0.9.1.59:
[sbcl.git] / src / runtime / gencgc.c
index 04c5d0a..0c0c98f 100644 (file)
 
 #include <stdio.h>
 #include <signal.h>
-#include "runtime.h"
+#include <errno.h>
+#include <string.h>
 #include "sbcl.h"
+#include "runtime.h"
 #include "os.h"
 #include "interr.h"
 #include "globals.h"
 #include "validate.h"
 #include "lispregs.h"
 #include "arch.h"
+#include "fixnump.h"
 #include "gc.h"
-#include "gencgc.h"
+#include "gc-internal.h"
+#include "thread.h"
+#include "genesis/vector.h"
+#include "genesis/weak-pointer.h"
+#include "genesis/simple-fun.h"
+#include "genesis/hash-table.h"
+
+/* forward declarations */
+long gc_find_freeish_pages(long *restart_page_ptr, long nbytes, int unboxed);
+static void  gencgc_pickup_dynamic(void);
 
-/* a function defined externally in assembly language, called from
- * this file */
-void do_pending_interrupt(void);
 \f
 /*
  * GC parameters
@@ -56,7 +65,7 @@ void do_pending_interrupt(void);
 boolean enable_page_protection = 1;
 
 /* Should we unmap a page and re-mmap it to have it zero filled? */
-#if defined(__FreeBSD__) || defined(__OpenBSD__)
+#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__)
 /* comment from cmucl-2.4.8: This can waste a lot of swap on FreeBSD
  * so don't unmap there.
  *
@@ -70,29 +79,22 @@ boolean gencgc_unmap_zero = 1;
 #endif
 
 /* the minimum size (in bytes) for a large object*/
-unsigned large_object_size = 4 * 4096;
+unsigned large_object_size = 4 * PAGE_BYTES;
+
 \f
 /*
  * debugging
  */
 
-#define gc_abort() lose("GC invariant lost, file \"%s\", line %d", \
-                       __FILE__, __LINE__)
 
-/* FIXME: In CMU CL, this was "#if 0" with no explanation. Find out
- * how much it costs to make it "#if 1". If it's not too expensive,
- * keep it. */
-#if 1
-#define gc_assert(ex) do { \
-       if (!(ex)) gc_abort(); \
-} while (0)
-#else
-#define gc_assert(ex)
-#endif
 
 /* the verbosity level. All non-error messages are disabled at level 0;
  * and only a few rare messages are printed at level 1. */
-unsigned gencgc_verbose = (QSHOW ? 1 : 0);
+#ifdef QSHOW
+unsigned gencgc_verbose = 1;
+#else
+unsigned gencgc_verbose = 0;
+#endif
 
 /* FIXME: At some point enable the various error-checking things below
  * and see what they say. */
@@ -131,17 +133,14 @@ boolean gencgc_zero_check_during_free_heap = 0;
 
 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
 unsigned long bytes_allocated = 0;
-static unsigned long auto_gc_trigger = 0;
+extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
+unsigned long auto_gc_trigger = 0;
 
 /* the source and destination generations. These are set before a GC starts
  * scavenging. */
-static int from_space;
-static int new_space;
+long from_space;
+long new_space;
 
-/* FIXME: It would be nice to use this symbolic constant instead of
- * bare 4096 almost everywhere. We could also use an assertion that
- * it's equal to getpagesize(). */
-#define PAGE_BYTES 4096
 
 /* An array of page structures is statically allocated.
  * This helps quickly map between an address its page structure.
@@ -152,22 +151,28 @@ struct page page_table[NUM_PAGES];
  * is needed. */
 static void *heap_base = NULL;
 
+#if N_WORD_BITS == 32
+ #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG
+#elif N_WORD_BITS == 64
+ #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
+#endif
+
 /* Calculate the start address for the given page number. */
 inline void *
-page_address(int page_num)
+page_address(long page_num)
 {
-    return (heap_base + (page_num * 4096));
+    return (heap_base + (page_num * PAGE_BYTES));
 }
 
 /* Find the page index within the page_table for the given
  * address. Return -1 on failure. */
-inline int
+inline long
 find_page_index(void *addr)
 {
-    int index = addr-heap_base;
+    long index = addr-heap_base;
 
     if (index >= 0) {
-       index = ((unsigned int)index)/4096;
+       index = ((unsigned long)index)/PAGE_BYTES;
        if (index < NUM_PAGES)
            return (index);
     }
@@ -179,28 +184,28 @@ find_page_index(void *addr)
 struct generation {
 
     /* the first page that gc_alloc() checks on its next call */
-    int alloc_start_page;
+    long alloc_start_page;
 
     /* the first page that gc_alloc_unboxed() checks on its next call */
-    int alloc_unboxed_start_page;
+    long alloc_unboxed_start_page;
 
     /* the first page that gc_alloc_large (boxed) considers on its next
      * call. (Although it always allocates after the boxed_region.) */
-    int alloc_large_start_page;
+    long alloc_large_start_page;
 
     /* the first page that gc_alloc_large (unboxed) considers on its
      * next call. (Although it always allocates after the
      * current_unboxed_region.) */
-    int alloc_large_unboxed_start_page;
+    long alloc_large_unboxed_start_page;
 
     /* the bytes allocated to this generation */
-    int bytes_allocated;
+    long bytes_allocated;
 
     /* the number of bytes at which to trigger a GC */
-    int gc_trigger;
+    long gc_trigger;
 
     /* to calculate a new level for gc_trigger */
-    int bytes_consed_between_gc;
+    long bytes_consed_between_gc;
 
     /* the number of GCs since the last raise */
     int num_gc;
@@ -214,18 +219,22 @@ struct generation {
      * objects are added from a GC of a younger generation. Dividing by
      * the bytes_allocated will give the average age of the memory in
      * this generation since its last GC. */
-    int cum_sum_bytes_allocated;
+    long cum_sum_bytes_allocated;
 
     /* a minimum average memory age before a GC will occur helps
      * prevent a GC when a large number of new live objects have been
      * added, in which case a GC could be a waste of time */
     double min_av_mem_age;
 };
+/* the number of actual generations. (The number of 'struct
+ * generation' objects is one more than this, because one object
+ * serves as scratch when GC'ing.) */
+#define NUM_GENERATIONS 6
 
 /* an array of generation structures. There needs to be one more
  * generation structure than actual generations as the oldest
  * generation is temporarily raised then lowered. */
-static struct generation generations[NUM_GENERATIONS+1];
+struct generation generations[NUM_GENERATIONS+1];
 
 /* the oldest generation that is will currently be GCed by default.
  * Valid values are: 0, 1, ... (NUM_GENERATIONS-1)
@@ -245,8 +254,17 @@ unsigned int  gencgc_oldest_gen_to_gc = NUM_GENERATIONS-1;
  * ALLOCATION_POINTER which is used by the room function to limit its
  * search of the heap. XX Gencgc obviously needs to be better
  * integrated with the Lisp code. */
-static int  last_free_page;
-static int  last_used_page = 0;
+static long  last_free_page;
+\f
+/* This lock is to prevent multiple threads from simultaneously
+ * allocating new regions which overlap each other.  Note that the
+ * majority of GC is single-threaded, but alloc() may be called from
+ * >1 thread at a time and must be thread-safe.  This lock must be
+ * seized before all accesses to generations[] or to parts of
+ * page_table[] that other threads may want to see */
+
+static lispobj free_pages_lock=0;
+
 \f
 /*
  * miscellaneous heap functions
@@ -254,14 +272,14 @@ static int  last_used_page = 0;
 
 /* Count the number of pages which are write-protected within the
  * given generation. */
-static int
+static long
 count_write_protect_generation_pages(int generation)
 {
-    int i;
-    int count = 0;
+    long i;
+    long count = 0;
 
     for (i = 0; i < last_free_page; i++)
-       if ((page_table[i].allocated != FREE_PAGE)
+       if ((page_table[i].allocated != FREE_PAGE_FLAG)
            && (page_table[i].gen == generation)
            && (page_table[i].write_protected == 1))
            count++;
@@ -269,11 +287,11 @@ count_write_protect_generation_pages(int generation)
 }
 
 /* Count the number of pages within the given generation. */
-static int
+static long
 count_generation_pages(int generation)
 {
-    int i;
-    int count = 0;
+    long i;
+    long count = 0;
 
     for (i = 0; i < last_free_page; i++)
        if ((page_table[i].allocated != 0)
@@ -282,12 +300,12 @@ count_generation_pages(int generation)
     return count;
 }
 
-/* Count the number of dont_move pages. */
-static int
+#ifdef QSHOW
+static long
 count_dont_move_pages(void)
 {
-    int i;
-    int count = 0;
+    long i;
+    long count = 0;
     for (i = 0; i < last_free_page; i++) {
        if ((page_table[i].allocated != 0) && (page_table[i].dont_move != 0)) {
            ++count;
@@ -295,14 +313,15 @@ count_dont_move_pages(void)
     }
     return count;
 }
+#endif /* QSHOW */
 
 /* Work through the pages and add up the number of bytes used for the
  * given generation. */
-static int
+static long
 count_generation_bytes_allocated (int gen)
 {
-    int i;
-    int result = 0;
+    long i;
+    long result = 0;
     for (i = 0; i < last_free_page; i++) {
        if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
            result += page_table[i].bytes_used;
@@ -322,6 +341,8 @@ gen_av_mem_age(int gen)
        / ((double)generations[gen].bytes_allocated);
 }
 
+void fpu_save(int *);          /* defined in x86-assem.S */
+void fpu_restore(int *);       /* defined in x86-assem.S */
 /* The verbose argument controls how much to print: 0 for normal
  * level of detail; 1 for debugging. */
 static void
@@ -342,7 +363,7 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
 
     /* Print the heap stats. */
     fprintf(stderr,
-           "   Generation Boxed Unboxed LB   LUB    Alloc  Waste   Trig    WP  GCs Mem-age\n");
+           "   Gen Boxed Unboxed LB   LUB  !move  Alloc  Waste   Trig    WP  GCs Mem-age\n");
 
     for (i = 0; i < gens; i++) {
        int j;
@@ -350,22 +371,23 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
        int unboxed_cnt = 0;
        int large_boxed_cnt = 0;
        int large_unboxed_cnt = 0;
+       int pinned_cnt=0;
 
        for (j = 0; j < last_free_page; j++)
            if (page_table[j].gen == i) {
 
                /* Count the number of boxed pages within the given
                 * generation. */
-               if (page_table[j].allocated == BOXED_PAGE) {
+               if (page_table[j].allocated & BOXED_PAGE_FLAG) {
                    if (page_table[j].large_object)
                        large_boxed_cnt++;
                    else
                        boxed_cnt++;
                }
-
+               if(page_table[j].dont_move) pinned_cnt++;
                /* Count the number of unboxed pages within the given
                 * generation. */
-               if (page_table[j].allocated == UNBOXED_PAGE) {
+               if (page_table[j].allocated & UNBOXED_PAGE_FLAG) {
                    if (page_table[j].large_object)
                        large_unboxed_cnt++;
                    else
@@ -376,11 +398,12 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
        gc_assert(generations[i].bytes_allocated
                  == count_generation_bytes_allocated(i));
        fprintf(stderr,
-               "   %8d: %5d %5d %5d %5d %8d %5d %8d %4d %3d %7.4f\n",
+               "   %1d: %5d %5d %5d %5d %5d %8ld %5ld %8ld %4ld %3d %7.4f\n",
                i,
                boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
+               pinned_cnt,
                generations[i].bytes_allocated,
-               (count_generation_pages(i)*4096
+               (count_generation_pages(i)*PAGE_BYTES
                 - generations[i].bytes_allocated),
                generations[i].gc_trigger,
                count_write_protect_generation_pages(i),
@@ -405,7 +428,7 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
  * e.g. boxed/unboxed, generation, ages; there may need to be many
  * allocation regions.
  *
- * Each allocation region may be start within a partly used page. Many
+ * Each allocation region may start within a partly used page. Many
  * features of memory use are noted on a page wise basis, e.g. the
  * generation; so if a region starts within an existing allocated page
  * it must be consistent with this page.
@@ -447,10 +470,6 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
 struct alloc_region boxed_region;
 struct alloc_region unboxed_region;
 
-/* XX hack. Current Lisp code uses the following. Need copying in/out. */
-void *current_region_free_pointer;
-void *current_region_end_addr;
-
 /* The generation currently being allocated to. */
 static int gc_alloc_generation;
 
@@ -478,15 +497,12 @@ static int gc_alloc_generation;
  * are allocated, although they will initially be empty.
  */
 static void
-gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
+gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
 {
-    int first_page;
-    int last_page;
-    int region_size;
-    int restart_page;
-    int bytes_found;
-    int num_pages;
-    int i;
+    long first_page;
+    long last_page;
+    long bytes_found;
+    long i;
 
