0.8.3.62:
[sbcl.git] / src / compiler / seqtran.lisp
index 0ece88a..58b0327 100644 (file)
          (tests `(endp ,v))
          (args-to-fn (if take-car `(car ,v) v))))
 
-      (let ((call `(funcall ,fn . ,(args-to-fn)))
-           (endtest `(or ,@(tests))))
+      (let* ((fn-sym (gensym))  ; for ONCE-ONLY-ish purposes
+            (call `(funcall ,fn-sym . ,(args-to-fn)))
+            (endtest `(or ,@(tests))))
        (ecase accumulate
          (:nconc
           (let ((temp (gensym))
                 (map-result (gensym)))
-            `(let ((,map-result (list nil)))
+            `(let ((,fn-sym ,fn)
+                   (,map-result (list nil)))
                (do-anonymous ((,temp ,map-result) . ,(do-clauses))
                              (,endtest (cdr ,map-result))
                  (setq ,temp (last (nconc ,temp ,call)))))))
          (:list
           (let ((temp (gensym))
                 (map-result (gensym)))
-            `(let ((,map-result (list nil)))
+            `(let ((,fn-sym ,fn)
+                   (,map-result (list nil)))
                (do-anonymous ((,temp ,map-result) . ,(do-clauses))
-                             (,endtest (cdr ,map-result))
+                             (,endtest (truly-the list (cdr ,map-result)))
                  (rplacd ,temp (setq ,temp (list ,call)))))))
          ((nil)
-          `(let ((,n-first ,(first arglists)))
+          `(let ((,fn-sym ,fn)
+                 (,n-first ,(first arglists)))
              (do-anonymous ,(do-clauses)
-                           (,endtest ,n-first) ,call))))))))
+                           (,endtest (truly-the list ,n-first))
+                            ,call))))))))
 
 (define-source-transform mapc (function list &rest more-lists)
   (mapfoo-transform function (cons list more-lists) nil t))
 ;;; MAP is %MAP plus a check to make sure that any length specified in
 ;;; the result type matches the actual result. We also wrap it in a
 ;;; TRULY-THE for the most specific type we can determine.
-(deftransform map ((result-type-arg fun &rest seqs) * * :node node)
-  (let* ((seq-names (make-gensym-list (length seqs)))
+(deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
+  (let* ((seq-names (make-gensym-list (1+ (length seqs))))
         (bare `(%map result-type-arg fun ,@seq-names))
-        (constant-result-type-arg-p (constant-continuation-p result-type-arg))
+        (constant-result-type-arg-p (constant-lvar-p result-type-arg))
         ;; what we know about the type of the result. (Note that the
         ;; "result type" argument is not necessarily the type of the
         ;; result, since NIL means the result has NULL type.)
         (result-type (if (not constant-result-type-arg-p)
                          'consed-sequence
                          (let ((result-type-arg-value
-                                (continuation-value result-type-arg)))
+                                (lvar-value result-type-arg)))
                            (if (null result-type-arg-value)
                                'null
                                result-type-arg-value)))))
     `(lambda (result-type-arg fun ,@seq-names)
        (truly-the ,result-type
-        ,(cond ((policy node (> speed safety))
+        ,(cond ((policy node (< safety 3))
+                ;; ANSI requires the length-related type check only
+                ;; when the SAFETY quality is 3... in other cases, we
+                ;; skip it, because it could be expensive.
                 bare)
                ((not constant-result-type-arg-p)
                 `(sequence-of-checked-length-given-type ,bare
                                                         result-type-arg))
                (t
-                (let ((result-ctype (ir1-transform-specifier-type result-type)))
+                (let ((result-ctype (ir1-transform-specifier-type
+                                     result-type)))
                   (if (array-type-p result-ctype)
-                      (let* ((dims (array-type-dimensions result-ctype))
-                             (dim (first dims)))
-                        (if (eq dim '*)
-                            bare
-                            `(vector-of-checked-length-given-length ,bare
-                                                                    ,dim)))
+                      (let ((dims (array-type-dimensions result-ctype)))
+                        (unless (and (listp dims) (= (length dims) 1))
+                          (give-up-ir1-transform "invalid sequence type"))
+                        (let ((dim (first dims)))
+                          (if (eq dim '*)
+                              bare
+                              `(vector-of-checked-length-given-length ,bare
+                                                                      ,dim))))
+                      ;; FIXME: this is wrong, as not all subtypes of
+                      ;; VECTOR are ARRAY-TYPEs [consider, for
+                      ;; example, (OR (VECTOR T 3) (VECTOR T
+                      ;; 4))]. However, it's difficult to see what we
+                      ;; should put here... maybe we should
+                      ;; GIVE-UP-IR1-TRANSFORM if the type is a
+                      ;; subtype of VECTOR but not an ARRAY-TYPE?
                       bare))))))))
 
