (type/= (res) (tail-set-type tails))
        (setf (tail-set-type tails) (res))
-       (dolist (fun (tail-set-functions tails))
+       (dolist (fun (tail-set-funs tails))
          (dolist (ref (leaf-refs fun))
            (reoptimize-continuation (node-cont ref)))))))
 
        (flush-dest test)
        (when (rest (block-succ block))
          (unlink-blocks block victim))
-       (setf (component-reanalyze (block-component (node-block node))) t)
+       (setf (component-reanalyze (node-component node)) t)
        (unlink-node node))))
   (values))
 
-;;; Create a new copy of an IF Node that tests the value of the node
-;;; Use. The test must have >1 use, and must be immediately used by
-;;; Use. Node must be the only node in its block (implying that
+;;; Create a new copy of an IF node that tests the value of the node
+;;; USE. The test must have >1 use, and must be immediately used by
+;;; USE. NODE must be the only node in its block (implying that
 ;;; block-start = if-test).
 ;;;
 ;;; This optimization has an effect semantically similar to the
 ;;; become unreachable, resulting in a spurious note.
 (defun convert-if-if (use node)
   (declare (type node use) (type cif node))
-  (with-ir1-environment node
+  (with-ir1-environment-from-node node
     (let* ((block (node-block node))
           (test (if-test node))
           (cblock (if-consequent node))
                              :consequent cblock
                              :alternative ablock))
           (new-block (continuation-starts-block new-cont)))
-      (prev-link new-node new-cont)
+      (link-node-to-previous-continuation new-node new-cont)
       (setf (continuation-dest new-cont) new-node)
       (add-continuation-use new-node dummy-cont)
       (setf (block-last new-block) new-node)
 
 ;;; This function attempts to delete an exit node, returning true if
 ;;; it deletes the block as a consequence:
-;;; -- If the exit is degenerate (has no Entry), then we don't do anything,
-;;;    since there is nothing to be done.
-;;; -- If the exit node and its Entry have the same home lambda then we know
-;;;    the exit is local, and can delete the exit. We change uses of the
-;;;    Exit-Value to be uses of the original continuation, then unlink the
-;;;    node. If the exit is to a TR context, then we must do MERGE-TAIL-SETS
-;;;    on any local calls which delivered their value to this exit.
-;;; -- If there is no value (as in a GO), then we skip the value semantics.
+;;; -- If the exit is degenerate (has no Entry), then we don't do
+;;;    anything, since there is nothing to be done.
+;;; -- If the exit node and its Entry have the same home lambda then
+;;;    we know the exit is local, and can delete the exit. We change
+;;;    uses of the Exit-Value to be uses of the original continuation,
+;;;    then unlink the node. If the exit is to a TR context, then we
+;;;    must do MERGE-TAIL-SETS on any local calls which delivered
+;;;    their value to this exit.
+;;; -- If there is no value (as in a GO), then we skip the value
+;;;    semantics.
 ;;;
 ;;; This function is also called by environment analysis, since it
 ;;; wants all exits to be optimized even if normal optimization was
 (declaim (ftype (function (combination) (values)) ir1-optimize-combination))
 (defun ir1-optimize-combination (node)
   (when (continuation-reoptimize (basic-combination-fun node))
-    (propagate-function-change node))
+    (propagate-fun-change node))
   (let ((args (basic-combination-args node))
        (kind (basic-combination-kind node)))
     (case kind
         (when arg
           (setf (continuation-reoptimize arg) nil)))
 
-       (let ((attr (function-info-attributes kind)))
+       (let ((attr (fun-info-attributes kind)))
         (when (and (ir1-attributep attr foldable)
                    ;; KLUDGE: The next test could be made more sensitive,
                    ;; only suppressing constant-folding of functions with
                    ;; cross-compiler doesn't know how to evaluate it.
                    #+sb-xc-host
                    (let* ((ref (continuation-use (combination-fun node)))
-                          (fun (leaf-name (ref-leaf ref))))
-                     (fboundp fun)))
+                          (fun-name (leaf-source-name (ref-leaf ref))))
+                     (fboundp fun-name)))
           (constant-fold-call node)
           (return-from ir1-optimize-combination)))
 
