allow approximating unions of numeric types
[sbcl.git] / src / compiler / srctran.lisp
index 764e617..50d4d3c 100644 (file)
              (t
               ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
               ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
-              (list (make-member-type :members (list (float -0.0 hi-val)))
+              (list (make-member-type :members (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val)))
                     (make-numeric-type :class (numeric-type-class type)
                                        :format (numeric-type-format type)
                                        :complexp :real
     (t
      type-list)))
 
-;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
-;;; belong in the kernel's type logic, invoked always, instead of in
-;;; the compiler, invoked only during some type optimizations. (In
-;;; fact, as of 0.pre8.100 or so they probably are, under
-;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
-
 ;;; Take a list of types and return a canonical type specifier,
 ;;; combining any MEMBER types together. If both positive and negative
 ;;; MEMBER types are present they are converted to a float type.
 ;;; XXX This would be far simpler if the type-union methods could handle
 ;;; member/number unions.
-(defun make-canonical-union-type (type-list)
+;;;
+;;; If we're about to generate an overly complex union of numeric types, start
+;;; collapse the ranges together.
+;;;
+;;; FIXME: The MEMBER canonicalization parts of MAKE-DERIVED-UNION-TYPE and
+;;; entire CONVERT-MEMBER-TYPE probably belong in the kernel's type logic,
+;;; invoked always, instead of in the compiler, invoked only during some type
+;;; optimizations.
+(defvar *derived-numeric-union-complexity-limit* 6)
+
+(defun make-derived-union-type (type-list)
   (let ((xset (alloc-xset))
         (fp-zeroes '())
-        (misc-types '()))
+        (misc-types '())
+        (numeric-type *empty-type*))
     (dolist (type type-list)
       (cond ((member-type-p type)
              (mapc-member-type-members
                       (pushnew member fp-zeroes))
                     (add-to-xset member xset)))
               type))
+            ((numeric-type-p type)
+             (let ((*approximate-numeric-unions*
+                    (when (and (union-type-p numeric-type)
+                               (nthcdr *derived-numeric-union-complexity-limit*
+                                       (union-type-types numeric-type)))
+                      t)))
+               (setf numeric-type (type-union type numeric-type))))
             (t
              (push type misc-types))))
     (if (and (xset-empty-p xset) (not fp-zeroes))
-        (apply #'type-union misc-types)
-        (apply #'type-union (make-member-type :xset xset :fp-zeroes fp-zeroes) misc-types))))
+        (apply #'type-union numeric-type misc-types)
+        (apply #'type-union (make-member-type :xset xset :fp-zeroes fp-zeroes)
+               numeric-type misc-types))))
 
 ;;; Convert a member type with a single member to a numeric type.
 (defun convert-member-type (arg)
                   (setf results (append results result))
                   (push result results))))
           (if (rest results)
-              (make-canonical-union-type results)
+              (make-derived-union-type results)
               (first results)))))))
 
 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
                         (setf results (append results result))
                         (push result results))))))
           (if (rest results)
-              (make-canonical-union-type results)
+              (make-derived-union-type results)
               (first results)))))))
 \f
 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
                        #'%unary-truncate-derive-type-aux
                        #'%unary-truncate))
 
+(defoptimizer (%unary-truncate/single-float derive-type) ((number))
+  (one-arg-derive-type number
+                       #'%unary-truncate-derive-type-aux
+                       #'%unary-truncate))
+
+(defoptimizer (%unary-truncate/double-float derive-type) ((number))
+  (one-arg-derive-type number
+                       #'%unary-truncate-derive-type-aux
+                       #'%unary-truncate))
+
 (defoptimizer (%unary-ftruncate derive-type) ((number))
   (let ((divisor (specifier-type '(integer 1 1))))
     (one-arg-derive-type number
                              (ftruncate-derive-type-quot-aux n divisor nil))
                          #'%unary-ftruncate)))
 
+(defoptimizer (%unary-round derive-type) ((number))
+  (one-arg-derive-type number
+                       (lambda (n)
+                         (block nil
+                           (unless (numeric-type-real-p n)
+                             (return *empty-type*))
+                           (let* ((interval (numeric-type->interval n))
+                                  (low      (interval-low interval))
+                                  (high     (interval-high interval)))
+                             (when (consp low)
+                               (setf low (car low)))
+                             (when (consp high)
+                               (setf high (car high)))
+                             (specifier-type
+                              `(integer ,(if low
+                                             (round low)
+                                             '*)
+                                        ,(if high
+                                             (round high)
+                                             '*))))))
+                       #'%unary-round))
+
 ;;; Define optimizers for FLOOR and CEILING.
 (macrolet
     ((def (name q-name r-name)
              (hi-res (if hi (isqrt hi) '*)))
         (specifier-type `(integer ,lo-res ,hi-res))))))
 