     /*
     FSHOW((stderr,
@@ -498,102 +514,17 @@ gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
     gc_assert((alloc_region->first_page == 0)
              && (alloc_region->last_page == -1)
              && (alloc_region->free_pointer == alloc_region->end_addr));
-
+    get_spinlock(&free_pages_lock,(long) alloc_region);
     if (unboxed) {
-       restart_page =
+       first_page =
            generations[gc_alloc_generation].alloc_unboxed_start_page;
     } else {
-       restart_page =
+       first_page =
            generations[gc_alloc_generation].alloc_start_page;
     }
-
-    /* Search for a contiguous free region of at least nbytes with the
-     * given properties: boxed/unboxed, generation. */
-    do {
-       first_page = restart_page;
-
-       /* First search for a page with at least 32 bytes free, which is
-        * not write-protected, and which is not marked dont_move.
-        *
-        * FIXME: This looks extremely similar, perhaps identical, to
-        * code in gc_alloc_large(). It should be shared somehow. */
-       while ((first_page < NUM_PAGES)
-              && (page_table[first_page].allocated != FREE_PAGE) /* not free page */
-              && ((unboxed &&
-                   (page_table[first_page].allocated != UNBOXED_PAGE))
-                  || (!unboxed &&
-                      (page_table[first_page].allocated != BOXED_PAGE))
-                  || (page_table[first_page].large_object != 0)
-                  || (page_table[first_page].gen != gc_alloc_generation)
-                  || (page_table[first_page].bytes_used >= (4096-32))
-                  || (page_table[first_page].write_protected != 0)
-                  || (page_table[first_page].dont_move != 0)))
-           first_page++;
-       /* Check for a failure. */
-       if (first_page >= NUM_PAGES) {
-           fprintf(stderr,
-                   "Argh! gc_alloc_new_region failed on first_page, nbytes=%d.\n",
-                   nbytes);
-           print_generation_stats(1);
-           lose(NULL);
-       }
-
-       gc_assert(page_table[first_page].write_protected == 0);
-
-       /*
-       FSHOW((stderr,
-              "/first_page=%d bytes_used=%d\n",
-              first_page, page_table[first_page].bytes_used));
-       */
-
-       /* Now search forward to calculate the available region size. It
-        * tries to keeps going until nbytes are found and the number of
-        * pages is greater than some level. This helps keep down the
-        * number of pages in a region. */
-       last_page = first_page;
-       bytes_found = 4096 - page_table[first_page].bytes_used;
-       num_pages = 1;
-       while (((bytes_found < nbytes) || (num_pages < 2))
-              && (last_page < (NUM_PAGES-1))
-              && (page_table[last_page+1].allocated == FREE_PAGE)) {
-           last_page++;
-           num_pages++;
-           bytes_found += 4096;
-           gc_assert(page_table[last_page].write_protected == 0);
-       }
-
-       region_size = (4096 - page_table[first_page].bytes_used)
-           + 4096*(last_page-first_page);
-
-       gc_assert(bytes_found == region_size);
-
-       /*
-       FSHOW((stderr,
-              "/last_page=%d bytes_found=%d num_pages=%d\n",
-              last_page, bytes_found, num_pages));
-       */
-
-       restart_page = last_page + 1;
-    } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
-
-    /* Check for a failure. */
-    if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
-       fprintf(stderr,
-               "Argh! gc_alloc_new_region() failed on restart_page, nbytes=%d.\n",
-               nbytes);
-       print_generation_stats(1);
-       lose(NULL);
-    }
-
-    /*
-    FSHOW((stderr,
-          "/gc_alloc_new_region() gen %d: %d bytes: pages %d to %d: addr=%x\n",
-          gc_alloc_generation,
-          bytes_found,
-          first_page,
-          last_page,
-          page_address(first_page)));
-    */
+    last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
+    bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
+           + PAGE_BYTES*(last_page-first_page);
 
     /* Set up the alloc_region. */
     alloc_region->first_page = first_page;
@@ -603,63 +534,67 @@ gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
     alloc_region->free_pointer = alloc_region->start_addr;
     alloc_region->end_addr = alloc_region->start_addr + bytes_found;
 
-    if (gencgc_zero_check) {
-       int *p;
-       for (p = (int *)alloc_region->start_addr;
-           p < (int *)alloc_region->end_addr; p++) {
-           if (*p != 0) {
-               /* KLUDGE: It would be nice to use %lx and explicit casts
-                * (long) in code like this, so that it is less likely to
-                * break randomly when running on a machine with different
-                * word sizes. -- WHN 19991129 */
-               lose("The new region at %x is not zero.", p);
-           }
-       }
-    }
-
     /* Set up the pages. */
 
     /* The first page may have already been in use. */
     if (page_table[first_page].bytes_used == 0) {
        if (unboxed)
-           page_table[first_page].allocated = UNBOXED_PAGE;
+           page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
        else
-           page_table[first_page].allocated = BOXED_PAGE;
+           page_table[first_page].allocated = BOXED_PAGE_FLAG;
        page_table[first_page].gen = gc_alloc_generation;
        page_table[first_page].large_object = 0;
        page_table[first_page].first_object_offset = 0;
     }
 
     if (unboxed)
-       gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
+       gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
     else
-       gc_assert(page_table[first_page].allocated == BOXED_PAGE);
+       gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
+    page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG; 
+
     gc_assert(page_table[first_page].gen == gc_alloc_generation);
     gc_assert(page_table[first_page].large_object == 0);
 
     for (i = first_page+1; i <= last_page; i++) {
        if (unboxed)
-           page_table[i].allocated = UNBOXED_PAGE;
+           page_table[i].allocated = UNBOXED_PAGE_FLAG;
        else
-           page_table[i].allocated = BOXED_PAGE;
+           page_table[i].allocated = BOXED_PAGE_FLAG;
        page_table[i].gen = gc_alloc_generation;
        page_table[i].large_object = 0;
        /* This may not be necessary for unboxed regions (think it was
         * broken before!) */
        page_table[i].first_object_offset =
            alloc_region->start_addr - page_address(i);
+       page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
     }
-
     /* Bump up last_free_page. */
     if (last_page+1 > last_free_page) {
        last_free_page = last_page+1;
        SetSymbolValue(ALLOCATION_POINTER,
-                      (lispobj)(((char *)heap_base) + last_free_page*4096));
-       if (last_page+1 > last_used_page)
-           last_used_page = last_page+1;
+                      (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),
+                      0);
+    }
+    release_spinlock(&free_pages_lock);
+    
+    /* we can do this after releasing free_pages_lock */
+    if (gencgc_zero_check) {
+       long *p;
+       for (p = (long *)alloc_region->start_addr;
+            p < (long *)alloc_region->end_addr; p++) {
+           if (*p != 0) {
+               /* KLUDGE: It would be nice to use %lx and explicit casts
+                * (long) in code like this, so that it is less likely to
+                * break randomly when running on a machine with different
+                * word sizes. -- WHN 19991129 */
+               lose("The new region at %x is not zero.", p);
+           }
     }
 }
 
+}
+
 /* If the record_new_objects flag is 2 then all new regions created
  * are recorded.
  *
@@ -677,22 +612,22 @@ gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
  * scavenge of a generation. */
 #define NUM_NEW_AREAS 512
 static int record_new_objects = 0;
-static int new_areas_ignore_page;
+static long new_areas_ignore_page;
 struct new_area {
-    int  page;
-    int  offset;
-    int  size;
+    long  page;
+    long  offset;
+    long  size;
 };
 static struct new_area (*new_areas)[];
-static int new_areas_index;
-int max_new_areas;
+static long new_areas_index;
+long max_new_areas;
 
 /* Add a new area to new_areas. */
 static void
-add_new_area(int first_page, int offset, int size)
+add_new_area(long first_page, long offset, long size)
 {
     unsigned new_area_start,c;
-    int i;
+    long i;
 
     /* Ignore if full. */
     if (new_areas_index >= NUM_NEW_AREAS)
@@ -711,13 +646,13 @@ add_new_area(int first_page, int offset, int size)
        gc_abort();
     }
 
-    new_area_start = 4096*first_page + offset;
+    new_area_start = PAGE_BYTES*first_page + offset;
 
     /* Search backwards for a prior area that this follows from. If
        found this will save adding a new area. */
     for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
        unsigned area_end =
-           4096*((*new_areas)[i].page)
+           PAGE_BYTES*((*new_areas)[i].page)
            + (*new_areas)[i].offset
            + (*new_areas)[i].size;
        /*FSHOW((stderr,
@@ -732,12 +667,11 @@ add_new_area(int first_page, int offset, int size)
                   (*new_areas)[i].size,
                   first_page,
                   offset,
-                  size));*/
+                   size);*/
            (*new_areas)[i].size += size;
            return;
        }
     }
-    /*FSHOW((stderr, "/add_new_area S1 %d %d %d\n", i, c, new_area_start));*/
 
     (*new_areas)[new_areas_index].page = first_page;
     (*new_areas)[new_areas_index].offset = offset;
@@ -752,7 +686,7 @@ add_new_area(int first_page, int offset, int size)
        max_new_areas = new_areas_index;
 }
 
-/* Update the tables for the alloc_region. The region maybe added to
+/* Update the tables for the alloc_region. The region may be added to
  * the new_areas.
  *
  * When done the alloc_region is set up so that the next quick alloc
@@ -762,19 +696,14 @@ add_new_area(int first_page, int offset, int size)
 void
 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
 {
-    int more;
-    int first_page;
-    int next_page;
-    int bytes_used;
-    int orig_first_page_bytes_used;
-    int region_size;
-    int byte_cnt;
+    long more;
+    long first_page;
+    long next_page;
+    long bytes_used;
+    long orig_first_page_bytes_used;
+    long region_size;
+    long byte_cnt;
 
-    /*
-    FSHOW((stderr,
-          "/gc_alloc_update_page_tables() to gen %d:\n",
-          gc_alloc_generation));
-    */
 
     first_page = alloc_region->first_page;
 
@@ -784,8 +713,9 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
 
     next_page = first_page+1;
 
-    /* Skip if no bytes were allocated. */
+    get_spinlock(&free_pages_lock,(long) alloc_region);
     if (alloc_region->free_pointer != alloc_region->start_addr) {
+       /* some bytes were allocated in the region */
        orig_first_page_bytes_used = page_table[first_page].bytes_used;
 
        gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
@@ -798,11 +728,12 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
         * first_object_offset. */
        if (page_table[first_page].bytes_used == 0)
            gc_assert(page_table[first_page].first_object_offset == 0);
+       page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
 
        if (unboxed)
-           gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
+           gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
        else
-           gc_assert(page_table[first_page].allocated == BOXED_PAGE);
+           gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
        gc_assert(page_table[first_page].gen == gc_alloc_generation);
        gc_assert(page_table[first_page].large_object == 0);
 
@@ -811,8 +742,8 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
        /* Calculate the number of bytes used in this page. This is not
         * always the number of new bytes, unless it was free. */
        more = 0;
-       if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>4096) {
-           bytes_used = 4096;
+       if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>PAGE_BYTES) {
+           bytes_used = PAGE_BYTES;
            more = 1;
        }
        page_table[first_page].bytes_used = bytes_used;
@@ -823,10 +754,11 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
         * first_object_offset pointer to the start of the region, and set
         * the bytes_used. */
        while (more) {
+           page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
            if (unboxed)
-               gc_assert(page_table[next_page].allocated == UNBOXED_PAGE);
+               gc_assert(page_table[next_page].allocated==UNBOXED_PAGE_FLAG);
            else
-               gc_assert(page_table[next_page].allocated == BOXED_PAGE);
+               gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
            gc_assert(page_table[next_page].bytes_used == 0);
            gc_assert(page_table[next_page].gen == gc_alloc_generation);
            gc_assert(page_table[next_page].large_object == 0);
@@ -837,8 +769,8 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
            /* Calculate the number of bytes used in this page. */
            more = 0;
            if ((bytes_used = (alloc_region->free_pointer
-                              - page_address(next_page)))>4096) {
-               bytes_used = 4096;
+                              - page_address(next_page)))>PAGE_BYTES) {
+               bytes_used = PAGE_BYTES;
                more = 1;
            }
            page_table[next_page].bytes_used = bytes_used;
@@ -874,166 +806,49 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
     } else {
        /* There are no bytes allocated. Unallocate the first_page if
         * there are 0 bytes_used. */
+       page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
        if (page_table[first_page].bytes_used == 0)
-           page_table[first_page].allocated = FREE_PAGE;
+           page_table[first_page].allocated = FREE_PAGE_FLAG;
     }
 
     /* Unallocate any unused pages. */
     while (next_page <= alloc_region->last_page) {
        gc_assert(page_table[next_page].bytes_used == 0);
-       page_table[next_page].allocated = FREE_PAGE;
+       page_table[next_page].allocated = FREE_PAGE_FLAG;
        next_page++;
     }
-
-    /* Reset the alloc_region. */
-    alloc_region->first_page = 0;
-    alloc_region->last_page = -1;
-    alloc_region->start_addr = page_address(0);
-    alloc_region->free_pointer = page_address(0);
-    alloc_region->end_addr = page_address(0);
+    release_spinlock(&free_pages_lock);
+    /* alloc_region is per-thread, we're ok to do this unlocked */
+    gc_set_region_empty(alloc_region);
 }
 
-static inline void *gc_quick_alloc(int nbytes);
+static inline void *gc_quick_alloc(long nbytes);
 
 /* Allocate a possibly large object. */
-static void *
-gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
+void *
+gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
 {
-    int first_page;
-    int last_page;
-    int region_size;
-    int restart_page;
-    int bytes_found;
-    int num_pages;
-    int orig_first_page_bytes_used;
-    int byte_cnt;
-    int more;
-    int bytes_used;
-    int next_page;
-    int large = (nbytes >= large_object_size);
-
-    /*
-    if (nbytes > 200000)
-       FSHOW((stderr, "/alloc_large %d\n", nbytes));
-    */
+    long first_page;
+    long last_page;
+    long orig_first_page_bytes_used;
+    long byte_cnt;
+    long more;
+    long bytes_used;
+    long next_page;
 
-    /*
-    FSHOW((stderr,
-          "/gc_alloc_large() for %d bytes from gen %d\n",
-          nbytes, gc_alloc_generation));
-    */
+    get_spinlock(&free_pages_lock,(long) alloc_region);
 