-       (let ((fun (function-info-derive-type kind)))
+       (let ((fun (fun-info-derive-type kind)))
         (when fun
           (let ((res (funcall fun node)))
             (when res
               (derive-node-type node res)
               (maybe-terminate-block node nil)))))
 
-       (let ((fun (function-info-optimizer kind)))
+       (let ((fun (fun-info-optimizer kind)))
         (unless (and fun (funcall fun node))
-          (dolist (x (function-info-transforms kind))
+          (dolist (x (fun-info-transforms kind))
             #!+sb-show 
             (when *show-transforms-p*
               (let* ((cont (basic-combination-fun node))
-                     (fname (continuation-function-name cont t)))
+                     (fname (continuation-fun-name cont t)))
                 (/show "trying transform" x (transform-function x) "for" fname)))
             (unless (ir1-transform node x)
               #!+sb-show
 
   (values))
 
-;;; If Call is to a function that doesn't return (i.e. return type is
+;;; If CALL is to a function that doesn't return (i.e. return type is
 ;;; NIL), then terminate the block there, and link it to the component
 ;;; tail. We also change the call's CONT to be a dummy continuation to
 ;;; prevent the use from confusing things.
 ;;;
-;;; Except when called during IR1, we delete the continuation if it
-;;; has no other uses. (If it does have other uses, we reoptimize.)
+;;; Except when called during IR1 [FIXME: What does this mean? Except
+;;; during IR1 conversion? What about IR1 optimization?], we delete
+;;; the continuation if it has no other uses. (If it does have other
+;;; uses, we reoptimize.)
 ;;;
 ;;; Termination on the basis of a continuation type assertion is
 ;;; inhibited when:
 ;;; -- The continuation is deleted (hence the assertion is spurious), or
 ;;; -- We are in IR1 conversion (where THE assertions are subject to
 ;;;    weakening.)
-(defun maybe-terminate-block (call ir1-p)
+(defun maybe-terminate-block (call ir1-converting-not-optimizing-p)
   (declare (type basic-combination call))
   (let* ((block (node-block call))
         (cont (node-cont call))
     (unless (or (and (eq call (block-last block)) (eq succ tail))
                (block-delete-p block))
       (when (or (and (eq (continuation-asserted-type cont) *empty-type*)
-                    (not (or ir1-p (eq (continuation-kind cont) :deleted))))
+                    (not (or ir1-converting-not-optimizing-p
+                             (eq (continuation-kind cont) :deleted))))
                (eq (node-derived-type call) *empty-type*))
-       (cond (ir1-p
+       (cond (ir1-converting-not-optimizing-p
               (delete-continuation-use call)
               (cond
                ((block-last block)
 ;;; This is called both by IR1 conversion and IR1 optimization when
 ;;; they have verified the type signature for the call, and are
 ;;; wondering if something should be done to special-case the call. If
-;;; Call is a call to a global function, then see whether it defined
+;;; CALL is a call to a global function, then see whether it defined
 ;;; or known:
-;;; -- If a DEFINED-FUNCTION should be inline expanded, then convert the
-;;;    expansion and change the call to call it. Expansion is enabled if
-;;;    :INLINE or if space=0. If the FUNCTIONAL slot is true, we never expand,
-;;;    since this function has already been converted. Local call analysis
-;;;    will duplicate the definition if necessary. We claim that the parent
-;;;    form is LABELS for context declarations, since we don't want it to be
