0.8alpha.0.8:
[sbcl.git] / src / compiler / seqtran.lisp
index f92cd13..b640f51 100644 (file)
          (tests `(endp ,v))
          (args-to-fn (if take-car `(car ,v) v))))
 
-      (let ((call `(funcall ,fn . ,(args-to-fn)))
-           (endtest `(or ,@(tests))))
+      (let* ((fn-sym (gensym))  ; for ONCE-ONLY-ish purposes
+            (call `(funcall ,fn-sym . ,(args-to-fn)))
+            (endtest `(or ,@(tests))))
        (ecase accumulate
          (:nconc
           (let ((temp (gensym))
                 (map-result (gensym)))
-            `(let ((,map-result (list nil)))
+            `(let ((,fn-sym ,fn)
+                   (,map-result (list nil)))
                (do-anonymous ((,temp ,map-result) . ,(do-clauses))
                              (,endtest (cdr ,map-result))
                  (setq ,temp (last (nconc ,temp ,call)))))))
          (:list
           (let ((temp (gensym))
                 (map-result (gensym)))
-            `(let ((,map-result (list nil)))
+            `(let ((,fn-sym ,fn)
+                   (,map-result (list nil)))
                (do-anonymous ((,temp ,map-result) . ,(do-clauses))
                              (,endtest (cdr ,map-result))
                  (rplacd ,temp (setq ,temp (list ,call)))))))
          ((nil)
-          `(let ((,n-first ,(first arglists)))
+          `(let ((,fn-sym ,fn)
+                 (,n-first ,(first arglists)))
              (do-anonymous ,(do-clauses)
                            (,endtest ,n-first) ,call))))))))
 
@@ -71,8 +75,8 @@
 ;;; MAP is %MAP plus a check to make sure that any length specified in
 ;;; the result type matches the actual result. We also wrap it in a
 ;;; TRULY-THE for the most specific type we can determine.
-(deftransform map ((result-type-arg fun &rest seqs) * * :node node)
-  (let* ((seq-names (make-gensym-list (length seqs)))
+(deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
+  (let* ((seq-names (make-gensym-list (1+ (length seqs))))
         (bare `(%map result-type-arg fun ,@seq-names))
         (constant-result-type-arg-p (constant-continuation-p result-type-arg))
         ;; what we know about the type of the result. (Note that the
                       ;; subtype of VECTOR but not an ARRAY-TYPE?
                       bare))))))))
 
+;;; Return a DO loop, mapping a function FUN to elements of
+;;; sequences. SEQS is a list of continuations, SEQ-NAMES - list of
+;;; variables, bound to sequences, INTO - a variable, which is used in
+;;; MAP-INTO. RESULT and BODY are forms, which can use variables
+;;; FUNCALL-RESULT, containing the result of application of FUN, and
+;;; INDEX, containing the current position in sequences.
+(defun build-sequence-iterator (seqs seq-names &key result into body)
+  (declare (type list seqs seq-names)
+           (type symbol into))
+  (collect ((bindings)
+           (declarations)
+            (vector-lengths)
+            (tests)
+            (places))
+    (let ((found-vector-p nil))
+      (flet ((process-vector (length)
+               (unless found-vector-p
+                 (setq found-vector-p t)
+                 (bindings `(index 0 (1+ index)))
+                 (declarations `(type index index)))
+               (vector-lengths length)))
+        (loop for seq of-type continuation in seqs
+           for seq-name in seq-names
+           for type = (continuation-type seq)
+           do (cond ((csubtypep type (specifier-type 'list))
+                     (let ((index (gensym "I")))
+                       (bindings `(,index ,seq-name (cdr ,index)))
+                       (declarations `(type list ,index))
+                       (places `(car ,index))
+                       (tests `(endp ,index))))
+                    ((csubtypep type (specifier-type 'vector))
+                     (process-vector `(length ,seq-name))
+                     (places `(aref ,seq-name index)))
+                    (t
+                     (give-up-ir1-transform
+                      "can't determine sequence argument type"))))
+        (when into
+          (process-vector `(array-dimension ,into 0))))
+      (when found-vector-p
+        (bindings `(length (min ,@(vector-lengths))))
+        (tests `(= index length)))
+      `(do (,@(bindings))
+           ((or ,@(tests)) ,result)
+         (declare ,@(declarations))
+         (let ((funcall-result (funcall fun ,@(places))))
+           (declare (ignorable funcall-result))
+           ,body)))))
+
 ;;; Try to compile %MAP efficiently when we can determine sequence
 ;;; argument types at compile time.