-    /* If the object is small, and there is room in the current region
-       then allocation it in the current region. */
-    if (!large
-       && ((alloc_region->end_addr-alloc_region->free_pointer) >= nbytes))
-       return gc_quick_alloc(nbytes);
-
-    /* Search for a contiguous free region of at least nbytes. If it's a
-       large object then align it on a page boundary by searching for a
-       free page. */
-
-    /* To allow the allocation of small objects without the danger of
-       using a page in the current boxed region, the search starts after
-       the current boxed free region. XX could probably keep a page
-       index ahead of the current region and bumped up here to save a
-       lot of re-scanning. */
     if (unboxed) {
-       restart_page =
+       first_page =
            generations[gc_alloc_generation].alloc_large_unboxed_start_page;
     } else {
-       restart_page = generations[gc_alloc_generation].alloc_large_start_page;
-    }
-    if (restart_page <= alloc_region->last_page) {
-       restart_page = alloc_region->last_page+1;
+       first_page = generations[gc_alloc_generation].alloc_large_start_page;
     }
-
-    do {
-       first_page = restart_page;
-
-       if (large)
-           while ((first_page < NUM_PAGES)
-                  && (page_table[first_page].allocated != FREE_PAGE))
-               first_page++;
-       else
-           /* FIXME: This looks extremely similar, perhaps identical,
-            * to code in gc_alloc_new_region(). It should be shared
-            * somehow. */
-           while ((first_page < NUM_PAGES)
-                  && (page_table[first_page].allocated != FREE_PAGE)
-                  && ((unboxed &&
-                       (page_table[first_page].allocated != UNBOXED_PAGE))
-                      || (!unboxed &&
-                          (page_table[first_page].allocated != BOXED_PAGE))
-                      || (page_table[first_page].large_object != 0)
-                      || (page_table[first_page].gen != gc_alloc_generation)
-                      || (page_table[first_page].bytes_used >= (4096-32))
-                      || (page_table[first_page].write_protected != 0)
-                      || (page_table[first_page].dont_move != 0)))
-               first_page++;
-
-       if (first_page >= NUM_PAGES) {
-           fprintf(stderr,
-                   "Argh! gc_alloc_large failed (first_page), nbytes=%d.\n",
-                   nbytes);
-           print_generation_stats(1);
-           lose(NULL);
-       }
-
-       gc_assert(page_table[first_page].write_protected == 0);
-
-       /*
-       FSHOW((stderr,
-              "/first_page=%d bytes_used=%d\n",
-              first_page, page_table[first_page].bytes_used));
-       */
-
-       last_page = first_page;
-       bytes_found = 4096 - page_table[first_page].bytes_used;
-       num_pages = 1;
-       while ((bytes_found < nbytes)
-              && (last_page < (NUM_PAGES-1))
-              && (page_table[last_page+1].allocated == FREE_PAGE)) {
-           last_page++;
-           num_pages++;
-           bytes_found += 4096;
-           gc_assert(page_table[last_page].write_protected == 0);
-       }
-
-       region_size = (4096 - page_table[first_page].bytes_used)
-           + 4096*(last_page-first_page);
-
-       gc_assert(bytes_found == region_size);
-
-       /*
-       FSHOW((stderr,
-              "/last_page=%d bytes_found=%d num_pages=%d\n",
-              last_page, bytes_found, num_pages));
-       */
-
-       restart_page = last_page + 1;
-    } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
-
-    /* Check for a failure */
-    if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
-       fprintf(stderr,
-               "Argh! gc_alloc_large failed (restart_page), nbytes=%d.\n",
-               nbytes);
-       print_generation_stats(1);
-       lose(NULL);
+    if (first_page <= alloc_region->last_page) {
+       first_page = alloc_region->last_page+1;
     }
 
-    /*
-    if (large)
-       FSHOW((stderr,
-              "/gc_alloc_large() gen %d: %d of %d bytes: from pages %d to %d: addr=%x\n",
-              gc_alloc_generation,
-              nbytes,
-              bytes_found,
-              first_page,
-              last_page,
-              page_address(first_page)));
-    */
+    last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
 
     gc_assert(first_page > alloc_region->last_page);
     if (unboxed)
@@ -1049,28 +864,28 @@ gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
      * first_object_offset. */
     if (page_table[first_page].bytes_used == 0) {
        if (unboxed)
-           page_table[first_page].allocated = UNBOXED_PAGE;
+           page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
        else
-           page_table[first_page].allocated = BOXED_PAGE;
+           page_table[first_page].allocated = BOXED_PAGE_FLAG;
        page_table[first_page].gen = gc_alloc_generation;
        page_table[first_page].first_object_offset = 0;
-       page_table[first_page].large_object = large;
+       page_table[first_page].large_object = 1;
     }
 
     if (unboxed)
-       gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
+       gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
     else
-       gc_assert(page_table[first_page].allocated == BOXED_PAGE);
+       gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
     gc_assert(page_table[first_page].gen == gc_alloc_generation);
-    gc_assert(page_table[first_page].large_object == large);
+    gc_assert(page_table[first_page].large_object == 1);
 
     byte_cnt = 0;
 
     /* Calc. the number of bytes used in this page. This is not
      * always the number of new bytes, unless it was free. */
     more = 0;
-    if ((bytes_used = nbytes+orig_first_page_bytes_used) > 4096) {
-       bytes_used = 4096;
+    if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
+       bytes_used = PAGE_BYTES;
        more = 1;
     }
     page_table[first_page].bytes_used = bytes_used;
@@ -1082,27 +897,28 @@ gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
      * first_object_offset pointer to the start of the region, and
      * set the bytes_used. */
     while (more) {
-       gc_assert(page_table[next_page].allocated == FREE_PAGE);
+       gc_assert(page_table[next_page].allocated == FREE_PAGE_FLAG);
        gc_assert(page_table[next_page].bytes_used == 0);
        if (unboxed)
-           page_table[next_page].allocated = UNBOXED_PAGE;
+           page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
        else
-           page_table[next_page].allocated = BOXED_PAGE;
+           page_table[next_page].allocated = BOXED_PAGE_FLAG;
        page_table[next_page].gen = gc_alloc_generation;
-       page_table[next_page].large_object = large;
+       page_table[next_page].large_object = 1;
 
        page_table[next_page].first_object_offset =
-           orig_first_page_bytes_used - 4096*(next_page-first_page);
+           orig_first_page_bytes_used - PAGE_BYTES*(next_page-first_page);
 
        /* Calculate the number of bytes used in this page. */
        more = 0;
-       if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > 4096) {
-           bytes_used = 4096;
+       if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > PAGE_BYTES) {
+           bytes_used = PAGE_BYTES;
            more = 1;
        }
        page_table[next_page].bytes_used = bytes_used;
+       page_table[next_page].write_protected=0;
+       page_table[next_page].dont_move=0;
        byte_cnt += bytes_used;
-
        next_page++;
     }
 
@@ -1119,345 +935,206 @@ gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
     if (last_page+1 > last_free_page) {
        last_free_page = last_page+1;
        SetSymbolValue(ALLOCATION_POINTER,
-                      (lispobj)(((char *)heap_base) + last_free_page*4096));
-       if (last_page+1 > last_used_page)
-           last_used_page = last_page+1;
+                      (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),0);
     }
+    release_spinlock(&free_pages_lock);
 
     return((void *)(page_address(first_page)+orig_first_page_bytes_used));
 }
 
-/* Allocate bytes from the boxed_region. First checks whether there is
- * room. If not then call gc_alloc_new_region() to find a new region
- * with enough space. Return a pointer to the start of the region. */
-static void *
-gc_alloc(int nbytes)
+long
+gc_find_freeish_pages(long *restart_page_ptr, long nbytes, int unboxed)
 {
-    void *new_free_pointer;
+    long first_page;
+    long last_page;
+    long region_size;
+    long restart_page=*restart_page_ptr;
+    long bytes_found;
+    long num_pages;
+    long large_p=(nbytes>=large_object_size);
+    gc_assert(free_pages_lock);
 
-    /* FSHOW((stderr, "/gc_alloc %d\n", nbytes)); */
+    /* Search for a contiguous free space of at least nbytes. If it's
+     * a large object then align it on a page boundary by searching
+     * for a free page. */
 
-    /* Check whether there is room in the current alloc region. */
-    new_free_pointer = boxed_region.free_pointer + nbytes;
+    do {
+       first_page = restart_page;
+       if (large_p)            
+           while ((first_page < NUM_PAGES)
+                  && (page_table[first_page].allocated != FREE_PAGE_FLAG))
+               first_page++;
+       else
+           while (first_page < NUM_PAGES) {
+               if(page_table[first_page].allocated == FREE_PAGE_FLAG)
+                   break;
+               if((page_table[first_page].allocated ==
+                   (unboxed ? UNBOXED_PAGE_FLAG : BOXED_PAGE_FLAG)) &&
+                  (page_table[first_page].large_object == 0) &&
+                  (page_table[first_page].gen == gc_alloc_generation) &&
+                  (page_table[first_page].bytes_used < (PAGE_BYTES-32)) &&
+                  (page_table[first_page].write_protected == 0) &&
+                  (page_table[first_page].dont_move == 0)) {
+                   break;
+               }
+               first_page++;
+           }
+       
+       if (first_page >= NUM_PAGES) {
+           fprintf(stderr,
+                   "Argh! gc_find_free_space failed (first_page), nbytes=%ld.\n",
+                   nbytes);
+           print_generation_stats(1);
+           lose(NULL);
+       }
 
-    if (new_free_pointer <= boxed_region.end_addr) {
-       /* If so then allocate from the current alloc region. */
-       void *new_obj = boxed_region.free_pointer;
-       boxed_region.free_pointer = new_free_pointer;
+       gc_assert(page_table[first_page].write_protected == 0);
 
-       /* Check whether the alloc region is almost empty. */
-       if ((boxed_region.end_addr - boxed_region.free_pointer) <= 32) {
-           /* If so finished with the current region. */
-           gc_alloc_update_page_tables(0, &boxed_region);
-           /* Set up a new region. */
-           gc_alloc_new_region(32, 0, &boxed_region);
+       last_page = first_page;
+       bytes_found = PAGE_BYTES - page_table[first_page].bytes_used;
+       num_pages = 1;
+       while (((bytes_found < nbytes) 
+               || (!large_p && (num_pages < 2)))
+              && (last_page < (NUM_PAGES-1))
+              && (page_table[last_page+1].allocated == FREE_PAGE_FLAG)) {
+           last_page++;
+           num_pages++;
+           bytes_found += PAGE_BYTES;
+           gc_assert(page_table[last_page].write_protected == 0);
        }
-       return((void *)new_obj);
-    }
-
-    /* Else not enough free space in the current region. */
 
-    /* If there some room left in the current region, enough to be worth
-     * saving, then allocate a large object. */
-    /* FIXME: "32" should be a named parameter. */
-    if ((boxed_region.end_addr-boxed_region.free_pointer) > 32)
-       return gc_alloc_large(nbytes, 0, &boxed_region);
+       region_size = (PAGE_BYTES - page_table[first_page].bytes_used)
+           + PAGE_BYTES*(last_page-first_page);
 
-    /* Else find a new region. */
+       gc_assert(bytes_found == region_size);
+       restart_page = last_page + 1;
+    } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
 
-    /* Finished with the current region. */
-    gc_alloc_update_page_tables(0, &boxed_region);
+    /* Check for a failure */
+    if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
+       fprintf(stderr,
+               "Argh! gc_find_freeish_pages failed (restart_page), nbytes=%ld.\n",
+               nbytes);
+       print_generation_stats(1);
+       lose(NULL);
+    }
+    *restart_page_ptr=first_page;
+    return last_page;
+}
 
-    /* Set up a new region. */
-    gc_alloc_new_region(nbytes, 0, &boxed_region);
+/* Allocate bytes.  All the rest of the special-purpose allocation
+ * functions will eventually call this  */
 
-    /* Should now be enough room. */
+void *
+gc_alloc_with_region(long nbytes,int unboxed_p, struct alloc_region *my_region,
+                    int quick_p)
+{
+    void *new_free_pointer;
 
-    /* Check whether there is room in the current region. */
-    new_free_pointer = boxed_region.free_pointer + nbytes;
+    if(nbytes>=large_object_size)
+       return gc_alloc_large(nbytes,unboxed_p,my_region);
 
-    if (new_free_pointer <= boxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = boxed_region.free_pointer;
-       boxed_region.free_pointer = new_free_pointer;
+    /* Check whether there is room in the current alloc region. */
+    new_free_pointer = my_region->free_pointer + nbytes;
 
-       /* Check whether the current region is almost empty. */
-       if ((boxed_region.end_addr - boxed_region.free_pointer) <= 32) {
-           /* If so find, finished with the current region. */
-           gc_alloc_update_page_tables(0, &boxed_region);
+    /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
+       my_region->free_pointer, new_free_pointer); */
 
+    if (new_free_pointer <= my_region->end_addr) {
+       /* If so then allocate from the current alloc region. */
+       void *new_obj = my_region->free_pointer;
+       my_region->free_pointer = new_free_pointer;
+
+       /* Unless a `quick' alloc was requested, check whether the
+          alloc region is almost empty. */
+       if (!quick_p &&
+           (my_region->end_addr - my_region->free_pointer) <= 32) {
+           /* If so, finished with the current region. */
+           gc_alloc_update_page_tables(unboxed_p, my_region);
            /* Set up a new region. */
-           gc_alloc_new_region(32, 0, &boxed_region);
+           gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
        }
 
        return((void *)new_obj);
     }
 
-    /* shouldn't happen */
-    gc_assert(0);
-    return((void *) NIL); /* dummy value: return something ... */
-}
+    /* Else not enough free space in the current region: retry with a
+     * new region. */
 
-/* Allocate space from the boxed_region. If there is not enough free
- * space then call gc_alloc to do the job. A pointer to the start of
- * the region is returned. */
-static inline void *
-gc_quick_alloc(int nbytes)
-{
-    void *new_free_pointer;
+    gc_alloc_update_page_tables(unboxed_p, my_region);
+    gc_alloc_new_region(nbytes, unboxed_p, my_region);
+    return gc_alloc_with_region(nbytes,unboxed_p,my_region,0);
+}
 
-    /* Check whether there is room in the current region. */
-    new_free_pointer = boxed_region.free_pointer + nbytes;
+/* these are only used during GC: all allocation from the mutator calls
+ * alloc() -> gc_alloc_with_region() with the appropriate per-thread 
+ * region */
 
-    if (new_free_pointer <= boxed_region.end_addr) {
-       /* Allocate from the current region. */
-       void  *new_obj = boxed_region.free_pointer;
-       boxed_region.free_pointer = new_free_pointer;
-       return((void *)new_obj);
-    } else {
-       /* Let full gc_alloc() handle it. */
-       return gc_alloc(nbytes);
-    }
+void *
+gc_general_alloc(long nbytes,int unboxed_p,int quick_p)
+{
+    struct alloc_region *my_region = 
+      unboxed_p ? &unboxed_region : &boxed_region;
+    return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
 }
 
-/* Allocate space for the boxed object. If it is a large object then
- * do a large alloc else allocate from the current region. If there is
- * not enough free space then call gc_alloc() to do the job. A pointer
- * to the start of the region is returned. */
 static inline void *
-gc_quick_alloc_large(int nbytes)
+gc_quick_alloc(long nbytes)
 {
-    void *new_free_pointer;
+    return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
+}
 
-    if (nbytes >= large_object_size)
-       return gc_alloc_large(nbytes, 0, &boxed_region);
+static inline void *
+gc_quick_alloc_large(long nbytes)
+{
+    return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
+}
 
-    /* Check whether there is room in the current region. */
-    new_free_pointer = boxed_region.free_pointer + nbytes;
+static inline void *
+gc_alloc_unboxed(long nbytes)
+{
+    return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
+}
 
-    if (new_free_pointer <= boxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = boxed_region.free_pointer;
-       boxed_region.free_pointer = new_free_pointer;
-       return((void *)new_obj);
-    } else {
-       /* Let full gc_alloc() handle it. */
-       return gc_alloc(nbytes);
-    }
+static inline void *
+gc_quick_alloc_unboxed(long nbytes)
+{
+    return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
 }
 