-;;;    considered a real global function.
-;;; -- In addition to a direct check for the function name in the table, we
-;;;    also must check for slot accessors. If the function is a slot accessor,
-;;;    then we set the combination kind to the function info of %Slot-Setter or
-;;;    %Slot-Accessor, as appropriate.
-;;; -- If it is a known function, mark it as such by setting the Kind.
+;;; -- If a DEFINED-FUN should be inline expanded, then convert
+;;;    the expansion and change the call to call it. Expansion is
+;;;    enabled if :INLINE or if SPACE=0. If the FUNCTIONAL slot is
+;;;    true, we never expand, since this function has already been
+;;;    converted. Local call analysis will duplicate the definition
+;;;    if necessary. We claim that the parent form is LABELS for
+;;;    context declarations, since we don't want it to be considered
+;;;    a real global function.
+;;; -- If it is a known function, mark it as such by setting the KIND.
 ;;;
 ;;; We return the leaf referenced (NIL if not a leaf) and the
-;;; function-info assigned.
-(defun recognize-known-call (call ir1-p)
+;;; FUN-INFO assigned.
+;;;
+;;; FIXME: The IR1-CONVERTING-NOT-OPTIMIZING-P argument is what the
+;;; old CMU CL code called IR1-P, without explanation. My (WHN
+;;; 2002-01-09) tentative understanding of it is that we can call this
+;;; operation either in initial IR1 conversion or in later IR1
+;;; optimization, and it tells which is which. But it would be good
+;;; for someone who really understands it to check whether this is
+;;; really right.
+(defun recognize-known-call (call ir1-converting-not-optimizing-p)
   (declare (type combination call))
   (let* ((ref (continuation-use (basic-combination-fun call)))
         (leaf (when (ref-p ref) (ref-leaf ref)))
-        (inlinep (if (and (defined-function-p leaf)
-                          (not (byte-compiling)))
-                     (defined-function-inlinep leaf)
+        (inlinep (if (defined-fun-p leaf)
+                     (defined-fun-inlinep leaf)
                      :no-chance)))
     (cond
      ((eq inlinep :notinline) (values nil nil))
             (:inline t)
             (:no-chance nil)
             ((nil :maybe-inline) (policy call (zerop space))))
-          (defined-function-inline-expansion leaf)
-          (let ((fun (defined-function-functional leaf)))
+          (defined-fun-p leaf)
+          (defined-fun-inline-expansion leaf)
+          (let ((fun (defined-fun-functional leaf)))
             (or (not fun)
                 (and (eq inlinep :inline) (functional-kind fun))))
           (inline-expansion-ok call))
-      (flet ((frob ()
+      (flet (;; FIXME: Is this what the old CMU CL internal documentation
+            ;; called semi-inlining? A more descriptive name would
+            ;; be nice. -- WHN 2002-01-07
+            (frob ()
               (let ((res (ir1-convert-lambda-for-defun
-                          (defined-function-inline-expansion leaf)
+                          (defined-fun-inline-expansion leaf)
                           leaf t
                           #'ir1-convert-inline-lambda)))
-                (setf (defined-function-functional leaf) res)
+                (setf (defined-fun-functional leaf) res)
                 (change-ref-leaf ref res))))
-       (if ir1-p
+       (if ir1-converting-not-optimizing-p
            (frob)
-           (with-ir1-environment call
+           (with-ir1-environment-from-node call
              (frob)
-             (local-call-analyze *current-component*))))
+             (locall-analyze-component *current-component*))))
 