+;;; Return a DO loop, mapping a function FUN to elements of
+;;; sequences. SEQS is a list of continuations, SEQ-NAMES - list of
+;;; variables, bound to sequences, INTO - a variable, which is used in
+;;; MAP-INTO. RESULT and BODY are forms, which can use variables
+;;; FUNCALL-RESULT, containing the result of application of FUN, and
+;;; INDEX, containing the current position in sequences.
+(defun build-sequence-iterator (seqs seq-names &key result into body)
+  (declare (type list seqs seq-names)
+           (type symbol into))
+  (collect ((bindings)
+           (declarations)
+            (vector-lengths)
+            (tests)
+            (places))
+    (let ((found-vector-p nil))
+      (flet ((process-vector (length)
+               (unless found-vector-p
+                 (setq found-vector-p t)
+                 (bindings `(index 0 (1+ index)))
+                 (declarations `(type index index)))
+               (vector-lengths length)))
+        (loop for seq of-type lvar in seqs
+           for seq-name in seq-names
+           for type = (lvar-type seq)
+           do (cond ((csubtypep type (specifier-type 'list))
+                    (with-unique-names (index)
+                       (bindings `(,index ,seq-name (cdr ,index)))
+                       (declarations `(type list ,index))
+                       (places `(car ,index))
+                       (tests `(endp ,index))))
+                    ((csubtypep type (specifier-type 'vector))
+                     (process-vector `(length ,seq-name))
+                     (places `(aref ,seq-name index)))
+                    (t
+                     (give-up-ir1-transform
+                      "can't determine sequence argument type"))))
+        (when into
+          (process-vector `(array-dimension ,into 0))))
+      (when found-vector-p
+        (bindings `(length (min ,@(vector-lengths))))
+        (tests `(= index length)))
+      `(do (,@(bindings))
+           ((or ,@(tests)) ,result)
+         (declare ,@(declarations))
+         (let ((funcall-result (funcall fun ,@(places))))
+           (declare (ignorable funcall-result))
+           ,body)))))
+
 ;;; Try to compile %MAP efficiently when we can determine sequence
 ;;; argument types at compile time.
 ;;;
 ;;; handle that case more efficiently, but it's left as an exercise to
 ;;; the reader, because the code is complicated enough already and I
 ;;; don't happen to need that functionality right now. -- WHN 20000410
-(deftransform %map ((result-type fun &rest seqs) * * :policy (>= speed space))
+(deftransform %map ((result-type fun seq &rest seqs) * *
+                   :policy (>= speed space))
   "open code"
-  (unless seqs (abort-ir1-transform "no sequence args"))
-  (unless (constant-continuation-p result-type)
+  (unless (constant-lvar-p result-type)
     (give-up-ir1-transform "RESULT-TYPE argument not constant"))
-  (labels (;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
+  (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
           (fn-1subtypep (fn x y)
             (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
               (if valid-p
                   subtype-p
                   (give-up-ir1-transform
                    "can't analyze sequence type relationship"))))
-          (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y))
-          (1csubtypep (x y) (fn-1subtypep #'csubtypep x y))
-          (seq-supertype (seq)
-            (let ((ctype (continuation-type seq)))
-              (cond ((1csubtypep ctype (specifier-type 'vector)) 'vector)
-                    ((1csubtypep ctype (specifier-type 'list)) 'list)
-                    (t
-                     (give-up-ir1-transform
-                      "can't determine sequence argument type"))))))
-    (let* ((result-type-value (continuation-value result-type))
+          (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
+    (let* ((result-type-value (lvar-value result-type))
           (result-supertype (cond ((null result-type-value) 'null)
                                   ((1subtypep result-type-value 'vector)
                                    'vector)
                                    'list)
                                   (t
                                    (give-up-ir1-transform
-                                    "can't determine result type"))))
-          (seq-supertypes (mapcar #'seq-supertype seqs)))
-      (cond ((and result-type-value (= 1 (length seqs)))
+                                    "can't determine result type")))))
+      (cond ((and result-type-value (null seqs))
             ;; The consing arity-1 cases can be implemented
             ;; reasonably efficiently as function calls, and the cost
             ;; of consing should be significantly larger than
             ;; function call overhead, so we always compile these
             ;; cases as full calls regardless of speed-versus-space
             ;; optimization policy.
-            (cond ((subtypep 'list result-type-value)
-                   '(apply #'%map-to-list-arity-1 fun seqs))