-static void *
-gc_alloc_unboxed(int nbytes)
+static inline void *
+gc_quick_alloc_large_unboxed(long nbytes)
 {
-    void *new_free_pointer;
+    return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
+}
+\f
+/*
+ * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
+ */
 
-    /*
-    FSHOW((stderr, "/gc_alloc_unboxed() %d\n", nbytes));
-    */
+extern long (*scavtab[256])(lispobj *where, lispobj object);
+extern lispobj (*transother[256])(lispobj object);
+extern long (*sizetab[256])(lispobj *where);
 
-    /* Check whether there is room in the current region. */
-    new_free_pointer = unboxed_region.free_pointer + nbytes;
+/* Copy a large boxed object. If the object is in a large object
+ * region then it is simply promoted, else it is copied. If it's large
+ * enough then it's copied to a large object region.
+ *
+ * Vectors may have shrunk. If the object is not copied the space
+ * needs to be reclaimed, and the page_tables corrected. */
+lispobj
+copy_large_object(lispobj object, long nwords)
+{
+    int tag;
+    lispobj *new;
+    long first_page;
 
-    if (new_free_pointer <= unboxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = unboxed_region.free_pointer;
-       unboxed_region.free_pointer = new_free_pointer;
+    gc_assert(is_lisp_pointer(object));
+    gc_assert(from_space_p(object));
+    gc_assert((nwords & 0x01) == 0);
 
-       /* Check whether the current region is almost empty. */
-       if ((unboxed_region.end_addr - unboxed_region.free_pointer) <= 32) {
-           /* If so finished with the current region. */
-           gc_alloc_update_page_tables(1, &unboxed_region);
 
-           /* Set up a new region. */
-           gc_alloc_new_region(32, 1, &unboxed_region);
-       }
-
-       return((void *)new_obj);
-    }
-
-    /* Else not enough free space in the current region. */
-
-    /* If there is a bit of room left in the current region then
-       allocate a large object. */
-    if ((unboxed_region.end_addr-unboxed_region.free_pointer) > 32)
-       return gc_alloc_large(nbytes,1,&unboxed_region);
-
-    /* Else find a new region. */
-
-    /* Finished with the current region. */
-    gc_alloc_update_page_tables(1, &unboxed_region);
-
-    /* Set up a new region. */
-    gc_alloc_new_region(nbytes, 1, &unboxed_region);
-
-    /* (There should now be enough room.) */
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = unboxed_region.free_pointer + nbytes;
-
-    if (new_free_pointer <= unboxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = unboxed_region.free_pointer;
-       unboxed_region.free_pointer = new_free_pointer;
-
-       /* Check whether the current region is almost empty. */
-       if ((unboxed_region.end_addr - unboxed_region.free_pointer) <= 32) {
-           /* If so find, finished with the current region. */
-           gc_alloc_update_page_tables(1, &unboxed_region);
-
-           /* Set up a new region. */
-           gc_alloc_new_region(32, 1, &unboxed_region);
-       }
-
-       return((void *)new_obj);
-    }
-
-    /* shouldn't happen? */
-    gc_assert(0);
-    return((void *) NIL); /* dummy value: return something ... */
-}
-
-static inline void *
-gc_quick_alloc_unboxed(int nbytes)
-{
-    void *new_free_pointer;
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = unboxed_region.free_pointer + nbytes;
-
-    if (new_free_pointer <= unboxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = unboxed_region.free_pointer;
-       unboxed_region.free_pointer = new_free_pointer;
-
-       return((void *)new_obj);
-    } else {
-       /* Let general gc_alloc_unboxed() handle it. */
-       return gc_alloc_unboxed(nbytes);
-    }
-}
-
-/* Allocate space for the object. If it is a large object then do a
- * large alloc else allocate from the current region. If there is not
- * enough free space then call general gc_alloc_unboxed() to do the job.
- *
- * A pointer to the start of the region is returned. */
-static inline void *
-gc_quick_alloc_large_unboxed(int nbytes)
-{
-    void *new_free_pointer;
-
-    if (nbytes >= large_object_size)
-       return gc_alloc_large(nbytes,1,&unboxed_region);
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = unboxed_region.free_pointer + nbytes;
-    if (new_free_pointer <= unboxed_region.end_addr) {
-       /* Allocate from the current region. */
-       void *new_obj = unboxed_region.free_pointer;
-       unboxed_region.free_pointer = new_free_pointer;
-       return((void *)new_obj);
-    } else {
-       /* Let full gc_alloc() handle it. */
-       return gc_alloc_unboxed(nbytes);
-    }
-}
-\f
-/*
- * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
- */
-
-static int (*scavtab[256])(lispobj *where, lispobj object);
-static lispobj (*transother[256])(lispobj object);
-static int (*sizetab[256])(lispobj *where);
-
-static struct weak_pointer *weak_pointers;
-
-#define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
-\f
-/*
- * predicates
- */
-
-static inline boolean
-from_space_p(lispobj obj)
-{
-    int page_index=(void*)obj - heap_base;
-    return ((page_index >= 0)
-           && ((page_index = ((unsigned int)page_index)/4096) < NUM_PAGES)
-           && (page_table[page_index].gen == from_space));
-}
-
-static inline boolean
-new_space_p(lispobj obj)
-{
-    int page_index = (void*)obj - heap_base;
-    return ((page_index >= 0)
-           && ((page_index = ((unsigned int)page_index)/4096) < NUM_PAGES)
-           && (page_table[page_index].gen == new_space));
-}
-\f
-/*
- * copying objects
- */
-
-/* to copy a boxed object */
-static inline lispobj
-copy_object(lispobj object, int nwords)
-{
-    int tag;
-    lispobj *new;
-    lispobj *source, *dest;
-
-    gc_assert(is_lisp_pointer(object));
-    gc_assert(from_space_p(object));
-    gc_assert((nwords & 0x01) == 0);
-
-    /* Get tag of object. */
-    tag = LowtagOf(object);
-
-    /* Allocate space. */
-    new = gc_quick_alloc(nwords*4);
-
-    dest = new;
-    source = (lispobj *) native_pointer(object);
-
-    /* Copy the object. */
-    while (nwords > 0) {
-       dest[0] = source[0];
-       dest[1] = source[1];
-       dest += 2;
-       source += 2;
-       nwords -= 2;
-    }
-
-    /* Return Lisp pointer of new object. */
-    return ((lispobj) new) | tag;
-}
-
-/* to copy a large boxed object. If the object is in a large object
- * region then it is simply promoted, else it is copied. If it's large
- * enough then it's copied to a large object region.
- *
- * Vectors may have shrunk. If the object is not copied the space
- * needs to be reclaimed, and the page_tables corrected. */
-static lispobj
-copy_large_object(lispobj object, int nwords)
-{
-    int tag;
-    lispobj *new;
-    lispobj *source, *dest;
-    int first_page;
-
-    gc_assert(is_lisp_pointer(object));
-    gc_assert(from_space_p(object));
-    gc_assert((nwords & 0x01) == 0);
-
-    if ((nwords > 1024*1024) && gencgc_verbose) {
-       FSHOW((stderr, "/copy_large_object: %d bytes\n", nwords*4));
-    }
-
-    /* Check whether it's a large object. */
+    /* Check whether it's in a large object region. */
     first_page = find_page_index((void *)object);
     gc_assert(first_page >= 0);
 
@@ -1465,10 +1142,10 @@ copy_large_object(lispobj object, int nwords)
 
        /* Promote the object. */
 
-       int remaining_bytes;
-       int next_page;
-       int bytes_freed;
-       int old_bytes_used;
+       long remaining_bytes;
+       long next_page;
+       long bytes_freed;
+       long old_bytes_used;
 
        /* Note: Any page write-protection must be removed, else a
         * later scavenge_newspace may incorrectly not scavenge these
@@ -1479,24 +1156,24 @@ copy_large_object(lispobj object, int nwords)
        gc_assert(page_table[first_page].first_object_offset == 0);
 
        next_page = first_page;
-       remaining_bytes = nwords*4;
-       while (remaining_bytes > 4096) {
+       remaining_bytes = nwords*N_WORD_BYTES;
+       while (remaining_bytes > PAGE_BYTES) {
            gc_assert(page_table[next_page].gen == from_space);
-           gc_assert(page_table[next_page].allocated == BOXED_PAGE);
+           gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
            gc_assert(page_table[next_page].large_object);
            gc_assert(page_table[next_page].first_object_offset==
-                     -4096*(next_page-first_page));
-           gc_assert(page_table[next_page].bytes_used == 4096);
+                     -PAGE_BYTES*(next_page-first_page));
+           gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
 
            page_table[next_page].gen = new_space;
 
            /* Remove any write-protection. We should be able to rely
             * on the write-protect flag to avoid redundant calls. */
            if (page_table[next_page].write_protected) {
-               os_protect(page_address(next_page), 4096, OS_VM_PROT_ALL);
+               os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
                page_table[next_page].write_protected = 0;
            }
-           remaining_bytes -= 4096;
+           remaining_bytes -= PAGE_BYTES;
            next_page++;
        }
 
@@ -1507,7 +1184,7 @@ copy_large_object(lispobj object, int nwords)
        gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
 
        page_table[next_page].gen = new_space;
-       gc_assert(page_table[next_page].allocated = BOXED_PAGE);
+       gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
 
        /* Adjust the bytes_used. */
        old_bytes_used = page_table[next_page].bytes_used;
@@ -1517,54 +1194,42 @@ copy_large_object(lispobj object, int nwords)
 
        /* Free any remaining pages; needs care. */
        next_page++;
-       while ((old_bytes_used == 4096) &&
+       while ((old_bytes_used == PAGE_BYTES) &&
               (page_table[next_page].gen == from_space) &&
-              (page_table[next_page].allocated == BOXED_PAGE) &&
+              (page_table[next_page].allocated == BOXED_PAGE_FLAG) &&
               page_table[next_page].large_object &&
               (page_table[next_page].first_object_offset ==
-               -(next_page - first_page)*4096)) {
-           /* Checks out OK, free the page. Don't need to both zeroing
+               -(next_page - first_page)*PAGE_BYTES)) {
+           /* Checks out OK, free the page. Don't need to bother zeroing
             * pages as this should have been done before shrinking the
             * object. These pages shouldn't be write-protected as they
             * should be zero filled. */
            gc_assert(page_table[next_page].write_protected == 0);
 
            old_bytes_used = page_table[next_page].bytes_used;
-           page_table[next_page].allocated = FREE_PAGE;
+           page_table[next_page].allocated = FREE_PAGE_FLAG;
            page_table[next_page].bytes_used = 0;
            bytes_freed += old_bytes_used;
            next_page++;
        }
 
-       if ((bytes_freed > 0) && gencgc_verbose)
-           FSHOW((stderr, "/copy_large_boxed bytes_freed=%d\n", bytes_freed));
-
-       generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
-       generations[new_space].bytes_allocated += 4*nwords;
+       generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords +
+         bytes_freed;
+       generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
        bytes_allocated -= bytes_freed;
 
        /* Add the region to the new_areas if requested. */
-       add_new_area(first_page,0,nwords*4);
+       add_new_area(first_page,0,nwords*N_WORD_BYTES);
 
        return(object);
     } else {
        /* Get tag of object. */
-       tag = LowtagOf(object);
+       tag = lowtag_of(object);
 
        /* Allocate space. */
-       new = gc_quick_alloc_large(nwords*4);
-
-       dest = new;
-       source = (lispobj *) native_pointer(object);
-
-       /* Copy the object. */
-       while (nwords > 0) {
-           dest[0] = source[0];
-           dest[1] = source[1];
-           dest += 2;
-           source += 2;
-           nwords -= 2;
-       }
+       new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
+
+       memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
 
        /* Return Lisp pointer of new object. */
        return ((lispobj) new) | tag;
@@ -1572,34 +1237,23 @@ copy_large_object(lispobj object, int nwords)
 }
 
 /* to copy unboxed objects */
-static inline lispobj
-copy_unboxed_object(lispobj object, int nwords)
+lispobj
+copy_unboxed_object(lispobj object, long nwords)
 {
-    int tag;
+    long tag;
     lispobj *new;
-    lispobj *source, *dest;
 
     gc_assert(is_lisp_pointer(object));
     gc_assert(from_space_p(object));
     gc_assert((nwords & 0x01) == 0);
 
     /* Get tag of object. */
-    tag = LowtagOf(object);
+    tag = lowtag_of(object);
 
     /* Allocate space. */
-    new = gc_quick_alloc_unboxed(nwords*4);
-
-    dest = new;
-    source = (lispobj *) native_pointer(object);
-
-    /* Copy the object. */
-    while (nwords > 0) {
-       dest[0] = source[0];
-       dest[1] = source[1];
-       dest += 2;
-       source += 2;
-       nwords -= 2;
-    }
+    new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
+
+    memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
 
     /* Return Lisp pointer of new object. */
     return ((lispobj) new) | tag;
@@ -1616,20 +1270,19 @@ copy_unboxed_object(lispobj object, int nwords)
  *
  * KLUDGE: There's a lot of cut-and-paste duplication between this
  * function and copy_large_object(..). -- WHN 20000619 */
-static lispobj
-copy_large_unboxed_object(lispobj object, int nwords)
+lispobj
+copy_large_unboxed_object(lispobj object, long nwords)
 {
     int tag;
     lispobj *new;
-    lispobj *source, *dest;
-    int first_page;
+    long first_page;
 
     gc_assert(is_lisp_pointer(object));
     gc_assert(from_space_p(object));
     gc_assert((nwords & 0x01) == 0);
 
     if ((nwords > 1024*1024) && gencgc_verbose)
-       FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*4));
+       FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*N_WORD_BYTES));
 