       (values (ref-leaf (continuation-use (basic-combination-fun call)))
              nil))
      (t
-      (let* ((name (leaf-name leaf))
-            (info (info :function :info
-                        (if (slot-accessor-p leaf)
-                          (if (consp name)
-                            '%slot-setter
-                            '%slot-accessor)
-                          name))))
+      (let ((info (info :function :info (leaf-source-name leaf))))
        (if info
            (values leaf (setf (basic-combination-kind call) info))
            (values leaf nil)))))))
 ;;; syntax check, arg/result type processing, but still call
 ;;; RECOGNIZE-KNOWN-CALL, since the call might be to a known lambda,
 ;;; and that checking is done by local call analysis.
-(defun validate-call-type (call type ir1-p)
+(defun validate-call-type (call type ir1-converting-not-optimizing-p)
   (declare (type combination call) (type ctype type))
-  (cond ((not (function-type-p type))
+  (cond ((not (fun-type-p type))
         (aver (multiple-value-bind (val win)
                   (csubtypep type (specifier-type 'function))
                 (or val (not win))))
-        (recognize-known-call call ir1-p))
-       ((valid-function-use call type
-                            :argument-test #'always-subtypep
-                            :result-test #'always-subtypep
-                            ;; KLUDGE: Common Lisp is such a dynamic
-                            ;; language that all we can do here in
-                            ;; general is issue a STYLE-WARNING. It
-                            ;; would be nice to issue a full WARNING
-                            ;; in the special case of of type
-                            ;; mismatches within a compilation unit
-                            ;; (as in section 3.2.2.3 of the spec)
-                            ;; but at least as of sbcl-0.6.11, we
-                            ;; don't keep track of whether the
-                            ;; mismatched data came from the same
-                            ;; compilation unit, so we can't do that.
-                            ;; -- WHN 2001-02-11
-                            ;;
-                            ;; FIXME: Actually, I think we could
-                            ;; issue a full WARNING if the call
-                            ;; violates a DECLAIM FTYPE.
-                            :error-function #'compiler-style-warning
-                            :warning-function #'compiler-note)
+        (recognize-known-call call ir1-converting-not-optimizing-p))
+       ((valid-fun-use call type
+                       :argument-test #'always-subtypep
+                       :result-test #'always-subtypep
+                       ;; KLUDGE: Common Lisp is such a dynamic
+                       ;; language that all we can do here in
+                       ;; general is issue a STYLE-WARNING. It
+                       ;; would be nice to issue a full WARNING
+                       ;; in the special case of of type
+                       ;; mismatches within a compilation unit
+                       ;; (as in section 3.2.2.3 of the spec)
+                       ;; but at least as of sbcl-0.6.11, we
+                       ;; don't keep track of whether the
+                       ;; mismatched data came from the same
+                       ;; compilation unit, so we can't do that.
+                       ;; -- WHN 2001-02-11
+                       ;;
+                       ;; FIXME: Actually, I think we could
+                       ;; issue a full WARNING if the call
+                       ;; violates a DECLAIM FTYPE.
+                       :lossage-fun #'compiler-style-warn
+                       :unwinnage-fun #'compiler-note)
         (assert-call-type call type)
-        (maybe-terminate-block call ir1-p)
-        (recognize-known-call call ir1-p))
+        (maybe-terminate-block call ir1-converting-not-optimizing-p)
+        (recognize-known-call call ir1-converting-not-optimizing-p))
        (t
         (setf (combination-kind call) :error)
         (values nil nil))))
 