-                  (;; (This one can be inefficient due to COERCE, but
+            (cond ((subtypep result-type-value 'list)
+                   '(%map-to-list-arity-1 fun seq))
+                  ( ;; (This one can be inefficient due to COERCE, but
                    ;; the current open-coded implementation has the
                    ;; same problem.)
                    (subtypep result-type-value 'vector)
-                   `(coerce (apply #'%map-to-simple-vector-arity-1 fun seqs)
+                   `(coerce (%map-to-simple-vector-arity-1 fun seq)
                             ',result-type-value))
                   (t (bug "impossible (?) sequence type"))))
            (t
-            (let* ((seq-args (make-gensym-list (length seqs)))
-                   (index-bindingoids
-                    (mapcar (lambda (seq-arg seq-supertype)
-                              (let ((i (gensym "I"))) 
-                                (ecase seq-supertype
-                                  (vector `(,i 0 (1+ ,i)))
-                                  (list `(,i ,seq-arg (rest ,i))))))
-                            seq-args seq-supertypes))
-                   (indices (mapcar #'first index-bindingoids))
-                   (index-decls (mapcar (lambda (index seq-supertype)
-                                          `(type ,(ecase seq-supertype
-                                                    (vector 'index)
-                                                    (list 'list))
-                                                 ,index))
-                                        indices seq-supertypes))
-                   (tests (mapcar (lambda (seq-arg seq-supertype index)
-                                    (ecase seq-supertype
-                                      (vector `(>= ,index (length ,seq-arg)))
-                                      (list `(endp ,index))))
-                                  seq-args seq-supertypes indices))
-                   (values (mapcar (lambda (seq-arg seq-supertype index)
-                                     (ecase seq-supertype
-                                       (vector `(aref ,seq-arg ,index))
-                                       (list `(first ,index))))
-                                   seq-args seq-supertypes indices)))
-              (multiple-value-bind (push-dacc final-result)
+            (let* ((seqs (cons seq seqs))
+                   (seq-args (make-gensym-list (length seqs))))
+              (multiple-value-bind (push-dacc result)
                   (ecase result-supertype
                     (null (values nil nil))
-                    (list (values `(push dacc acc) `(nreverse acc)))
-                    (vector (values `(push dacc acc)
+                    (list (values `(push funcall-result acc)
+                                   `(nreverse acc)))
+                    (vector (values `(push funcall-result acc)
                                     `(coerce (nreverse acc)
                                              ',result-type-value))))
                 ;; (We use the same idiom, of returning a LAMBDA from
                 ;; of the &REST vars.)
                 `(lambda (result-type fun ,@seq-args)
                    (declare (ignore result-type))
-                   (do ((really-fun (%coerce-callable-to-fun fun))
-                        ,@index-bindingoids
-                        (acc nil))
-                   ((or ,@tests)
-                    ,final-result)
-                   (declare ,@index-decls)
-                   (declare (type list acc))
-                   (declare (ignorable acc))
-                   (let ((dacc (funcall really-fun ,@values)))
-                     (declare (ignorable dacc))
-                     ,push-dacc))))))))))
+                    (let ((fun (%coerce-callable-to-fun fun))
+                          (acc nil))
+                      (declare (type list acc))
+                      (declare (ignorable acc))
+                      ,(build-sequence-iterator
+                        seqs seq-args
+                        :result result
+                        :body push-dacc))))))))))
+
+;;; MAP-INTO
+(deftransform map-into ((result fun &rest seqs)
+                        (vector * &rest *)
+                        *)
+  "open code"
+  (let ((seqs-names (mapcar (lambda (x)
+                              (declare (ignore x))
+                              (gensym))
+                            seqs)))
+    `(lambda (result fun ,@seqs-names)
+       ,(build-sequence-iterator
+         seqs seqs-names
+         :result '(when (array-has-fill-pointer-p result)
+                   (setf (fill-pointer result) index))
+         :into 'result
+         :body '(setf (aref result index) funcall-result))
+       result)))
+
 \f
+;;; FIXME: once the confusion over doing transforms with known-complex
+;;; arrays is over, we should also transform the calls to (AND (ARRAY
+;;; * (*)) (NOT (SIMPLE-ARRAY * (*)))) objects.
 (deftransform elt ((s i) ((simple-array * (*)) *) *)
   '(aref s i))
 