     /* Check whether it's a large object. */
     first_page = find_page_index((void *)object);
@@ -1639,27 +1292,27 @@ copy_large_unboxed_object(lispobj object, int nwords)
        /* Promote the object. Note: Unboxed objects may have been
         * allocated to a BOXED region so it may be necessary to
         * change the region to UNBOXED. */
-       int remaining_bytes;
-       int next_page;
-       int bytes_freed;
-       int old_bytes_used;
+       long remaining_bytes;
+       long next_page;
+       long bytes_freed;
+       long old_bytes_used;
 
        gc_assert(page_table[first_page].first_object_offset == 0);
 
        next_page = first_page;
-       remaining_bytes = nwords*4;
-       while (remaining_bytes > 4096) {
+       remaining_bytes = nwords*N_WORD_BYTES;
+       while (remaining_bytes > PAGE_BYTES) {
            gc_assert(page_table[next_page].gen == from_space);
-           gc_assert((page_table[next_page].allocated == UNBOXED_PAGE)
-                     || (page_table[next_page].allocated == BOXED_PAGE));
+           gc_assert((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
+                     || (page_table[next_page].allocated == BOXED_PAGE_FLAG));
            gc_assert(page_table[next_page].large_object);
            gc_assert(page_table[next_page].first_object_offset==
-                     -4096*(next_page-first_page));
-           gc_assert(page_table[next_page].bytes_used == 4096);
+                     -PAGE_BYTES*(next_page-first_page));
+           gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
 
            page_table[next_page].gen = new_space;
-           page_table[next_page].allocated = UNBOXED_PAGE;
-           remaining_bytes -= 4096;
+           page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
+           remaining_bytes -= PAGE_BYTES;
            next_page++;
        }
 
@@ -1670,7 +1323,7 @@ copy_large_unboxed_object(lispobj object, int nwords)
        gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
 
        page_table[next_page].gen = new_space;
-       page_table[next_page].allocated = UNBOXED_PAGE;
+       page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
 
        /* Adjust the bytes_used. */
        old_bytes_used = page_table[next_page].bytes_used;
@@ -1680,13 +1333,13 @@ copy_large_unboxed_object(lispobj object, int nwords)
 
        /* Free any remaining pages; needs care. */
        next_page++;
-       while ((old_bytes_used == 4096) &&
+       while ((old_bytes_used == PAGE_BYTES) &&
               (page_table[next_page].gen == from_space) &&
-              ((page_table[next_page].allocated == UNBOXED_PAGE)
-               || (page_table[next_page].allocated == BOXED_PAGE)) &&
+              ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
+               || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
               page_table[next_page].large_object &&
               (page_table[next_page].first_object_offset ==
-               -(next_page - first_page)*4096)) {
+               -(next_page - first_page)*PAGE_BYTES)) {
            /* Checks out OK, free the page. Don't need to both zeroing
             * pages as this should have been done before shrinking the
             * object. These pages shouldn't be write-protected, even if
@@ -1694,7 +1347,7 @@ copy_large_unboxed_object(lispobj object, int nwords)
            gc_assert(page_table[next_page].write_protected == 0);
 
            old_bytes_used = page_table[next_page].bytes_used;
-           page_table[next_page].allocated = FREE_PAGE;
+           page_table[next_page].allocated = FREE_PAGE_FLAG;
            page_table[next_page].bytes_used = 0;
            bytes_freed += old_bytes_used;
            next_page++;
@@ -1705,136 +1358,38 @@ copy_large_unboxed_object(lispobj object, int nwords)
                   "/copy_large_unboxed bytes_freed=%d\n",
                   bytes_freed));
 
-       generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
-       generations[new_space].bytes_allocated += 4*nwords;
+       generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES + bytes_freed;
+       generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
        bytes_allocated -= bytes_freed;
 
        return(object);
     }
     else {
        /* Get tag of object. */
-       tag = LowtagOf(object);
+       tag = lowtag_of(object);
 
        /* Allocate space. */
-       new = gc_quick_alloc_large_unboxed(nwords*4);
-
-       dest = new;
-       source = (lispobj *) native_pointer(object);
-
-       /* Copy the object. */
-       while (nwords > 0) {
-           dest[0] = source[0];
-           dest[1] = source[1];
-           dest += 2;
-           source += 2;
-           nwords -= 2;
-       }
+       new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
+
+        /* Copy the object. */
+        memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
 
        /* Return Lisp pointer of new object. */
        return ((lispobj) new) | tag;
     }
 }
-\f
-/*
- * scavenging
- */
 
-/* FIXME: Most calls end up going to some trouble to compute an
- * 'n_words' value for this function. The system might be a little
- * simpler if this function used an 'end' parameter instead. */
-static void
-scavenge(lispobj *start, long n_words)
-{
-    lispobj *end = start + n_words;
-    lispobj *object_ptr;
-    int n_words_scavenged;
-    
-    for (object_ptr = start;
-        object_ptr < end;
-        object_ptr += n_words_scavenged) {
 
-       lispobj object = *object_ptr;
-       
-       gc_assert(object != 0x01); /* not a forwarding pointer */
-
-       if (is_lisp_pointer(object)) {
-           if (from_space_p(object)) {
-               /* It currently points to old space. Check for a
-                * forwarding pointer. */
-               lispobj *ptr = (lispobj *)native_pointer(object);
-               lispobj first_word = *ptr;
-               if (first_word == 0x01) {
-                   /* Yes, there's a forwarding pointer. */
-                   *object_ptr = ptr[1];
-                   n_words_scavenged = 1;
-               } else {
-                   /* Scavenge that pointer. */
-                   n_words_scavenged =
-                       (scavtab[TypeOf(object)])(object_ptr, object);
-               }
-           } else {
-               /* It points somewhere other than oldspace. Leave it
-                * alone. */
-               n_words_scavenged = 1;
-           }
-       } else if ((object & 3) == 0) {
-           /* It's a fixnum: really easy.. */
-           n_words_scavenged = 1;
-       } else {
-           /* It's some sort of header object or another. */
-           n_words_scavenged =
-               (scavtab[TypeOf(object)])(object_ptr, object);
-       }
-    }
-    gc_assert(object_ptr == end);
-}
+
 \f
+
 /*
  * code and code-related objects
  */
-
-#define RAW_ADDR_OFFSET (6*sizeof(lispobj) - type_FunctionPointer)
-
-static lispobj trans_function_header(lispobj object);
+/*
+static lispobj trans_fun_header(lispobj object);
 static lispobj trans_boxed(lispobj object);
-
-static int
-scav_function_pointer(lispobj *where, lispobj object)
-{
-    lispobj *first_pointer;
-    lispobj copy;
-
-    gc_assert(is_lisp_pointer(object));
-
-    /* Object is a pointer into from space - no a FP. */
-    first_pointer = (lispobj *) native_pointer(object);
-
-    /* must transport object -- object may point to either a function
-     * header, a closure function header, or to a closure header. */
-
-    switch (TypeOf(*first_pointer)) {
-    case type_FunctionHeader:
-    case type_ClosureFunctionHeader:
-       copy = trans_function_header(object);
-       break;
-    default:
-       copy = trans_boxed(object);
-       break;
-    }
-
-    if (copy != object) {
-       /* Set forwarding pointer */
-       first_pointer[0] = 0x01;
-       first_pointer[1] = copy;
-    }
-
-    gc_assert(is_lisp_pointer(copy));
-    gc_assert(!from_space_p(copy));
-
-    *where = copy;
-
-    return 1;
-}
+*/
 
 /* Scan a x86 compiled code object, looking for possible fixups that
  * have been missed after a move.
@@ -1848,7 +1403,7 @@ scav_function_pointer(lispobj *where, lispobj object)
 void
 sniff_code_object(struct code *code, unsigned displacement)
 {
-    int nheader_words, ncode_words, nwords;
+    long nheader_words, ncode_words, nwords;
     void *p;
     void *constants_start_addr, *constants_end_addr;
     void *code_start_addr, *code_end_addr;
@@ -1857,23 +1412,14 @@ sniff_code_object(struct code *code, unsigned displacement)
     if (!check_code_fixups)
        return;
 
-    /* It's ok if it's byte compiled code. The trace table offset will
-     * be a fixnum if it's x86 compiled code - check. */
-    if (code->trace_table_offset & 0x3) {
-       FSHOW((stderr, "/Sniffing byte compiled code object at %x.\n", code));
-       return;
-    }
-
-    /* Else it's x86 machine code. */
-
     ncode_words = fixnum_value(code->code_size);
     nheader_words = HeaderValue(*(lispobj *)code);
     nwords = ncode_words + nheader_words;
 
-    constants_start_addr = (void *)code + 5*4;
-    constants_end_addr = (void *)code + nheader_words*4;
-    code_start_addr = (void *)code + nheader_words*4;
-    code_end_addr = (void *)code + nwords*4;
+    constants_start_addr = (void *)code + 5*N_WORD_BYTES;
+    constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
+    code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
+    code_end_addr = (void *)code + nwords*N_WORD_BYTES;
 
     /* Work through the unboxed code. */
     for (p = code_start_addr; p < code_end_addr; p++) {
@@ -1882,7 +1428,7 @@ sniff_code_object(struct code *code, unsigned displacement)
        unsigned d2 = *((unsigned char *)p - 2);
        unsigned d3 = *((unsigned char *)p - 3);
        unsigned d4 = *((unsigned char *)p - 4);
-#if QSHOW
+#ifdef QSHOW
        unsigned d5 = *((unsigned char *)p - 5);
        unsigned d6 = *((unsigned char *)p - 6);
 #endif
@@ -2024,34 +1570,26 @@ sniff_code_object(struct code *code, unsigned displacement)
     }
 }
 
-static void
-apply_code_fixups(struct code *old_code, struct code *new_code)
+void
+gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
 {
-    int nheader_words, ncode_words, nwords;
+    long nheader_words, ncode_words, nwords;
     void *constants_start_addr, *constants_end_addr;
     void *code_start_addr, *code_end_addr;
     lispobj fixups = NIL;
     unsigned displacement = (unsigned)new_code - (unsigned)old_code;
     struct vector *fixups_vector;
 
-    /* It's OK if it's byte compiled code. The trace table offset will
-     * be a fixnum if it's x86 compiled code - check. */
-    if (new_code->trace_table_offset & 0x3) {
-/*     FSHOW((stderr, "/byte compiled code object at %x\n", new_code)); */
-       return;
-    }
-
-    /* Else it's x86 machine code. */
     ncode_words = fixnum_value(new_code->code_size);
     nheader_words = HeaderValue(*(lispobj *)new_code);
     nwords = ncode_words + nheader_words;
     /* FSHOW((stderr,
             "/compiled code object at %x: header words = %d, code words = %d\n",
             new_code, nheader_words, ncode_words)); */
-    constants_start_addr = (void *)new_code + 5*4;
-    constants_end_addr = (void *)new_code + nheader_words*4;
-    code_start_addr = (void *)new_code + nheader_words*4;
-    code_end_addr = (void *)new_code + nwords*4;
+    constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
+    constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
+    code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
+    code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
     /*
     FSHOW((stderr,
           "/const start = %x, end = %x\n",
@@ -2065,26 +1603,23 @@ apply_code_fixups(struct code *old_code, struct code *new_code)
        code objects. Check. */
     fixups = new_code->constants[0];
 
-    /* It will be 0 or the unbound-marker if there are no fixups, and
-     * will be an other pointer if it is valid. */
-    if ((fixups == 0) || (fixups == type_UnboundMarker) ||
+    /* It will be 0 or the unbound-marker if there are no fixups (as
+     * will be the case if the code object has been purified, for
+     * example) and will be an other pointer if it is valid. */
+    if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
        !is_lisp_pointer(fixups)) {
        /* Check for possible errors. */
        if (check_code_fixups)
            sniff_code_object(new_code, displacement);
 
-       /*fprintf(stderr,"Fixups for code object not found!?\n");
-         fprintf(stderr,"*** Compiled code object at %x: header_words=%d code_words=%d .\n",
-         new_code, nheader_words, ncode_words);
-         fprintf(stderr,"*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
-         constants_start_addr,constants_end_addr,
-         code_start_addr,code_end_addr);*/
        return;
     }
 
     fixups_vector = (struct vector *)native_pointer(fixups);
 
     /* Could be pointing to a forwarding pointer. */
+    /* FIXME is this always in from_space?  if so, could replace this code with
+     * forwarding_pointer_p/forwarding_pointer_value */
     if (is_lisp_pointer(fixups) &&
        (find_page_index((void*)fixups_vector) != -1) &&
        (fixups_vector->header == 0x01)) {
@@ -2095,11 +1630,11 @@ apply_code_fixups(struct code *old_code, struct code *new_code)
 
     /*SHOW("got fixups");*/
 
-    if (TypeOf(fixups_vector->header) == type_SimpleArrayUnsignedByte32) {
+    if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
        /* Got the fixups for the code block. Now work through the vector,
           and apply a fixup at each address. */
-       int length = fixnum_value(fixups_vector->length);
-       int i;
+       long length = fixnum_value(fixups_vector->length);
+       long i;
        for (i = 0; i < length; i++) {
            unsigned offset = fixups_vector->data[i];
            /* Now check the current value of offset. */
@@ -2109,7 +1644,7 @@ apply_code_fixups(struct code *old_code, struct code *new_code)
            /* If it's within the old_code object then it must be an
             * absolute fixup (relative ones are not saved) */
            if ((old_value >= (unsigned)old_code)
-               && (old_value < ((unsigned)old_code + nwords*4)))
+               && (old_value < ((unsigned)old_code + nwords*N_WORD_BYTES)))
                /* So add the dispacement. */
                *(unsigned *)((unsigned)code_start_addr + offset) =
                    old_value + displacement;
@@ -2120,6 +1655,8 @@ apply_code_fixups(struct code *old_code, struct code *new_code)
                *(unsigned *)((unsigned)code_start_addr + offset) =
                    old_value - displacement;
        }
+    } else {
+        fprintf(stderr, "widetag of fixup vector is %d\n", widetag_of(fixups_vector->header));
     }
 
     /* Check for possible errors. */
@@ -2128,619 +1665,79 @@ apply_code_fixups(struct code *old_code, struct code *new_code)
     }
 }
 