 ;;; This is called by IR1-OPTIMIZE when the function for a call has
-;;; changed. If the call is local, we try to let-convert it, and
+;;; changed. If the call is local, we try to LET-convert it, and
 ;;; derive the result type. If it is a :FULL call, we validate it
 ;;; against the type, which recognizes known calls, does inline
 ;;; expansion, etc. If a call to a predicate in a non-conditional
 ;;; position or to a function with a source transform, then we
 ;;; reconvert the form to give IR1 another chance.
-(defun propagate-function-change (call)
+(defun propagate-fun-change (call)
   (declare (type combination call))
   (let ((*compiler-error-context* call)
        (fun-cont (basic-combination-fun call)))
                 (continuation-use (basic-combination-fun call))
                 call))
               ((not leaf))
-              ((or (info :function :source-transform (leaf-name leaf))
+              ((or (info :function :source-transform (leaf-source-name leaf))
                    (and info
-                        (ir1-attributep (function-info-attributes info)
+                        (ir1-attributep (fun-info-attributes info)
                                         predicate)
                         (let ((dest (continuation-dest (node-cont call))))
                           (and dest (not (if-p dest))))))
-               (let ((name (leaf-name leaf)))
-                 (when (symbolp name)
-                   (let ((dums (make-gensym-list (length
-                                                  (combination-args call)))))
-                     (transform-call call
-                                     `(lambda ,dums
-                                        (,name ,@dums))))))))))))
+               (when (and (leaf-has-source-name-p leaf)
+                          ;; FIXME: This SYMBOLP is part of a literal
+                          ;; translation of a test in the old CMU CL
+                          ;; source, and it's not quite clear what
+                          ;; the old source meant. Did it mean "has a
+                          ;; valid name"? Or did it mean "is an
+                          ;; ordinary function name, not a SETF
+                          ;; function"? Either way, the old CMU CL
+                          ;; code probably didn't deal with SETF
+                          ;; functions correctly, and neither does
+                          ;; this new SBCL code, and that should be fixed.
+                          (symbolp (leaf-source-name leaf)))
+                 (let ((dummies (make-gensym-list (length
+                                                   (combination-args call)))))
+                   (transform-call call
+                                   `(lambda ,dummies
+                                      (,(leaf-source-name leaf)
+                                       ,@dummies)))))))))))
   (values))
 \f
 ;;;; known function optimization
 
-;;; Add a failed optimization note to FAILED-OPTIMZATIONS for Node,
-;;; Fun and Args. If there is already a note for Node and Transform,
+;;; Add a failed optimization note to FAILED-OPTIMZATIONS for NODE,
+;;; FUN and ARGS. If there is already a note for NODE and TRANSFORM,
 ;;; replace it, otherwise add a new one.
 (defun record-optimization-failure (node transform args)
   (declare (type combination node) (type transform transform)
-          (type (or function-type list) args))
+          (type (or fun-type list) args))
   (let* ((table (component-failed-optimizations *component-being-compiled*))
         (found (assoc transform (gethash node table))))
     (if found
   (declare (type combination node) (type transform transform))
   (let* ((type (transform-type transform))
         (fun (transform-function transform))
-        (constrained (function-type-p type))
+        (constrained (fun-type-p type))
         (table (component-failed-optimizations *component-being-compiled*))
         (flame (if (transform-important transform)
                    (policy node (>= speed inhibit-warnings))
                    (policy node (> speed inhibit-warnings))))
         (*compiler-error-context* node))
     (cond ((not (member (transform-when transform)
-                       (if *byte-compiling*
-                           '(:byte   :both)
-                           '(:native :both))))
+                       '(:native :both)))
           ;; FIXME: Make sure that there's a transform for
           ;; (MEMBER SYMBOL ..) into MEMQ.
           ;; FIXME: Note that when/if I make SHARE operation to shared
           ;; '(:BOTH) tail sublists.
           (let ((when (transform-when transform)))
             (not (or (eq when :both)
-                     (eq when (if *byte-compiling* :byte :native)))))
+                     (eq when :native))))
           t)
          ((or (not constrained)
-              (valid-function-use node type :strict-result t))
+              (valid-fun-use node type :strict-result t))
           (multiple-value-bind (severity args)
               (catch 'give-up-ir1-transform
                 (transform-call node (funcall fun node))
               (:aborted
                (setf (combination-kind node) :error)
                (when args
-                 (apply #'compiler-warning args))
+                 (apply #'compiler-warn args))
                (remhash node table)
                nil)
               (:failure
                  (remhash node table)
                  nil))))
          ((and flame
-               (valid-function-use node
-                                   type
-                                   :argument-test #'types-equal-or-intersect
-                                   :result-test
-                                   #'values-types-equal-or-intersect))
+               (valid-fun-use node
+                              type
+                              :argument-test #'types-equal-or-intersect
+                              :result-test #'values-types-equal-or-intersect))
           (record-optimization-failure node transform type)
           t)
          (t
 ;;; integrated into the control flow.
 (defun transform-call (node res)
   (declare (type combination node) (list res))
-  (with-ir1-environment node
-    (let ((new-fun (ir1-convert-inline-lambda res))
+  (with-ir1-environment-from-node node
+    (let ((new-fun (ir1-convert-inline-lambda
+                   res
+                   :debug-name "something inlined in TRANSFORM-CALL"))
          (ref (continuation-use (combination-fun node))))
       (change-ref-leaf ref new-fun)
       (setf (combination-kind node) :full)
-      (local-call-analyze *current-component*)))
+      (locall-analyze-component *current-component*)))
   (values))
 