+(defoptimizer (char-code derive-type) ((char))
+  (let ((type (type-intersection (lvar-type char) (specifier-type 'character))))
+    (cond ((member-type-p type)
+           (specifier-type
+            `(member
+              ,@(loop for member in (member-type-members type)
+                      when (characterp member)
+                      collect (char-code member)))))
+          ((sb!kernel::character-set-type-p type)
+           (specifier-type
+            `(or
+              ,@(loop for (low . high)
+                      in (character-set-type-pairs type)
+                      collect `(integer ,low ,high)))))
+          ((csubtypep type (specifier-type 'base-char))
+           (specifier-type
+            `(mod ,base-char-code-limit)))
+          (t
+           (specifier-type
+            `(mod ,char-code-limit))))))
+
 (defoptimizer (code-char derive-type) ((code))
   (let ((type (lvar-type code)))
     ;; FIXME: unions of integral ranges?  It ought to be easier to do
           (values (type= (numeric-contagion x y)
                          (numeric-contagion y y)))))))
 
+(def!type exact-number ()
+  '(or rational (complex rational)))
+
 ;;; Fold (+ x 0).
 ;;;
-;;; If y is not constant, not zerop, or is contagious, or a positive
-;;; float +0.0 then give up.
-(deftransform + ((x y) (t (constant-arg t)) *)
+;;; Only safely applicable for exact numbers. For floating-point
+;;; x, one would have to first show that neither x or y are signed
+;;; 0s, and that x isn't an SNaN.
+(deftransform + ((x y) (exact-number (constant-arg (eql 0))) *)
   "fold zero arg"
-  (let ((val (lvar-value y)))
-    (unless (and (zerop val)
-                 (not (and (floatp val) (plusp (float-sign val))))
-                 (not-more-contagious y x))
-      (give-up-ir1-transform)))
   'x)
 
 ;;; Fold (- x 0).
-;;;
-;;; If y is not constant, not zerop, or is contagious, or a negative
-;;; float -0.0 then give up.
-(deftransform - ((x y) (t (constant-arg t)) *)
+(deftransform - ((x y) (exact-number (constant-arg (eql 0))) *)
   "fold zero arg"
-  (let ((val (lvar-value y)))
-    (unless (and (zerop val)
-                 (not (and (floatp val) (minusp (float-sign val))))
-                 (not-more-contagious y x))
-      (give-up-ir1-transform)))
   'x)
 
 ;;; Fold (OP x +/-1)
-(macrolet ((def (name result minus-result)
-             `(deftransform ,name ((x y) (t (constant-arg real)) *)
-                "fold identity operations"
-                (let ((val (lvar-value y)))
-                  (unless (and (= (abs val) 1)
-                               (not-more-contagious y x))
-                    (give-up-ir1-transform))
-                  (if (minusp val) ',minus-result ',result)))))
+;;;
+;;; %NEGATE might not always signal correctly.
+(macrolet
+    ((def (name result minus-result)
+         `(deftransform ,name ((x y)
+                               (exact-number (constant-arg (member 1 -1))))
+            "fold identity operations"
+            (if (minusp (lvar-value y)) ',minus-result ',result))))
   (def * x (%negate x))
   (def / x (%negate x))
   (def expt x (/ 1 x)))
           ((= val -1/2) '(/ (sqrt x)))
           (t (give-up-ir1-transform)))))
 
+(deftransform expt ((x y) ((constant-arg (member -1 -1.0 -1.0d0)) integer) *)
+  "recode as an ODDP check"
+  (let ((val (lvar-value x)))
+    (if (eql -1 val)
+        '(- 1 (* 2 (logand 1 y)))
+        `(if (oddp y)
+             ,val
+             ,(abs val)))))
+
 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
 ;;; transformations?
 ;;; Perhaps we should have to prove that the denominator is nonzero before
   (def eq)
   (def char=))
 
-;;; True if EQL comparisons involving type can be simplified to EQ.
-(defun eq-comparable-type-p (type)
-  (csubtypep type (specifier-type '(or fixnum (not number)))))
-
 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
 ;;; try to convert to a type-specific predicate or EQ:
 ;;; -- If both args are characters, convert to CHAR=. This is better than
     (cond ((or (and (csubtypep x-type (specifier-type 'float))
                     (csubtypep y-type (specifier-type 'float)))
                (and (csubtypep x-type (specifier-type '(complex float)))
-                    (csubtypep y-type (specifier-type '(complex float)))))
+                    (csubtypep y-type (specifier-type '(complex float))))
+               #!+complex-float-vops
+               (and (csubtypep x-type (specifier-type '(or single-float (complex single-float))))
+                    (csubtypep y-type (specifier-type '(or single-float (complex single-float)))))
+               #!+complex-float-vops
+               (and (csubtypep x-type (specifier-type '(or double-float (complex double-float))))
+                    (csubtypep y-type (specifier-type '(or double-float (complex double-float))))))
            ;; They are both floats. Leave as = so that -0.0 is
            ;; handled correctly.
            (give-up-ir1-transform))
 ;;; error messages, and those don't need to be particularly fast.
 #+sb-xc
 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
-                      :policy (> speed space))
+                      :policy (>= speed space))
   (unless (constant-lvar-p control)
     (give-up-ir1-transform "The control string is not a constant."))
   (let ((arg-names (make-gensym-list (length args))))
        (declare (ignore control))
        (format dest (formatter ,(lvar-value control)) ,@arg-names))))
 