-(deftransform elt ((s i) (list *) *)
+(deftransform elt ((s i) (list *) * :policy (< safety 3))
   '(nth i s))
 
 (deftransform %setelt ((s i v) ((simple-array * (*)) * *) *)
   '(%aset s i v))
 
-(deftransform %setelt ((s i v) (list * *))
+(deftransform %setelt ((s i v) (list * *) * :policy (< safety 3))
   '(setf (car (nthcdr i s)) v))
 
+(deftransform %check-vector-sequence-bounds ((vector start end)
+                                            (vector * *) *
+                                            :node node)
+  (if (policy node (< safety speed))
+      '(or end (length vector))
+      '(let ((length (length vector)))
+       (if (<= 0 start (or end length) length)
+           (or end length)
+           (sb!impl::signal-bounding-indices-bad-error vector start end)))))
+
 (macrolet ((def (name)
              `(deftransform ,name ((e l &key (test #'eql)) * *
                                   :node node)
-                (unless (constant-continuation-p l)
+                (unless (constant-lvar-p l)
                   (give-up-ir1-transform))
 
-                (let ((val (continuation-value l)))
+                (let ((val (lvar-value l)))
                   (unless (policy node
                                   (or (= speed 3)
                                       (and (>= speed space)
                 ;;   if ITEM is not a NUMBER or is a FIXNUM, apply
                 ;;   transform, else give up on transform.
                 (cond (test
-                       (unless (continuation-fun-is test '(eq))
+                       (unless (lvar-fun-is test '(eq))
                          (give-up-ir1-transform)))
-                      ((types-equal-or-intersect (continuation-type item)
+                      ((types-equal-or-intersect (lvar-type item)
                                                  (specifier-type 'number))
                        (give-up-ir1-transform "Item might be a number.")))
                 `(,',eq-fun item list))))
 
 ;;; Return true if CONT's only use is a non-NOTINLINE reference to a
 ;;; global function with one of the specified NAMES.
-(defun continuation-fun-is (cont names)
-  (declare (type continuation cont) (list names))
-  (let ((use (continuation-use cont)))
+(defun lvar-fun-is (lvar names)
+  (declare (type lvar lvar) (list names))
+  (let ((use (lvar-uses lvar)))
     (and (ref-p use)
         (let ((leaf (ref-leaf use)))
           (and (global-var-p leaf)
 ;;; IR1 transform.
 ;;;
 ;;; ### Probably should take an ARG and flame using the NAME.
-(defun constant-value-or-lose (cont &optional default)
-  (declare (type (or continuation null) cont))
-  (cond ((not cont) default)
-       ((constant-continuation-p cont)
-        (continuation-value cont))
+(defun constant-value-or-lose (lvar &optional default)
+  (declare (type (or lvar null) lvar))
+  (cond ((not lvar) default)
+       ((constant-lvar-p lvar)
+        (lvar-value lvar))
        (t
         (give-up-ir1-transform))))
 
                                (specifier-type 'function)))
                (when (policy *compiler-error-context*
                              (> speed inhibit-warnings))
-                 (compiler-note
+                 (compiler-notify
                   "~S may not be a function, so must coerce at run-time."
                   n-fun))
                (once-only ((n-fun `(if (functionp ,n-fun)
 ;;; Return a form that tests the free variables STRING1 and STRING2
 ;;; for the ordering relationship specified by LESSP and EQUALP. The
 ;;; start and end are also gotten from the environment. Both strings
-;;; must be SIMPLE-STRINGs.
+;;; must be SIMPLE-BASE-STRINGs.
 (macrolet ((def (name lessp equalp)
              `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
-                                    (simple-string simple-string t t t t) *)
+                                    (simple-base-string simple-base-string t t t t) *)
                 `(let* ((end1 (if (not end1) (length string1) end1))
                         (end2 (if (not end2) (length string2) end2))
                         (index (sb!impl::%sp-string-compare
 