-static struct code *
-trans_code(struct code *code)
-{
-    struct code *new_code;
-    lispobj l_code, l_new_code;
-    int nheader_words, ncode_words, nwords;
-    unsigned long displacement;
-    lispobj fheaderl, *prev_pointer;
-
-    /* FSHOW((stderr,
-             "\n/transporting code object located at 0x%08x\n",
-            (unsigned long) code)); */
-
-    /* If object has already been transported, just return pointer. */
-    if (*((lispobj *)code) == 0x01)
-       return (struct code*)(((lispobj *)code)[1]);
-
-    gc_assert(TypeOf(code->header) == type_CodeHeader);
-
-    /* Prepare to transport the code vector. */
-    l_code = (lispobj) code | type_OtherPointer;
-
-    ncode_words = fixnum_value(code->code_size);
-    nheader_words = HeaderValue(code->header);
-    nwords = ncode_words + nheader_words;
-    nwords = CEILING(nwords, 2);
-
-    l_new_code = copy_large_object(l_code, nwords);
-    new_code = (struct code *) native_pointer(l_new_code);
-
-    /* may not have been moved.. */
-    if (new_code == code)
-       return new_code;
-
-    displacement = l_new_code - l_code;
-
-    /*
-    FSHOW((stderr,
-          "/old code object at 0x%08x, new code object at 0x%08x\n",
-          (unsigned long) code,
-          (unsigned long) new_code));
-    FSHOW((stderr, "/Code object is %d words long.\n", nwords));
-    */
-
-    /* Set forwarding pointer. */
-    ((lispobj *)code)[0] = 0x01;
-    ((lispobj *)code)[1] = l_new_code;
-
-    /* Set forwarding pointers for all the function headers in the
-     * code object. Also fix all self pointers. */
-
-    fheaderl = code->entry_points;
-    prev_pointer = &new_code->entry_points;
-
-    while (fheaderl != NIL) {
-       struct function *fheaderp, *nfheaderp;
-       lispobj nfheaderl;
-
-       fheaderp = (struct function *) native_pointer(fheaderl);
-       gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
-
-       /* Calculate the new function pointer and the new */
-       /* function header. */
-       nfheaderl = fheaderl + displacement;
-       nfheaderp = (struct function *) native_pointer(nfheaderl);
-
-       /* Set forwarding pointer. */
-       ((lispobj *)fheaderp)[0] = 0x01;
-       ((lispobj *)fheaderp)[1] = nfheaderl;
-
-       /* Fix self pointer. */
-       nfheaderp->self = nfheaderl + RAW_ADDR_OFFSET;
-
-       *prev_pointer = nfheaderl;
-
-       fheaderl = fheaderp->next;
-       prev_pointer = &nfheaderp->next;
-    }
-
-    /*  sniff_code_object(new_code,displacement);*/
-    apply_code_fixups(code,new_code);
-
-    return new_code;
-}
-
-static int
-scav_code_header(lispobj *where, lispobj object)
-{
-    struct code *code;
-    int n_header_words, n_code_words, n_words;
-    lispobj entry_point;       /* tagged pointer to entry point */
-    struct function *function_ptr; /* untagged pointer to entry point */
-
-    code = (struct code *) where;
-    n_code_words = fixnum_value(code->code_size);
-    n_header_words = HeaderValue(object);
-    n_words = n_code_words + n_header_words;
-    n_words = CEILING(n_words, 2);
-
-    /* Scavenge the boxed section of the code data block. */
-    scavenge(where + 1, n_header_words - 1);
-
-    /* Scavenge the boxed section of each function object in the */
-    /* code data block. */
-    for (entry_point = code->entry_points;
-        entry_point != NIL;
-        entry_point = function_ptr->next) {
-
-       gc_assert(is_lisp_pointer(entry_point));
-
-       function_ptr = (struct function *) native_pointer(entry_point);
-       gc_assert(TypeOf(function_ptr->header) == type_FunctionHeader);
-
-       scavenge(&function_ptr->name, 1);
-       scavenge(&function_ptr->arglist, 1);
-       scavenge(&function_ptr->type, 1);
-    }
-       
-    return n_words;
-}
 
 static lispobj
-trans_code_header(lispobj object)
+trans_boxed_large(lispobj object)
 {
-    struct code *ncode;
-
-    ncode = trans_code((struct code *) native_pointer(object));
-    return (lispobj) ncode | type_OtherPointer;
-}
+    lispobj header;
+    unsigned long length;
 
-static int
-size_code_header(lispobj *where)
-{
-    struct code *code;
-    int nheader_words, ncode_words, nwords;
+    gc_assert(is_lisp_pointer(object));
 
-    code = (struct code *) where;
-       
-    ncode_words = fixnum_value(code->code_size);
-    nheader_words = HeaderValue(code->header);
-    nwords = ncode_words + nheader_words;
-    nwords = CEILING(nwords, 2);
+    header = *((lispobj *) native_pointer(object));
+    length = HeaderValue(header) + 1;
+    length = CEILING(length, 2);
 
-    return nwords;
+    return copy_large_object(object, length);
 }
 
-static int
-scav_return_pc_header(lispobj *where, lispobj object)
-{
-    lose("attempted to scavenge a return PC header where=0x%08x object=0x%08x",
-        (unsigned long) where,
-        (unsigned long) object);
-    return 0; /* bogus return value to satisfy static type checking */
-}
 
 static lispobj
-trans_return_pc_header(lispobj object)
+trans_unboxed_large(lispobj object)
 {
-    struct function *return_pc;
-    unsigned long offset;
-    struct code *code, *ncode;
-
-    SHOW("/trans_return_pc_header: Will this work?");
-
-    return_pc = (struct function *) native_pointer(object);
-    offset = HeaderValue(return_pc->header) * 4;
+    lispobj header;
+    unsigned long length;
 
-    /* Transport the whole code object. */
-    code = (struct code *) ((unsigned long) return_pc - offset);
-    ncode = trans_code(code);
 
-    return ((lispobj) ncode + offset) | type_OtherPointer;
-}
+    gc_assert(is_lisp_pointer(object));
 
-/* On the 386, closures hold a pointer to the raw address instead of the
- * function object. */
-#ifdef __i386__
-static int
-scav_closure_header(lispobj *where, lispobj object)
-{
-    struct closure *closure;
-    lispobj fun;
-
-    closure = (struct closure *)where;
-    fun = closure->function - RAW_ADDR_OFFSET;
-    scavenge(&fun, 1);
-    /* The function may have moved so update the raw address. But
-     * don't write unnecessarily. */
-    if (closure->function != fun + RAW_ADDR_OFFSET)
-       closure->function = fun + RAW_ADDR_OFFSET;
-
-    return 2;
-}
-#endif
+    header = *((lispobj *) native_pointer(object));
+    length = HeaderValue(header) + 1;
+    length = CEILING(length, 2);
 
-static int
-scav_function_header(lispobj *where, lispobj object)
-{
-    lose("attempted to scavenge a function header where=0x%08x object=0x%08x",
-        (unsigned long) where,
-        (unsigned long) object);
-    return 0; /* bogus return value to satisfy static type checking */
+    return copy_large_unboxed_object(object, length);
 }
 
-static lispobj
-trans_function_header(lispobj object)
-{
-    struct function *fheader;
-    unsigned long offset;
-    struct code *code, *ncode;
-
-    fheader = (struct function *) native_pointer(object);
-    offset = HeaderValue(fheader->header) * 4;
-
-    /* Transport the whole code object. */
-    code = (struct code *) ((unsigned long) fheader - offset);
-    ncode = trans_code(code);
-
-    return ((lispobj) ncode + offset) | type_FunctionPointer;
-}
 \f
 /*
- * instances
+ * vector-like objects
  */
 
+
+/* FIXME: What does this mean? */
+int gencgc_hash = 1;
+
 static int
-scav_instance_pointer(lispobj *where, lispobj object)
+scav_vector(lispobj *where, lispobj object)
 {
-    lispobj copy, *first_pointer;
+    unsigned long kv_length;
+    lispobj *kv_vector;
+    unsigned long length = 0; /* (0 = dummy to stop GCC warning) */
+    struct hash_table *hash_table;
+    lispobj empty_symbol;
+    unsigned long *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
+    unsigned long *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
+    unsigned long *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
+    lispobj weak_p_obj;
+    unsigned next_vector_length = 0;
 
-    /* Object is a pointer into from space - not a FP. */
-    copy = trans_boxed(object);
+    /* FIXME: A comment explaining this would be nice. It looks as
+     * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
+     * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
+    if (HeaderValue(object) != subtype_VectorValidHashing)
+       return 1;
 
-    gc_assert(copy != object);
+    if (!gencgc_hash) {
+       /* This is set for backward compatibility. FIXME: Do we need
+        * this any more? */
+       *where =
+           (subtype_VectorMustRehash<<N_WIDETAG_BITS) | SIMPLE_VECTOR_WIDETAG;
+       return 1;
+    }
 
-    first_pointer = (lispobj *) native_pointer(object);
-
-    /* Set forwarding pointer. */
-    first_pointer[0] = 0x01;
-    first_pointer[1] = copy;
-    *where = copy;
-
-    return 1;
-}
-\f
-/*
- * lists and conses
- */
-
-static lispobj trans_list(lispobj object);
-
-static int
-scav_list_pointer(lispobj *where, lispobj object)
-{
-    lispobj first, *first_pointer;
-
-    gc_assert(is_lisp_pointer(object));
-
-    /* Object is a pointer into from space - not FP. */
-
-    first = trans_list(object);
-    gc_assert(first != object);
-
-    first_pointer = (lispobj *) native_pointer(object);
-
-    /* Set forwarding pointer */
-    first_pointer[0] = 0x01;
-    first_pointer[1] = first;
-
-    gc_assert(is_lisp_pointer(first));
-    gc_assert(!from_space_p(first));
-    *where = first;
-    return 1;
-}
-
-static lispobj
-trans_list(lispobj object)
-{
-    lispobj new_list_pointer;
-    struct cons *cons, *new_cons;
-    lispobj cdr;
-
-    gc_assert(from_space_p(object));
-
-    cons = (struct cons *) native_pointer(object);
-
-    /* Copy 'object'. */
-    new_cons = (struct cons *) gc_quick_alloc(sizeof(struct cons));
-    new_cons->car = cons->car;
-    new_cons->cdr = cons->cdr; /* updated later */
-    new_list_pointer = (lispobj)new_cons | LowtagOf(object);
-
-    /* Grab the cdr before it is clobbered. */
-    cdr = cons->cdr;
-
-    /* Set forwarding pointer (clobbers start of list). */
-    cons->car = 0x01;
-    cons->cdr = new_list_pointer;
-
-    /* Try to linearize the list in the cdr direction to help reduce
-     * paging. */
-    while (1) {
-       lispobj  new_cdr;
-       struct cons *cdr_cons, *new_cdr_cons;
-
-       if (LowtagOf(cdr) != type_ListPointer || !from_space_p(cdr)
-           || (*((lispobj *)native_pointer(cdr)) == 0x01))
-           break;
-
-       cdr_cons = (struct cons *) native_pointer(cdr);
-
-       /* Copy 'cdr'. */
-       new_cdr_cons = (struct cons*) gc_quick_alloc(sizeof(struct cons));
-       new_cdr_cons->car = cdr_cons->car;
-       new_cdr_cons->cdr = cdr_cons->cdr;
-       new_cdr = (lispobj)new_cdr_cons | LowtagOf(cdr);
-
-       /* Grab the cdr before it is clobbered. */
-       cdr = cdr_cons->cdr;
-
-       /* Set forwarding pointer. */
-       cdr_cons->car = 0x01;
-       cdr_cons->cdr = new_cdr;
-
-       /* Update the cdr of the last cons copied into new space to
-        * keep the newspace scavenge from having to do it. */
-       new_cons->cdr = new_cdr;
-
-       new_cons = new_cdr_cons;
-    }
-
-    return new_list_pointer;
-}
-
-\f
-/*
- * scavenging and transporting other pointers
- */
-
-static int
-scav_other_pointer(lispobj *where, lispobj object)
-{
-    lispobj first, *first_pointer;
-
-    gc_assert(is_lisp_pointer(object));
-
-    /* Object is a pointer into from space - not FP. */
-    first_pointer = (lispobj *) native_pointer(object);
-
-    first = (transother[TypeOf(*first_pointer)])(object);
-
-    if (first != object) {
-       /* Set forwarding pointer. */
-       first_pointer[0] = 0x01;
-       first_pointer[1] = first;
-       *where = first;
-    }
-
-    gc_assert(is_lisp_pointer(first));
-    gc_assert(!from_space_p(first));
-
-    return 1;
-}
-\f
-/*
- * immediate, boxed, and unboxed objects
- */
-
-static int
-size_pointer(lispobj *where)
-{
-    return 1;
-}
-
-static int
-scav_immediate(lispobj *where, lispobj object)
-{
-    return 1;
-}
-
-static lispobj
-trans_immediate(lispobj object)
-{
-    lose("trying to transport an immediate");
-    return NIL; /* bogus return value to satisfy static type checking */
-}
-
-static int
-size_immediate(lispobj *where)
-{
-    return 1;
-}
-
-
-static int
-scav_boxed(lispobj *where, lispobj object)
-{
-    return 1;
-}
-
-static lispobj
-trans_boxed(lispobj object)
-{
-    lispobj header;
-    unsigned long length;
-
-    gc_assert(is_lisp_pointer(object));
-
-    header = *((lispobj *) native_pointer(object));
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return copy_object(object, length);
-}
-
-static lispobj
-trans_boxed_large(lispobj object)
-{
-    lispobj header;
-    unsigned long length;
-
-    gc_assert(is_lisp_pointer(object));
-
-    header = *((lispobj *) native_pointer(object));
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return copy_large_object(object, length);
-}
-
-static int
-size_boxed(lispobj *where)
-{
-    lispobj header;
-    unsigned long length;
-
-    header = *where;
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return length;
-}
-
-static int
-scav_fdefn(lispobj *where, lispobj object)
-{
-    struct fdefn *fdefn;
-
-    fdefn = (struct fdefn *)where;
-
-    /* FSHOW((stderr, "scav_fdefn, function = %p, raw_addr = %p\n", 
-       fdefn->function, fdefn->raw_addr)); */
-
-    if ((char *)(fdefn->function + RAW_ADDR_OFFSET) == fdefn->raw_addr) {
-       scavenge(where + 1, sizeof(struct fdefn)/sizeof(lispobj) - 1);
-
-       /* Don't write unnecessarily. */
-       if (fdefn->raw_addr != (char *)(fdefn->function + RAW_ADDR_OFFSET))
-           fdefn->raw_addr = (char *)(fdefn->function + RAW_ADDR_OFFSET);
-
-       return sizeof(struct fdefn) / sizeof(lispobj);
-    } else {
-       return 1;
-    }
-}
-
-static int
-scav_unboxed(lispobj *where, lispobj object)
-{
-    unsigned long length;
-
-    length = HeaderValue(object) + 1;
-    length = CEILING(length, 2);
-
-    return length;
-}
-
-static lispobj
-trans_unboxed(lispobj object)
-{
-    lispobj header;
-    unsigned long length;
-
-
-    gc_assert(is_lisp_pointer(object));
-
-    header = *((lispobj *) native_pointer(object));
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return copy_unboxed_object(object, length);
-}
-
-static lispobj
-trans_unboxed_large(lispobj object)
-{
-    lispobj header;
-    unsigned long length;
-
-
-    gc_assert(is_lisp_pointer(object));
-
-    header = *((lispobj *) native_pointer(object));
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return copy_large_unboxed_object(object, length);
-}
-
-static int
-size_unboxed(lispobj *where)
-{
-    lispobj header;
-    unsigned long length;
-
-    header = *where;
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return length;
-}
-\f
-/*
- * vector-like objects
- */
-
-#define NWORDS(x,y) (CEILING((x),(y)) / (y))
-
-static int
-scav_string(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    /* NOTE: Strings contain one more byte of data than the length */
-    /* slot indicates. */
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length) + 1;
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_string(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    /* NOTE: A string contains one more byte of data (a terminating
-     * '\0' to help when interfacing with C functions) than indicated
-     * by the length slot. */
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length) + 1;
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_string(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    /* NOTE: A string contains one more byte of data (a terminating
-     * '\0' to help when interfacing with C functions) than indicated
-     * by the length slot. */
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length) + 1;
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return nwords;
-}
-
-/* FIXME: What does this mean? */
-int gencgc_hash = 1;
-
-static int
-scav_vector(lispobj *where, lispobj object)
-{
-    unsigned int kv_length;
-    lispobj *kv_vector;
-    unsigned int length = 0; /* (0 = dummy to stop GCC warning) */
-    lispobj *hash_table;
-    lispobj empty_symbol;
-    unsigned int *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    unsigned int *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    unsigned int *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    lispobj weak_p_obj;
-    unsigned next_vector_length = 0;
-
-    /* FIXME: A comment explaining this would be nice. It looks as
-     * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
-     * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
-    if (HeaderValue(object) != subtype_VectorValidHashing)
-       return 1;
-
-    if (!gencgc_hash) {
-       /* This is set for backward compatibility. FIXME: Do we need
-        * this any more? */
-       *where = (subtype_VectorMustRehash << type_Bits) | type_SimpleVector;
-       return 1;
-    }
-
-    kv_length = fixnum_value(where[1]);
-    kv_vector = where + 2;  /* Skip the header and length. */
-    /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
+    kv_length = fixnum_value(where[1]);
+    kv_vector = where + 2;  /* Skip the header and length. */
+    /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
 