-(deftransform format ((stream control &rest args) (stream function &rest t) *
-                      :policy (> speed space))
+(deftransform format ((stream control &rest args) (stream function &rest t))
   (let ((arg-names (make-gensym-list (length args))))
     `(lambda (stream control ,@arg-names)
        (funcall control stream ,@arg-names)
        nil)))
 
-(deftransform format ((tee control &rest args) ((member t) function &rest t) *
-                      :policy (> speed space))
+(deftransform format ((tee control &rest args) ((member t) function &rest t))
   (let ((arg-names (make-gensym-list (length args))))
     `(lambda (tee control ,@arg-names)
        (declare (ignore tee))
                            :format-arguments
                            (list nargs 'cerror y x (max max1 max2))))))))))))))
 
-(defoptimizer (coerce derive-type) ((value type))
+(defoptimizer (coerce derive-type) ((value type) node)
   (cond
     ((constant-lvar-p type)
      ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
              (type-union result-typeoid
                          (type-intersection (lvar-type value)
                                             (specifier-type 'rational))))))
-         (t result-typeoid))))
+         ((and (policy node (zerop safety))
+               (csubtypep result-typeoid (specifier-type '(array * (*)))))
+          ;; At zero safety the deftransform for COERCE can elide dimension
+          ;; checks for the things like (COERCE X '(SIMPLE-VECTOR 5)) -- so we
+          ;; need to simplify the type to drop the dimension information.
+          (let ((vtype (simplify-vector-type result-typeoid)))
+            (if vtype
+                (specifier-type vtype)
+                result-typeoid)))
+         (t
+          result-typeoid))))
     (t
      ;; OK, the result-type argument isn't constant.  However, there
      ;; are common uses where we can still do better than just
                           (eq (first (second good-cons-type)) 'member))
                      `(,(second (second good-cons-type))
                        ,@(unconsify-type (caddr good-cons-type))))))
-            (coerceable-p (c-type)
+            (coerceable-p (part)
               ;; Can the value be coerced to the given type?  Coerce is
               ;; complicated, so we don't handle every possible case
               ;; here---just the most common and easiest cases:
               ;; the requested type, because (by assumption) COMPLEX
               ;; (and other difficult types like (COMPLEX INTEGER)
               ;; aren't specialized types.
-              (let ((coerced-type c-type))
-                (or (and (subtypep coerced-type 'float)
-                         (csubtypep value-type (specifier-type 'real)))
-                    (and (subtypep coerced-type
-                                   '(or (complex single-float)
-                                        (complex double-float)))
-                         (csubtypep value-type (specifier-type 'number))))))
+              (let ((coerced-type (careful-specifier-type part)))
+                (when coerced-type
+                  (or (and (csubtypep coerced-type (specifier-type 'float))
+                           (csubtypep value-type (specifier-type 'real)))
+                      (and (csubtypep coerced-type
+                                      (specifier-type `(or (complex single-float)
+                                                           (complex double-float))))
+                          (csubtypep value-type (specifier-type 'number)))))))
             (process-types (type)
               ;; FIXME: This needs some work because we should be able
               ;; to derive the resulting type better than just the
                        (specifier-type (consify element-type)))
                       (t
                        (error "can't understand type ~S~%" element-type))))))
-      (cond ((array-type-p array-type)
-             (get-element-type array-type))
-            ((union-type-p array-type)
-             (apply #'type-union
-                    (mapcar #'get-element-type (union-type-types array-type))))
-            (t
-             *universal-type*)))))
+      (labels ((recurse (type)
+                  (cond ((array-type-p type)
+                         (get-element-type type))
+                        ((union-type-p type)
+                         (apply #'type-union
+                                (mapcar #'recurse (union-type-types type))))
+                        (t
+                         *universal-type*))))
+        (recurse array-type)))))
 
-;;; Like CMU CL, we use HEAPSORT. However, other than that, this code
-;;; isn't really related to the CMU CL code, since instead of trying
-;;; to generalize the CMU CL code to allow START and END values, this
-;;; code has been written from scratch following Chapter 7 of
-;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
   ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
   ;; isn't really related to the CMU CL code, since instead of trying
                        (start-1 (1- ,',start))
                        (current-heap-size (- ,',end ,',start))
                        (keyfun ,keyfun))
-                   (declare (type (integer -1 #.(1- most-positive-fixnum))
+                   (declare (type (integer -1 #.(1- sb!xc:most-positive-fixnum))
                                   start-1))
                    (declare (type index current-heap-size))
                    (declare (type function keyfun))