 ;;;
 ;;; handle that case more efficiently, but it's left as an exercise to
 ;;; the reader, because the code is complicated enough already and I
 ;;; don't happen to need that functionality right now. -- WHN 20000410
-(deftransform %map ((result-type fun &rest seqs) * * :policy (>= speed space))
+(deftransform %map ((result-type fun seq &rest seqs) * *
+                   :policy (>= speed space))
   "open code"
-  (unless seqs (abort-ir1-transform "no sequence args"))
   (unless (constant-continuation-p result-type)
     (give-up-ir1-transform "RESULT-TYPE argument not constant"))
-  (labels (;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
+  (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
           (fn-1subtypep (fn x y)
             (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
               (if valid-p
                   subtype-p
                   (give-up-ir1-transform
                    "can't analyze sequence type relationship"))))
-          (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y))
-          (1csubtypep (x y) (fn-1subtypep #'csubtypep x y))
-          (seq-supertype (seq)
-            (let ((ctype (continuation-type seq)))
-              (cond ((1csubtypep ctype (specifier-type 'vector)) 'vector)
-                    ((1csubtypep ctype (specifier-type 'list)) 'list)
-                    (t
-                     (give-up-ir1-transform
-                      "can't determine sequence argument type"))))))
+          (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
     (let* ((result-type-value (continuation-value result-type))
           (result-supertype (cond ((null result-type-value) 'null)
                                   ((1subtypep result-type-value 'vector)
                                    'list)
                                   (t
                                    (give-up-ir1-transform
-                                    "can't determine result type"))))
-          (seq-supertypes (mapcar #'seq-supertype seqs)))
-      (cond ((and result-type-value (= 1 (length seqs)))
+                                    "can't determine result type")))))
+      (cond ((and result-type-value (null seqs))
             ;; The consing arity-1 cases can be implemented
             ;; reasonably efficiently as function calls, and the cost
             ;; of consing should be significantly larger than
             ;; function call overhead, so we always compile these
             ;; cases as full calls regardless of speed-versus-space
             ;; optimization policy.
-            (cond ((subtypep 'list result-type-value)
-                   '(apply #'%map-to-list-arity-1 fun seqs))
-                  (;; (This one can be inefficient due to COERCE, but
+            (cond ((subtypep result-type-value 'list)
+                   '(%map-to-list-arity-1 fun seq))
+                  ( ;; (This one can be inefficient due to COERCE, but
                    ;; the current open-coded implementation has the
                    ;; same problem.)