 (macrolet ((def (name result-fun)
              `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
-                                   (simple-string simple-string t t t t) *)
+                                   (simple-base-string simple-base-string t t t t) *)
                 `(,',result-fun
                   (sb!impl::%sp-string-compare
                    string1 start1 (or end1 (length string1))
 
 ;;; Moved here from generic/vm-tran.lisp to satisfy clisp
 ;;;
-;;; FIXME: It would be good to implement SB!XC:DEFCONSTANT, and use
-;;; use that here, so that the compiler is born knowing this value.
 ;;; FIXME: Add a comment telling whether this holds for all vectors
 ;;; or only for vectors based on simple arrays (non-adjustable, etc.).
 (def!constant vector-data-bit-offset
   (* sb!vm:vector-data-offset sb!vm:n-word-bits))
 
-;;; FIXME: Shouldn't we be testing for legality of
-;;;   * START1, START2, END1, and END2 indices?
-;;;   * size of copied string relative to destination string?
-;;; (Either there should be tests conditional on SAFETY>=SPEED, or
-;;; the transform should be conditional on SPEED>SAFETY.)
-;;;
-;;; FIXME: Also, the transform should probably be dependent on
-;;; SPEED>SPACE.
 (deftransform replace ((string1 string2 &key (start1 0) (start2 0)
                                end1 end2)
-                      (simple-string simple-string &rest t))
+                      (simple-base-string simple-base-string &rest t)
+                      *
+                      ;; FIXME: consider replacing this policy test
+                      ;; with some tests for the STARTx and ENDx
+                      ;; indices being valid, conditional on high
+                      ;; SAFETY code.
+                      ;;
+                      ;; FIXME: It turns out that this transform is
+                      ;; critical for the performance of string
+                      ;; streams.  Make this more explicit.
+                      :policy (< (max safety space) 3))
   `(locally
      (declare (optimize (safety 0)))
      (bit-bash-copy string2
 ;;; %CONCATENATE (with a DEFTRANSFORM to translate constant RTYPE to
 ;;; CTYPE before calling %CONCATENATE) which is comparably efficient,
 ;;; at least once DYNAMIC-EXTENT works.
-#+nil ; FIXME: currently commented out because of bug 188
+;;;
+;;; FIXME: currently KLUDGEed because of bug 188
 (deftransform concatenate ((rtype &rest sequences)
-                          (t &rest simple-string)
-                          simple-string)
-  (collect ((lets)
-           (forms)
-           (all-lengths)
-           (args))
-    (dolist (seq sequences)
-      (declare (ignorable seq))
-      (let ((n-seq (gensym))
-           (n-length (gensym)))
-       (args n-seq)
-       (lets `(,n-length (the index (* (length ,n-seq) sb!vm:n-byte-bits))))
-       (all-lengths n-length)
-       (forms `(bit-bash-copy ,n-seq ,vector-data-bit-offset
-                              res start
-                              ,n-length))
-       (forms `(setq start (+ start ,n-length)))))
-    `(lambda (rtype ,@(args))
-       (declare (ignore rtype))
-       (let* (,@(lets)
-             (res (make-string (truncate (the index (+ ,@(all-lengths)))
-                                         sb!vm:n-byte-bits)))
-             (start ,vector-data-bit-offset))
-        (declare (type index start ,@(all-lengths)))
-        ,@(forms)
-        res))))
+                          (t &rest (or simple-base-string
+                                       (simple-array nil (*))))
+                          simple-base-string
+                          :policy (< safety 3))
+  (loop for rest-seqs on sequences
+        for n-seq = (gensym "N-SEQ")
+        for n-length = (gensym "N-LENGTH")
+        for start = vector-data-bit-offset then next-start
+        for next-start = (gensym "NEXT-START")
+        collect n-seq into args
+        collect `(,n-length (* (length ,n-seq) sb!vm:n-byte-bits)) into lets
+        collect n-length into all-lengths
+        collect next-start into starts
+        collect `(if (and (typep ,n-seq '(simple-array nil (*)))
+                         (> ,n-length 0))
+                    (error 'nil-array-accessed-error)
+                    (bit-bash-copy ,n-seq ,vector-data-bit-offset
+                                   res ,start ,n-length))
+                into forms
+        collect `(setq ,next-start (+ ,start ,n-length)) into forms
+        finally
+        (return
+          `(lambda (rtype ,@args)
+             (declare (ignore rtype))
+             (let* (,@lets
+                      (res (make-string (truncate (the index (+ ,@all-lengths))
+                                                  sb!vm:n-byte-bits))))
+               (declare (type index ,@all-lengths))
+               (let (,@(mapcar (lambda (name) `(,name 0)) starts))
+                 (declare (type index ,@starts))
+                 ,@forms)
+               res)))))
 \f
 ;;;; CONS accessor DERIVE-TYPE optimizers
 