 ;;; Replace a call to a foldable function of constant arguments with
 ;;; the result of evaluating the form. We insert the resulting
 ;;; constant node after the call, stealing the call's continuation. We
-;;; give the call a continuation with no Dest, which should cause it
+;;; give the call a continuation with no DEST, which should cause it
 ;;; and its arguments to go away. If there is an error during the
 ;;; evaluation, we give a warning and leave the call alone, making the
 ;;; call a :ERROR call.
   (declare (type combination call))
   (let* ((args (mapcar #'continuation-value (combination-args call)))
         (ref (continuation-use (combination-fun call)))
-        (fun (leaf-name (ref-leaf ref))))
+        (fun-name (leaf-source-name (ref-leaf ref))))
 
     (multiple-value-bind (values win)
-       (careful-call fun args call "constant folding")
+       (careful-call fun-name args call "constant folding")
       (if (not win)
        (setf (combination-kind call) :error)
        (let ((dummies (make-gensym-list (length args))))
           call
           `(lambda ,dummies
              (declare (ignore ,@dummies))
-             (values ,@(mapcar #'(lambda (x) `',x) values))))))))
+             (values ,@(mapcar (lambda (x) `',x) values))))))))
 
   (values))
 \f
 ;;;; local call optimization
 
-;;; Propagate Type to Leaf and its Refs, marking things changed. If
+;;; Propagate TYPE to LEAF and its REFS, marking things changed. If
 ;;; the leaf type is a function type, then just leave it alone, since
 ;;; TYPE is never going to be more specific than that (and
 ;;; TYPE-INTERSECTION would choke.)
 (defun propagate-to-refs (leaf type)
   (declare (type leaf leaf) (type ctype type))
   (let ((var-type (leaf-type leaf)))
-    (unless (function-type-p var-type)
+    (unless (fun-type-p var-type)
       (let ((int (type-approx-intersection2 var-type type)))
        (when (type/= int var-type)
          (setf (leaf-type leaf) int)
       ((or constant functional) t)
       (lambda-var
        (null (lambda-var-sets leaf)))
-      (defined-function
-       (not (eq (defined-function-inlinep leaf) :notinline)))
+      (defined-fun
+       (not (eq (defined-fun-inlinep leaf) :notinline)))
       (global-var
        (case (global-var-kind leaf)
-        (:global-function t)
-        (:constant t))))))
+        (:global-function t))))))
 