     /* Scavenge element 0, which may be a hash-table structure. */
     scavenge(where+2, 1);
@@ -2749,8 +1746,10 @@ scav_vector(lispobj *where, lispobj object)
     }
     hash_table = (lispobj *)native_pointer(where[2]);
     /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
-    if (TypeOf(hash_table[0]) != type_InstanceHeader) {
-       lose("hash table not instance (%x at %x)", hash_table[0], hash_table);
+    if (widetag_of(hash_table->header) != INSTANCE_HEADER_WIDETAG) {
+       lose("hash table not instance (%x at %x)",
+            hash_table->header,
+            hash_table);
     }
 
     /* Scavenge element 1, which should be some internal symbol that
@@ -2761,32 +1760,34 @@ scav_vector(lispobj *where, lispobj object)
     }
     empty_symbol = where[3];
     /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
-    if (TypeOf(*(lispobj *)native_pointer(empty_symbol)) != type_SymbolHeader) {
+    if (widetag_of(*(lispobj *)native_pointer(empty_symbol)) !=
+       SYMBOL_HEADER_WIDETAG) {
        lose("not a symbol where empty-hash-table-slot symbol expected: %x",
             *(lispobj *)native_pointer(empty_symbol));
     }
 
     /* Scavenge hash table, which will fix the positions of the other
      * needed objects. */
-    scavenge(hash_table, 16);
+    scavenge(hash_table, sizeof(struct hash_table) / sizeof(lispobj));
 
     /* Cross-check the kv_vector. */
-    if (where != (lispobj *)native_pointer(hash_table[9])) {
-       lose("hash_table table!=this table %x", hash_table[9]);
+    if (where != (lispobj *)native_pointer(hash_table->table)) {
+       lose("hash_table table!=this table %x", hash_table->table);
     }
 
     /* WEAK-P */
-    weak_p_obj = hash_table[10];
+    weak_p_obj = hash_table->weak_p;
 
     /* index vector */
     {
-       lispobj index_vector_obj = hash_table[13];
+       lispobj index_vector_obj = hash_table->index_vector;
 
        if (is_lisp_pointer(index_vector_obj) &&
-           (TypeOf(*(lispobj *)native_pointer(index_vector_obj)) == type_SimpleArrayUnsignedByte32)) {
-           index_vector = ((unsigned int *)native_pointer(index_vector_obj)) + 2;
+           (widetag_of(*(lispobj *)native_pointer(index_vector_obj)) ==
+                SIMPLE_ARRAY_WORD_WIDETAG)) {
+           index_vector = ((lispobj *)native_pointer(index_vector_obj)) + 2;
            /*FSHOW((stderr, "/index_vector = %x\n",index_vector));*/
-           length = fixnum_value(((unsigned int *)native_pointer(index_vector_obj))[1]);
+           length = fixnum_value(((lispobj *)native_pointer(index_vector_obj))[1]);
            /*FSHOW((stderr, "/length = %d\n", length));*/
        } else {
            lose("invalid index_vector %x", index_vector_obj);
@@ -2795,13 +1796,14 @@ scav_vector(lispobj *where, lispobj object)
 
     /* next vector */
     {
-       lispobj next_vector_obj = hash_table[14];
+       lispobj next_vector_obj = hash_table->next_vector;
 
        if (is_lisp_pointer(next_vector_obj) &&
-           (TypeOf(*(lispobj *)native_pointer(next_vector_obj)) == type_SimpleArrayUnsignedByte32)) {
-           next_vector = ((unsigned int *)native_pointer(next_vector_obj)) + 2;
+           (widetag_of(*(lispobj *)native_pointer(next_vector_obj)) ==
+            SIMPLE_ARRAY_WORD_WIDETAG)) {
+           next_vector = ((lispobj *)native_pointer(next_vector_obj)) + 2;
            /*FSHOW((stderr, "/next_vector = %x\n", next_vector));*/
-           next_vector_length = fixnum_value(((unsigned int *)native_pointer(next_vector_obj))[1]);
+           next_vector_length = fixnum_value(((lispobj *)native_pointer(next_vector_obj))[1]);
            /*FSHOW((stderr, "/next_vector_length = %d\n", next_vector_length));*/
        } else {
            lose("invalid next_vector %x", next_vector_obj);
@@ -2810,18 +1812,14 @@ scav_vector(lispobj *where, lispobj object)
 
     /* maybe hash vector */
     {
-       /* FIXME: This bare "15" offset should become a symbolic
-        * expression of some sort. And all the other bare offsets
-        * too. And the bare "16" in scavenge(hash_table, 16). And
-        * probably other stuff too. Ugh.. */
-       lispobj hash_vector_obj = hash_table[15];
+       lispobj hash_vector_obj = hash_table->hash_vector;
 
        if (is_lisp_pointer(hash_vector_obj) &&
-           (TypeOf(*(lispobj *)native_pointer(hash_vector_obj))
-            == type_SimpleArrayUnsignedByte32)) {
-           hash_vector = ((unsigned int *)native_pointer(hash_vector_obj)) + 2;
+           (widetag_of(*(lispobj *)native_pointer(hash_vector_obj)) ==
+            SIMPLE_ARRAY_WORD_WIDETAG)){
+           hash_vector = ((lispobj *)native_pointer(hash_vector_obj)) + 2;
            /*FSHOW((stderr, "/hash_vector = %x\n", hash_vector));*/
-           gc_assert(fixnum_value(((unsigned int *)native_pointer(hash_vector_obj))[1])
+           gc_assert(fixnum_value(((lispobj *)native_pointer(hash_vector_obj))[1])
                      == next_vector_length);
        } else {
            hash_vector = NULL;
@@ -2838,10 +1836,15 @@ scav_vector(lispobj *where, lispobj object)
 
     /* Work through the KV vector. */
     {
-       int i;
+       long i;
        for (i = 1; i < next_vector_length; i++) {
            lispobj old_key = kv_vector[2*i];
-           unsigned int  old_index = (old_key & 0x1fffffff)%length;
+
+#if N_WORD_BITS == 32
+           unsigned long old_index = (old_key & 0x1fffffff)%length;
+#elif N_WORD_BITS == 64
+           unsigned long old_index = (old_key & 0x1fffffffffffffff)%length;
+#endif
 
            /* Scavenge the key and value. */
            scavenge(&kv_vector[2*i],2);
@@ -2849,27 +1852,31 @@ scav_vector(lispobj *where, lispobj object)
            /* Check whether the key has moved and is EQ based. */
            {
                lispobj new_key = kv_vector[2*i];
-               unsigned int new_index = (new_key & 0x1fffffff)%length;
+#if N_WORD_BITS == 32
+               unsigned long new_index = (new_key & 0x1fffffff)%length;
+#elif N_WORD_BITS == 64
+               unsigned long new_index = (new_key & 0x1fffffffffffffff)%length;
+#endif
 
                if ((old_index != new_index) &&
                    ((!hash_vector) || (hash_vector[i] == 0x80000000)) &&
                    ((new_key != empty_symbol) ||
                     (kv_vector[2*i] != empty_symbol))) {
 
-                   /*FSHOW((stderr,
-                          "* EQ key %d moved from %x to %x; index %d to %d\n",
-                          i, old_key, new_key, old_index, new_index));*/
+                    /*FSHOW((stderr,
+                           "* EQ key %d moved from %x to %x; index %d to %d\n",
+                           i, old_key, new_key, old_index, new_index));*/
 
                    if (index_vector[old_index] != 0) {
-                       /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
+                        /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
 
                        /* Unlink the key from the old_index chain. */
                        if (index_vector[old_index] == i) {
                            /*FSHOW((stderr, "/P2a %d\n", next_vector[i]));*/
                            index_vector[old_index] = next_vector[i];
                            /* Link it into the needing rehash chain. */
-                           next_vector[i] = fixnum_value(hash_table[11]);
-                           hash_table[11] = make_fixnum(i);
+                           next_vector[i] = fixnum_value(hash_table->needing_rehash);
+                           hash_table->needing_rehash = make_fixnum(i);
                            /*SHOW("P2");*/
                        } else {
                            unsigned prior = index_vector[old_index];
@@ -2878,1043 +1885,126 @@ scav_vector(lispobj *where, lispobj object)
                            /*FSHOW((stderr, "/P3a %d %d\n", prior, next));*/
 