 (defoptimizer (car derive-type) ((cons))
-  (let ((type (continuation-type cons))
+  (let ((type (lvar-type cons))
        (null-type (specifier-type 'null)))
     (cond ((eq type null-type)
           null-type)
           (cons-type-car-type type)))))
 
 (defoptimizer (cdr derive-type) ((cons))
-  (let ((type (continuation-type cons))
+  (let ((type (lvar-type cons))
        (null-type (specifier-type 'null)))
     (cond ((eq type null-type)
           null-type)
 ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline
 ;;; expansion, so we factor out the condition into this function.
 (defun check-inlineability-of-find-position-if (sequence from-end)
-  (let ((ctype (continuation-type sequence)))
+  (let ((ctype (lvar-type sequence)))
     (cond ((csubtypep ctype (specifier-type 'vector))
           ;; It's not worth trying to inline vector code unless we
           ;; know a fair amount about it at compile time.
           (upgraded-element-type-specifier-or-give-up sequence)
-          (unless (constant-continuation-p from-end)
+          (unless (constant-lvar-p from-end)
             (give-up-ir1-transform
              "FROM-END argument value not known at compile time")))
          ((csubtypep ctype (specifier-type 'list))
                       (find nil)
                       (position nil))
                   (declare (type index index))
-                  (dolist (i sequence (values find position))
+                  (dolist (i sequence
+                           (if (and end (> end index))
+                               (sb!impl::signal-bounding-indices-bad-error
+                                sequence start end)
+                               (values find position)))
                     (let ((key-i (funcall key i)))
                       (when (and end (>= index end))
                         (return (values find position)))
                     (incf index))))))
   (def %find-position-if when)
   (def %find-position-if-not unless))
-                     
+
 ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF
 ;;; without loss of efficiency. (I.e., the optimizer should be able
 ;;; to straighten everything out.)
                              :important t)
   "expand inline"
   '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
-                       ;; I'm having difficulty believing I'm
-                       ;; reading it right, but as far as I can see,
-                       ;; the only guidance that ANSI gives for the
-                       ;; order of arguments to asymmetric tests is
-                       ;; the character-set dependent example from
-                       ;; the definition of FIND,
-                       ;;   (find #\d "here are some.." :test #'char>)
-                       ;;     => #\Space
-                       ;; (In ASCII, we have (CHAR> #\d #\SPACE)=>T.)
-                       ;; (Neither the POSITION definition page nor
-                       ;; section 17.2 ("Rules about Test Functions")
-                       ;; seem to consider the possibility of
-                       ;; asymmetry.)
-                       ;;
-                       ;; So, judging from the example, we want to
-                       ;; do (FUNCALL TEST-FUN ITEM I), because
-                       ;; (FUNCALL #'CHAR> #\d #\SPACE)=>T.
-                       ;;
-                       ;; -- WHN (whose attention was drawn to it by
-                       ;;         Alexey Dejneka's bug report/fix)
+                       ;; The order of arguments for asymmetric tests
+                       ;; (e.g. #'<, as opposed to order-independent
+                       ;; tests like #'=) is specified in the spec
+                       ;; section 17.2.1 -- the O/Zi stuff there.
                        (lambda (i)
                          (funcall test-fun item i)))
                      sequence
                                                            end-arg
                                                            element
                                                            done-p-expr)
-  (let ((offset (gensym "OFFSET"))
-       (block (gensym "BLOCK"))
-       (index (gensym "INDEX"))
-       (n-sequence (gensym "N-SEQUENCE-"))
-       (sequence (gensym "SEQUENCE"))
-       (n-end (gensym "N-END-"))
-       (end (gensym "END-")))
+  (with-unique-names (offset block index n-sequence sequence n-end end)
     `(let ((,n-sequence ,sequence-arg)
           (,n-end ,end-arg))
        (with-array-data ((,sequence ,n-sequence :offset-var ,offset)
                         (,start ,start)
-                        (,end (or ,n-end (length ,n-sequence))))
+                        (,end (%check-vector-sequence-bounds
+                               ,n-sequence ,start ,n-end)))
          (block ,block
           (macrolet ((maybe-return ()
                        '(let ((,element (aref ,sequence ,index)))
 