 ;;; If we have a non-set LET var with a single use, then (if possible)
 ;;; replace the variable reference's CONT with the arg continuation.
 ;;;    would be NIL.
 ;;; -- the var's DEST has a different policy than the ARG's (think safety).
 ;;;
-;;; We change the Ref to be a reference to NIL with unused value, and
+;;; We change the REF to be a reference to NIL with unused value, and
 ;;; let it be flushed as dead code. A side-effect of this substitution
 ;;; is to delete the variable.
 (defun substitute-single-use-continuation (arg var)
 ;;; changes. We look at each changed argument. If the corresponding
 ;;; variable is set, then we call PROPAGATE-FROM-SETS. Otherwise, we
 ;;; consider substituting for the variable, and also propagate
-;;; derived-type information for the arg to all the Var's refs.
+;;; derived-type information for the arg to all the VAR's refs.
 ;;;
 ;;; Substitution is inhibited when the arg leaf's derived type isn't a
 ;;; subtype of the argument's asserted type. This prevents type
 ;;;
 ;;; Substitution of individual references is inhibited if the
 ;;; reference is in a different component from the home. This can only
-;;; happen with closures over top-level lambda vars. In such cases,
+;;; happen with closures over top level lambda vars. In such cases,
 ;;; the references may have already been compiled, and thus can't be
 ;;; retroactively modified.
 ;;;
 ;;; are done, then we delete the LET.
 ;;;
 ;;; Note that we are responsible for clearing the
-;;; Continuation-Reoptimize flags.
+;;; CONTINUATION-REOPTIMIZE flags.
 (defun propagate-let-args (call fun)
   (declare (type combination call) (type clambda fun))
   (loop for arg in (combination-args call)
                         (values-subtypep (leaf-type leaf)
                                          (continuation-asserted-type arg)))
                (propagate-to-refs var (continuation-type arg))
-               (let ((this-comp (block-component (node-block use))))
+               (let ((use-component (node-component use)))
                  (substitute-leaf-if
-                  #'(lambda (ref)
-                      (cond ((eq (block-component (node-block ref))
-                                 this-comp)
-                             t)
-                            (t
-                             (aver (eq (functional-kind (lambda-home fun))
-                                       :top-level))
-                             nil)))
+                  (lambda (ref)
+                    (cond ((eq (node-component ref) use-component)
+                           t)
+                          (t
+                           (aver (lambda-toplevelish-p (lambda-home fun)))
+                           nil)))
                   leaf var))
                t)))))
        ((and (null (rest (leaf-refs var)))
-            (not *byte-compiling*)
             (substitute-single-use-continuation arg var)))
        (t
        (propagate-to-refs var (continuation-type arg))))))
 (defun propagate-local-call-args (call fun)
   (declare (type combination call) (type clambda fun))
 
-  (unless (or (functional-entry-function fun)
+  (unless (or (functional-entry-fun fun)
              (lambda-optional-dispatch fun))
     (let* ((vars (lambda-vars fun))
-          (union (mapcar #'(lambda (arg var)
-                             (when (and arg
-                                        (continuation-reoptimize arg)
-                                        (null (basic-var-sets var)))
-                               (continuation-type arg)))
+          (union (mapcar (lambda (arg var)
+                           (when (and arg
+                                      (continuation-reoptimize arg)
+                                      (null (basic-var-sets var)))
+                             (continuation-type arg)))
                          (basic-combination-args call)
                          vars))
           (this-ref (continuation-use (basic-combination-fun call))))
        (let ((dest (continuation-dest (node-cont ref))))
          (unless (or (eq ref this-ref) (not dest))
            (setq union
-                 (mapcar #'(lambda (this-arg old)
-                             (when old
-                               (setf (continuation-reoptimize this-arg) nil)
-                               (type-union (continuation-type this-arg) old)))
+                 (mapcar (lambda (this-arg old)
+                           (when old
+                             (setf (continuation-reoptimize this-arg) nil)
+                             (type-union (continuation-type this-arg) old)))
                          (basic-combination-args dest)
                          union)))))
 
-      (mapc #'(lambda (var type)
-               (when type
-                 (propagate-to-refs var type)))
+      (mapc (lambda (var type)
+             (when type
+               (propagate-to-refs var type)))
            vars union)))
 