                    (subtypep result-type-value 'vector)
-                   `(coerce (apply #'%map-to-simple-vector-arity-1 fun seqs)
+                   `(coerce (%map-to-simple-vector-arity-1 fun seq)
                             ',result-type-value))
                   (t (bug "impossible (?) sequence type"))))
            (t
-            (let* ((seq-args (make-gensym-list (length seqs)))
-                   (index-bindingoids
-                    (mapcar (lambda (seq-arg seq-supertype)
-                              (let ((i (gensym "I"))) 
-                                (ecase seq-supertype
-                                  (vector `(,i 0 (1+ ,i)))
-                                  (list `(,i ,seq-arg (rest ,i))))))
-                            seq-args seq-supertypes))
-                   (indices (mapcar #'first index-bindingoids))
-                   (index-decls (mapcar (lambda (index seq-supertype)
-                                          `(type ,(ecase seq-supertype
-                                                    (vector 'index)
-                                                    (list 'list))
-                                                 ,index))
-                                        indices seq-supertypes))
-                   (tests (mapcar (lambda (seq-arg seq-supertype index)
-                                    (ecase seq-supertype
-                                      (vector `(>= ,index (length ,seq-arg)))
-                                      (list `(endp ,index))))
-                                  seq-args seq-supertypes indices))
-                   (values (mapcar (lambda (seq-arg seq-supertype index)
-                                     (ecase seq-supertype
-                                       (vector `(aref ,seq-arg ,index))
-                                       (list `(first ,index))))
-                                   seq-args seq-supertypes indices)))
-              (multiple-value-bind (push-dacc final-result)
+            (let* ((seqs (cons seq seqs))
+                   (seq-args (make-gensym-list (length seqs))))
+              (multiple-value-bind (push-dacc result)
                   (ecase result-supertype
                     (null (values nil nil))
-                    (list (values `(push dacc acc) `(nreverse acc)))
-                    (vector (values `(push dacc acc)
+                    (list (values `(push funcall-result acc)
+                                   `(nreverse acc)))
+                    (vector (values `(push funcall-result acc)
                                     `(coerce (nreverse acc)
                                              ',result-type-value))))
                 ;; (We use the same idiom, of returning a LAMBDA from
                 ;; of the &REST vars.)
                 `(lambda (result-type fun ,@seq-args)
                    (declare (ignore result-type))
-                   (do ((really-fun (%coerce-callable-to-fun fun))
-                        ,@index-bindingoids
-                        (acc nil))
-                   ((or ,@tests)
-                    ,final-result)
-                   (declare ,@index-decls)
-                   (declare (type list acc))
-                   (declare (ignorable acc))
-                   (let ((dacc (funcall really-fun ,@values)))
-                     (declare (ignorable dacc))
-                     ,push-dacc))))))))))
+                    (let ((fun (%coerce-callable-to-fun fun))
+                          (acc nil))
+                      (declare (type list acc))
+                      (declare (ignorable acc))
+                      ,(build-sequence-iterator
+                        seqs seq-args
+                        :result result
+                        :body push-dacc))))))))))
+
+;;; MAP-INTO
+(deftransform map-into ((result fun &rest seqs)
+                        (vector * &rest *)
+                        *)
+  "open code"
+  (let ((seqs-names (mapcar (lambda (x)
+                              (declare (ignore x))
+                              (gensym))
+                            seqs)))
+    `(lambda (result fun ,@seqs-names)
+       ,(build-sequence-iterator
+         seqs seqs-names
+         :result '(when (array-has-fill-pointer-p result)
+                   (setf (fill-pointer result) index))
+         :into 'result
+         :body '(setf (aref result index) funcall-result))
+       result)))
+
 \f
 ;;; FIXME: once the confusion over doing transforms with known-complex
 ;;; arrays is over, we should also transform the calls to (AND (ARRAY
                              :important t)
   "expand inline"
   '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
-                       ;; I'm having difficulty believing I'm
-                       ;; reading it right, but as far as I can see,
-                       ;; the only guidance that ANSI gives for the
-                       ;; order of arguments to asymmetric tests is
-                       ;; the character-set dependent example from
-                       ;; the definition of FIND,
-                       ;;   (find #\d "here are some.." :test #'char>)
-                       ;;     => #\Space
-                       ;; (In ASCII, we have (CHAR> #\d #\SPACE)=>T.)
-                       ;; (Neither the POSITION definition page nor
-                       ;; section 17.2 ("Rules about Test Functions")
-                       ;; seem to consider the possibility of
-                       ;; asymmetry.)
-                       ;;
-                       ;; So, judging from the example, we want to
-                       ;; do (FUNCALL TEST-FUN ITEM I), because
-                       ;; (FUNCALL #'CHAR> #\d #\SPACE)=>T.
-                       ;;
-                       ;; -- WHN (whose attention was drawn to it by
-                       ;;         Alexey Dejneka's bug report/fix)
+                       ;; The order of arguments for asymmetric tests
+                       ;; (e.g. #'<, as opposed to order-independent
+                       ;; tests like #'=) is specified in the spec
+                       ;; section 17.2.1 -- the O/Zi stuff there.