 (def!macro %find-position-vector-macro (item sequence
                                             from-end start end key test)
-  (let ((element (gensym "ELEMENT")))
+  (with-unique-names (element)
     (%find-position-or-find-position-if-vector-expansion
      sequence
      from-end
 
 (def!macro %find-position-if-vector-macro (predicate sequence
                                                     from-end start end key)
-  (let ((element (gensym "ELEMENT")))
+  (with-unique-names (element)
     (%find-position-or-find-position-if-vector-expansion
      sequence
      from-end
 
 (def!macro %find-position-if-not-vector-macro (predicate sequence
                                                         from-end start end key)
-  (let ((element (gensym "ELEMENT")))
+  (with-unique-names (element)
     (%find-position-or-find-position-if-vector-expansion
      sequence
      from-end
   (check-inlineability-of-find-position-if sequence from-end)
   '(%find-position-vector-macro item sequence
                                from-end start end key test))
+
+;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
+;;; POSITION-IF, etc.
+(define-source-transform effective-find-position-test (test test-not)
+  (once-only ((test test)
+             (test-not test-not))
+    `(cond
+      ((and ,test ,test-not)
+       (error "can't specify both :TEST and :TEST-NOT"))
+      (,test (%coerce-callable-to-fun ,test))
+      (,test-not
+       ;; (Without DYNAMIC-EXTENT, this is potentially horribly
+       ;; inefficient, but since the TEST-NOT option is deprecated
+       ;; anyway, we don't care.)
+       (complement (%coerce-callable-to-fun ,test-not)))
+      (t #'eql))))
+(define-source-transform effective-find-position-key (key)
+  (once-only ((key key))
+    `(if ,key
+        (%coerce-callable-to-fun ,key)
+        #'identity)))
+
+(macrolet ((define-find-position (fun-name values-index)
+            `(deftransform ,fun-name ((item sequence &key
+                                            from-end (start 0) end
+                                            key test test-not))
+               '(nth-value ,values-index
+                           (%find-position item sequence
+                                           from-end start
+                                           end
+                                           (effective-find-position-key key)
+                                           (effective-find-position-test
+                                            test test-not))))))
+  (define-find-position find 0)
+  (define-find-position position 1))
+
+(macrolet ((define-find-position-if (fun-name values-index)
+            `(deftransform ,fun-name ((predicate sequence &key
+                                                 from-end (start 0)
+                                                 end key))
+               '(nth-value
+                 ,values-index
+                 (%find-position-if (%coerce-callable-to-fun predicate)
+                                    sequence from-end
+                                    start end
+                                    (effective-find-position-key key))))))
+  (define-find-position-if find-if 0)
+  (define-find-position-if position-if 1))
+
+;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
+;;; didn't bother to worry about optimizing them, except note that on
+;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
+;;; sbcl-devel
+;;;
+;;;     My understanding is that while the :test-not argument is
+;;;     deprecated in favour of :test (complement #'foo) because of
+;;;     semantic difficulties (what happens if both :test and :test-not
+;;;     are supplied, etc) the -if-not variants, while officially
+;;;     deprecated, would be undeprecated were X3J13 actually to produce
+;;;     a revised standard, as there are perfectly legitimate idiomatic
+;;;     reasons for allowing the -if-not versions equal status,
+;;;     particularly remove-if-not (== filter).
+;;;
+;;;     This is only an informal understanding, I grant you, but
+;;;     perhaps it's worth optimizing the -if-not versions in the same
+;;;     way as the others?
+;;;
+;;; FIXME: Maybe remove uses of these deprecated functions (and
+;;; definitely of :TEST-NOT) within the implementation of SBCL.
+(macrolet ((define-find-position-if-not (fun-name values-index)
+              `(deftransform ,fun-name ((predicate sequence &key
+                                         from-end (start 0)
+                                         end key))
+                '(nth-value
+                  ,values-index
+                  (%find-position-if-not (%coerce-callable-to-fun predicate)
+                   sequence from-end
+                   start end
+                   (effective-find-position-key key))))))
+  (define-find-position-if-not find-if-not 0)
+  (define-find-position-if-not position-if-not 1))