   (values))
        (when fun-changed
         (setf (continuation-reoptimize fun) nil)
         (let ((type (continuation-type fun)))
-          (when (function-type-p type)
-            (derive-node-type node (function-type-returns type))))
+          (when (fun-type-p type)
+            (derive-node-type node (fun-type-returns type))))
         (maybe-terminate-block node nil)
         (let ((use (continuation-use fun)))
           (when (and (ref-p use) (functional-p (ref-leaf use)))
             (when (eq (basic-combination-kind node) :local)
               (maybe-let-convert (ref-leaf use))))))
        (unless (or (eq (basic-combination-kind node) :local)
-                  (eq (continuation-function-name fun) '%throw))
+                  (eq (continuation-fun-name fun) '%throw))
         (ir1-optimize-mv-call node))
        (dolist (arg args)
         (setf (continuation-reoptimize arg) nil))))
     (multiple-value-bind (types nvals)
        (values-types (continuation-derived-type arg))
       (unless (eq nvals :unknown)
-       (mapc #'(lambda (var type)
-                 (if (basic-var-sets var)
-                     (propagate-from-sets var type)
-                     (propagate-to-refs var type)))
-               vars
+       (mapc (lambda (var type)
+               (if (basic-var-sets var)
+                   (propagate-from-sets var type)
+                   (propagate-to-refs var type)))
+             vars
                (append types
                        (make-list (max (- (length vars) nvals) 0)
                                   :initial-element (specifier-type 'null))))))
       (return-from ir1-optimize-mv-call))
 
     (multiple-value-bind (min max)
-       (function-type-nargs (continuation-type fun))
+       (fun-type-nargs (continuation-type fun))
       (let ((total-nvals
             (multiple-value-bind (types nvals)
                 (values-types (continuation-derived-type (first args)))
 
        (when total-nvals
          (when (and min (< total-nvals min))
-           (compiler-warning
+           (compiler-warn
             "MULTIPLE-VALUE-CALL with ~R values when the function expects ~
             at least ~R."
             total-nvals min)
            (setf (basic-combination-kind node) :error)
            (return-from ir1-optimize-mv-call))
          (when (and max (> total-nvals max))
-           (compiler-warning
+           (compiler-warn
             "MULTIPLE-VALUE-CALL with ~R values when the function expects ~
             at most ~R."
             total-nvals max)
                            min)
                           (t nil))))
          (when count
-           (with-ir1-environment node
+           (with-ir1-environment-from-node node
              (let* ((dums (make-gensym-list count))
                     (ignore (gensym))
                     (fun (ir1-convert-lambda
                              (funcall ,(ref-leaf ref) ,@dums)))))
                (change-ref-leaf ref fun)
                (aver (eq (basic-combination-kind node) :full))
-               (local-call-analyze *current-component*)
+               (locall-analyze-component *current-component*)
                (aver (eq (basic-combination-kind node) :local)))))))))
   (values))
 
   (let* ((arg (first (basic-combination-args call)))
         (use (continuation-use arg)))
     (when (and (combination-p use)
-              (eq (continuation-function-name (combination-fun use))
+              (eq (continuation-fun-name (combination-fun use))
                   'values))
       (let* ((fun (combination-lambda call))
             (vars (lambda-vars fun))
               (mapc #'flush-dest (subseq vals nvars))
               (setq vals (subseq vals 0 nvars)))
              ((< nvals nvars)
-              (with-ir1-environment use
+              (with-ir1-environment-from-node use
                 (let ((node-prev (node-prev use)))
                   (setf (node-prev use) nil)
                   (setf (continuation-next node-prev) nil)
                           do (reference-constant prev cont nil)
                              (res cont))
                     (setq vals (res)))
-                  (prev-link use (car (last vals)))))))
+                  (link-node-to-previous-continuation use
+                                                      (car (last vals)))))))
        (setf (combination-args use) vals)
        (flush-dest (combination-fun use))
        (let ((fun-cont (basic-combination-fun call)))
 (defoptimizer (values-list optimizer) ((list) node)
   (let ((use (continuation-use list)))
     (when (and (combination-p use)
-              (eq (continuation-function-name (combination-fun use))
+              (eq (continuation-fun-name (combination-fun use))
                   'list))
       (change-ref-leaf (continuation-use (combination-fun node))
-                      (find-free-function 'values "in a strange place"))
+                      (find-free-fun 'values "in a strange place"))
       (setf (combination-kind node) :full)
       (let ((args (combination-args use)))
        (dolist (arg args)