                        (lambda (i)
                          (funcall test-fun item i)))
                      sequence
 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
 ;;; POSITION-IF, etc.
 (define-source-transform effective-find-position-test (test test-not)
-  `(cond
-    ((and ,test ,test-not)
-     (error "can't specify both :TEST and :TEST-NOT"))
-    (,test (%coerce-callable-to-fun ,test))
-    (,test-not
-     ;; (Without DYNAMIC-EXTENT, this is potentially horribly
-     ;; inefficient, but since the TEST-NOT option is deprecated
-     ;; anyway, we don't care.)
-     (complement (%coerce-callable-to-fun ,test-not)))
-    (t #'eql)))
+  (once-only ((test test)
+             (test-not test-not))
+    `(cond
+      ((and ,test ,test-not)
+       (error "can't specify both :TEST and :TEST-NOT"))
+      (,test (%coerce-callable-to-fun ,test))
+      (,test-not
+       ;; (Without DYNAMIC-EXTENT, this is potentially horribly
+       ;; inefficient, but since the TEST-NOT option is deprecated
+       ;; anyway, we don't care.)
+       (complement (%coerce-callable-to-fun ,test-not)))
+      (t #'eql))))
 (define-source-transform effective-find-position-key (key)
-  `(if ,key
-       (%coerce-callable-to-fun ,key)
-       #'identity))
+  (once-only ((key key))
+    `(if ,key
+        (%coerce-callable-to-fun ,key)
+        #'identity)))
 
 (macrolet ((define-find-position (fun-name values-index)
-              `(define-source-transform ,fun-name (item sequence &key
-                                                   from-end (start 0) end
-                                                   key test test-not)
-                `(nth-value ,,values-index
-                  (%find-position ,item ,sequence
-                   ,from-end ,start
-                   ,end
-                   (effective-find-position-key ,key)
-                   (effective-find-position-test ,test ,test-not))))))
+            `(deftransform ,fun-name ((item sequence &key
+                                            from-end (start 0) end
+                                            key test test-not))
+               '(nth-value ,values-index
+                           (%find-position item sequence
+                                           from-end start
+                                           end
+                                           (effective-find-position-key key)
+                                           (effective-find-position-test
+                                            test test-not))))))
   (define-find-position find 0)
   (define-find-position position 1))
 
 (macrolet ((define-find-position-if (fun-name values-index)
-              `(define-source-transform ,fun-name (predicate sequence &key
-                                                   from-end (start 0)
-                                                   end key)
-                `(nth-value
-                  ,,values-index
-                  (%find-position-if (%coerce-callable-to-fun ,predicate)
-                   ,sequence ,from-end
-                   ,start ,end
-                   (effective-find-position-key ,key))))))
+            `(deftransform ,fun-name ((predicate sequence &key
+                                                 from-end (start 0)
+                                                 end key))
+               '(nth-value
+                 ,values-index
+                 (%find-position-if (%coerce-callable-to-fun predicate)
+                                    sequence from-end
+                                    start end
+                                    (effective-find-position-key key))))))
   (define-find-position-if find-if 0)
   (define-find-position-if position-if 1))
 
 ;;; FIXME: Maybe remove uses of these deprecated functions (and
 ;;; definitely of :TEST-NOT) within the implementation of SBCL.
 (macrolet ((define-find-position-if-not (fun-name values-index)
-              `(define-source-transform ,fun-name (predicate sequence &key
-                                                   from-end (start 0)
-                                                   end key)
-                `(nth-value
-                  ,,values-index
-                  (%find-position-if-not (%coerce-callable-to-fun ,predicate)
-                   ,sequence ,from-end
-                   ,start ,end
-                   (effective-find-position-key ,key))))))
+              `(deftransform ,fun-name ((predicate sequence &key
+                                         from-end (start 0)
+                                         end key))
+                '(nth-value
+                  ,values-index
+                  (%find-position-if-not (%coerce-callable-to-fun predicate)
+                   sequence from-end
+                   start end
+                   (effective-find-position-key key))))))
   (define-find-position-if-not find-if-not 0)
   (define-find-position-if-not position-if-not 1))