                            while (next != 0) {
-                               /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
+                                /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
                                if (next == i) {
                                    /* Unlink it. */
                                    next_vector[prior] = next_vector[next];
                                    /* Link it into the needing rehash
                                     * chain. */
                                    next_vector[next] =
-                                       fixnum_value(hash_table[11]);
-                                   hash_table[11] = make_fixnum(next);
+                                       fixnum_value(hash_table->needing_rehash);
+                                   hash_table->needing_rehash = make_fixnum(next);
                                    /*SHOW("/P3");*/
                                    break;
                                }
                                prior = next;
                                next = next_vector[next];
                            }
-                       }
-                   }
-               }
-           }
-       }
-    }
-    return (CEILING(kv_length + 2, 2));
-}
-
-static lispobj
-trans_vector(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return copy_large_object(object, nwords);
-}
-
-static int
-size_vector(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-
-static int
-scav_vector_bit(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 32) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_bit(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 32) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_bit(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 32) + 2, 2);
-
-    return nwords;
-}
-
-
-static int
-scav_vector_unsigned_byte_2(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 16) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_2(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 16) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_2(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 16) + 2, 2);
-
-    return nwords;
-}
-
-
-static int
-scav_vector_unsigned_byte_4(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 8) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_4(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 8) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_4(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 8) + 2, 2);
-
-    return nwords;
-}
-
-static int
-scav_vector_unsigned_byte_8(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_8(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_8(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return nwords;
-}
-
-
-static int
-scav_vector_unsigned_byte_16(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 2) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_16(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 2) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_16(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 2) + 2, 2);
-
-    return nwords;
-}
-
-static int
-scav_vector_unsigned_byte_32(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_32(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_32(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-static int
-scav_vector_single_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_single_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_single_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-static int
-scav_vector_double_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_double_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_double_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return nwords;
-}
-
-#ifdef type_SimpleArrayLongFloat
-static int
-scav_vector_long_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 3 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_long_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 3 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_long_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 3 + 2, 2);
-
-    return nwords;
-}
-#endif
-
-
-#ifdef type_SimpleArrayComplexSingleFloat
-static int
-scav_vector_complex_single_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_complex_single_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_complex_single_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return nwords;
-}
-#endif
-
-#ifdef type_SimpleArrayComplexDoubleFloat
-static int
-scav_vector_complex_double_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 4 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_complex_double_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 4 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_complex_double_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 4 + 2, 2);
-
-    return nwords;
-}
-#endif
-
-
-#ifdef type_SimpleArrayComplexLongFloat
-static int
-scav_vector_complex_long_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 6 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_complex_long_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(is_lisp_pointer(object));
-
-    vector = (struct vector *) native_pointer(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 6 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_complex_long_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 6 + 2, 2);
-
-    return nwords;
-}
-#endif
-
-\f
-/*
- * weak pointers
- */
-
-/* XX This is a hack adapted from cgc.c. These don't work too well with the
- * gencgc as a list of the weak pointers is maintained within the
- * objects which causes writes to the pages. A limited attempt is made
- * to avoid unnecessary writes, but this needs a re-think. */
-
-#define WEAK_POINTER_NWORDS \
-    CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
-
-static int
-scav_weak_pointer(lispobj *where, lispobj object)
-{
-    struct weak_pointer *wp = weak_pointers;
-    /* Push the weak pointer onto the list of weak pointers.
-     * Do I have to watch for duplicates? Originally this was
-     * part of trans_weak_pointer but that didn't work in the
-     * case where the WP was in a promoted region.
-     */
-
-    /* Check whether it's already in the list. */
-    while (wp != NULL) {
-       if (wp == (struct weak_pointer*)where) {
-           break;
-       }
-       wp = wp->next;
-    }
-    if (wp == NULL) {
-       /* Add it to the start of the list. */
-       wp = (struct weak_pointer*)where;
-       if (wp->next != weak_pointers) {
-           wp->next = weak_pointers;
-       } else {
-           /*SHOW("avoided write to weak pointer");*/
-       }
-       weak_pointers = wp;
-    }
-
-    /* Do not let GC scavenge the value slot of the weak pointer.
-     * (That is why it is a weak pointer.) */
-
-    return WEAK_POINTER_NWORDS;
-}
-
-static lispobj
-trans_weak_pointer(lispobj object)
-{
-    lispobj copy;
-    /* struct weak_pointer *wp; */
-
-    gc_assert(is_lisp_pointer(object));
-
-#if defined(DEBUG_WEAK)
-    FSHOW((stderr, "Transporting weak pointer from 0x%08x\n", object));
-#endif
-
-    /* Need to remember where all the weak pointers are that have */
-    /* been transported so they can be fixed up in a post-GC pass. */
-
-    copy = copy_object(object, WEAK_POINTER_NWORDS);
-    /*  wp = (struct weak_pointer *) native_pointer(copy);*/
-       
-
-    /* Push the weak pointer onto the list of weak pointers. */
-    /*  wp->next = weak_pointers;
-     * weak_pointers = wp;*/
-
-    return copy;
-}
-
-static int
-size_weak_pointer(lispobj *where)
-{
-    return WEAK_POINTER_NWORDS;
-}
-
-void scan_weak_pointers(void)
-{
-    struct weak_pointer *wp;
-    for (wp = weak_pointers; wp != NULL; wp = wp->next) {
-       lispobj value = wp->value;
-       lispobj *first_pointer;
-
-       first_pointer = (lispobj *)native_pointer(value);
-
-       /*
-       FSHOW((stderr, "/weak pointer at 0x%08x\n", (unsigned long) wp));
-       FSHOW((stderr, "/value: 0x%08x\n", (unsigned long) value));
-       */
-
-       if (is_lisp_pointer(value) && from_space_p(value)) {
-           /* Now, we need to check whether the object has been forwarded. If
-            * it has been, the weak pointer is still good and needs to be
-            * updated. Otherwise, the weak pointer needs to be nil'ed
-            * out. */
-           if (first_pointer[0] == 0x01) {
-               wp->value = first_pointer[1];
-           } else {
-               /* Break it. */
-               SHOW("broken");
-               wp->value = NIL;
-               wp->broken = T;
-           }
-       }
-    }
-}
-\f
-/*
- * initialization
- */
-
-static int
-scav_lose(lispobj *where, lispobj object)
-{
-    lose("no scavenge function for object 0x%08x", (unsigned long) object);
-    return 0; /* bogus return value to satisfy static type checking */
-}
-
-static lispobj
-trans_lose(lispobj object)
-{
-    lose("no transport function for object 0x%08x", (unsigned long) object);
-    return NIL; /* bogus return value to satisfy static type checking */
-}
-
-static int
-size_lose(lispobj *where)
-{
-    lose("no size function for object at 0x%08x", (unsigned long) where);
-    return 1; /* bogus return value to satisfy static type checking */
-}
-
-static void
-gc_init_tables(void)
-{
-    int i;
-
-    /* Set default value in all slots of scavenge table. */
-    for (i = 0; i < 256; i++) { /* FIXME: bare constant length, ick! */
-       scavtab[i] = scav_lose;
-    }
-
-    /* For each type which can be selected by the low 3 bits of the tag
-     * alone, set multiple entries in our 8-bit scavenge table (one for each
-     * possible value of the high 5 bits). */
-    for (i = 0; i < 32; i++) { /* FIXME: bare constant length, ick! */
-       scavtab[type_EvenFixnum|(i<<3)] = scav_immediate;
-       scavtab[type_FunctionPointer|(i<<3)] = scav_function_pointer;
-       /* OtherImmediate0 */
-       scavtab[type_ListPointer|(i<<3)] = scav_list_pointer;
-       scavtab[type_OddFixnum|(i<<3)] = scav_immediate;
-       scavtab[type_InstancePointer|(i<<3)] = scav_instance_pointer;
-       /* OtherImmediate1 */
-       scavtab[type_OtherPointer|(i<<3)] = scav_other_pointer;
-    }
-
-    /* Other-pointer types (those selected by all eight bits of the tag) get
-     * one entry each in the scavenge table. */
-    scavtab[type_Bignum] = scav_unboxed;
-    scavtab[type_Ratio] = scav_boxed;
-    scavtab[type_SingleFloat] = scav_unboxed;
-    scavtab[type_DoubleFloat] = scav_unboxed;
-#ifdef type_LongFloat
-    scavtab[type_LongFloat] = scav_unboxed;
-#endif
-    scavtab[type_Complex] = scav_boxed;
-#ifdef type_ComplexSingleFloat
-    scavtab[type_ComplexSingleFloat] = scav_unboxed;
-#endif
-#ifdef type_ComplexDoubleFloat
-    scavtab[type_ComplexDoubleFloat] = scav_unboxed;
-#endif
-#ifdef type_ComplexLongFloat
-    scavtab[type_ComplexLongFloat] = scav_unboxed;
-#endif
-    scavtab[type_SimpleArray] = scav_boxed;
-    scavtab[type_SimpleString] = scav_string;
-    scavtab[type_SimpleBitVector] = scav_vector_bit;
-    scavtab[type_SimpleVector] = scav_vector;
-    scavtab[type_SimpleArrayUnsignedByte2] = scav_vector_unsigned_byte_2;
-    scavtab[type_SimpleArrayUnsignedByte4] = scav_vector_unsigned_byte_4;
-    scavtab[type_SimpleArrayUnsignedByte8] = scav_vector_unsigned_byte_8;
-    scavtab[type_SimpleArrayUnsignedByte16] = scav_vector_unsigned_byte_16;
-    scavtab[type_SimpleArrayUnsignedByte32] = scav_vector_unsigned_byte_32;
-#ifdef type_SimpleArraySignedByte8
-    scavtab[type_SimpleArraySignedByte8] = scav_vector_unsigned_byte_8;
-#endif
-#ifdef type_SimpleArraySignedByte16
-    scavtab[type_SimpleArraySignedByte16] = scav_vector_unsigned_byte_16;
-#endif
-#ifdef type_SimpleArraySignedByte30
-    scavtab[type_SimpleArraySignedByte30] = scav_vector_unsigned_byte_32;
-#endif
-#ifdef type_SimpleArraySignedByte32
-    scavtab[type_SimpleArraySignedByte32] = scav_vector_unsigned_byte_32;
-#endif
-    scavtab[type_SimpleArraySingleFloat] = scav_vector_single_float;
-    scavtab[type_SimpleArrayDoubleFloat] = scav_vector_double_float;
-#ifdef type_SimpleArrayLongFloat
-    scavtab[type_SimpleArrayLongFloat] = scav_vector_long_float;
-#endif
-#ifdef type_SimpleArrayComplexSingleFloat
-    scavtab[type_SimpleArrayComplexSingleFloat] = scav_vector_complex_single_float;
-#endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-    scavtab[type_SimpleArrayComplexDoubleFloat] = scav_vector_complex_double_float;
-#endif
-#ifdef type_SimpleArrayComplexLongFloat
-    scavtab[type_SimpleArrayComplexLongFloat] = scav_vector_complex_long_float;
-#endif
-    scavtab[type_ComplexString] = scav_boxed;
-    scavtab[type_ComplexBitVector] = scav_boxed;
-    scavtab[type_ComplexVector] = scav_boxed;
-    scavtab[type_ComplexArray] = scav_boxed;
-    scavtab[type_CodeHeader] = scav_code_header;
-    /*scavtab[type_FunctionHeader] = scav_function_header;*/
-    /*scavtab[type_ClosureFunctionHeader] = scav_function_header;*/
-    /*scavtab[type_ReturnPcHeader] = scav_return_pc_header;*/
-#ifdef __i386__
-    scavtab[type_ClosureHeader] = scav_closure_header;
-    scavtab[type_FuncallableInstanceHeader] = scav_closure_header;
-    scavtab[type_ByteCodeFunction] = scav_closure_header;
-    scavtab[type_ByteCodeClosure] = scav_closure_header;
-#else
-    scavtab[type_ClosureHeader] = scav_boxed;
-    scavtab[type_FuncallableInstanceHeader] = scav_boxed;
-    scavtab[type_ByteCodeFunction] = scav_boxed;
-    scavtab[type_ByteCodeClosure] = scav_boxed;
-#endif
-    scavtab[type_ValueCellHeader] = scav_boxed;
-    scavtab[type_SymbolHeader] = scav_boxed;
-    scavtab[type_BaseChar] = scav_immediate;
-    scavtab[type_Sap] = scav_unboxed;
-    scavtab[type_UnboundMarker] = scav_immediate;
-    scavtab[type_WeakPointer] = scav_weak_pointer;
-    scavtab[type_InstanceHeader] = scav_boxed;
-    scavtab[type_Fdefn] = scav_fdefn;
-
-    /* transport other table, initialized same way as scavtab */
-    for (i = 0; i < 256; i++)
-       transother[i] = trans_lose;
-    transother[type_Bignum] = trans_unboxed;
-    transother[type_Ratio] = trans_boxed;
-    transother[type_SingleFloat] = trans_unboxed;
-    transother[type_DoubleFloat] = trans_unboxed;
-#ifdef type_LongFloat
-    transother[type_LongFloat] = trans_unboxed;
-#endif
-    transother[type_Complex] = trans_boxed;
-#ifdef type_ComplexSingleFloat
-    transother[type_ComplexSingleFloat] = trans_unboxed;
-#endif
-#ifdef type_ComplexDoubleFloat
-    transother[type_ComplexDoubleFloat] = trans_unboxed;
-#endif
-#ifdef type_ComplexLongFloat
-    transother[type_ComplexLongFloat] = trans_unboxed;
-#endif
-    transother[type_SimpleArray] = trans_boxed_large;
-    transother[type_SimpleString] = trans_string;
-    transother[type_SimpleBitVector] = trans_vector_bit;
-    transother[type_SimpleVector] = trans_vector;
-    transother[type_SimpleArrayUnsignedByte2] = trans_vector_unsigned_byte_2;
-    transother[type_SimpleArrayUnsignedByte4] = trans_vector_unsigned_byte_4;
-    transother[type_SimpleArrayUnsignedByte8] = trans_vector_unsigned_byte_8;
-    transother[type_SimpleArrayUnsignedByte16] = trans_vector_unsigned_byte_16;
-    transother[type_SimpleArrayUnsignedByte32] = trans_vector_unsigned_byte_32;
-#ifdef type_SimpleArraySignedByte8
-    transother[type_SimpleArraySignedByte8] = trans_vector_unsigned_byte_8;
-#endif
-#ifdef type_SimpleArraySignedByte16
-    transother[type_SimpleArraySignedByte16] = trans_vector_unsigned_byte_16;
-#endif
-#ifdef type_SimpleArraySignedByte30
-    transother[type_SimpleArraySignedByte30] = trans_vector_unsigned_byte_32;
-#endif
-#ifdef type_SimpleArraySignedByte32
-    transother[type_SimpleArraySignedByte32] = trans_vector_unsigned_byte_32;
-#endif
-    transother[type_SimpleArraySingleFloat] = trans_vector_single_float;
-    transother[type_SimpleArrayDoubleFloat] = trans_vector_double_float;
-#ifdef type_SimpleArrayLongFloat
-    transother[type_SimpleArrayLongFloat] = trans_vector_long_float;
-#endif
-#ifdef type_SimpleArrayComplexSingleFloat
-    transother[type_SimpleArrayComplexSingleFloat] = trans_vector_complex_single_float;
-#endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-    transother[type_SimpleArrayComplexDoubleFloat] = trans_vector_complex_double_float;
-#endif
-#ifdef type_SimpleArrayComplexLongFloat
-    transother[type_SimpleArrayComplexLongFloat] = trans_vector_complex_long_float;
-#endif
-    transother[type_ComplexString] = trans_boxed;
-    transother[type_ComplexBitVector] = trans_boxed;
-    transother[type_ComplexVector] = trans_boxed;
-    transother[type_ComplexArray] = trans_boxed;
-    transother[type_CodeHeader] = trans_code_header;
-    transother[type_FunctionHeader] = trans_function_header;
-    transother[type_ClosureFunctionHeader] = trans_function_header;
-    transother[type_ReturnPcHeader] = trans_return_pc_header;
-    transother[type_ClosureHeader] = trans_boxed;
-    transother[type_FuncallableInstanceHeader] = trans_boxed;
-    transother[type_ByteCodeFunction] = trans_boxed;
-    transother[type_ByteCodeClosure] = trans_boxed;
-    transother[type_ValueCellHeader] = trans_boxed;
-    transother[type_SymbolHeader] = trans_boxed;
-    transother[type_BaseChar] = trans_immediate;
-    transother[type_Sap] = trans_unboxed;
-    transother[type_UnboundMarker] = trans_immediate;
-    transother[type_WeakPointer] = trans_weak_pointer;
-    transother[type_InstanceHeader] = trans_boxed;
-    transother[type_Fdefn] = trans_boxed;
-
-    /* size table, initialized the same way as scavtab */
-    for (i = 0; i < 256; i++)
-       sizetab[i] = size_lose;
-    for (i = 0; i < 32; i++) {
-       sizetab[type_EvenFixnum|(i<<3)] = size_immediate;
-       sizetab[type_FunctionPointer|(i<<3)] = size_pointer;
-       /* OtherImmediate0 */
-       sizetab[type_ListPointer|(i<<3)] = size_pointer;
-       sizetab[type_OddFixnum|(i<<3)] = size_immediate;
-       sizetab[type_InstancePointer|(i<<3)] = size_pointer;
-       /* OtherImmediate1 */
-       sizetab[type_OtherPointer|(i<<3)] = size_pointer;
-    }
-    sizetab[type_Bignum] = size_unboxed;
-    sizetab[type_Ratio] = size_boxed;
-    sizetab[type_SingleFloat] = size_unboxed;
-    sizetab[type_DoubleFloat] = size_unboxed;
-#ifdef type_LongFloat
-    sizetab[type_LongFloat] = size_unboxed;
-#endif
-    sizetab[type_Complex] = size_boxed;
-#ifdef type_ComplexSingleFloat
-    sizetab[type_ComplexSingleFloat] = size_unboxed;
-#endif
-#ifdef type_ComplexDoubleFloat
-    sizetab[type_ComplexDoubleFloat] = size_unboxed;
-#endif
-#ifdef type_ComplexLongFloat
-    sizetab[type_ComplexLongFloat] = size_unboxed;
-#endif
-    sizetab[type_SimpleArray] = size_boxed;
-    sizetab[type_SimpleString] = size_string;
-    sizetab[type_SimpleBitVector] = size_vector_bit;
-    sizetab[type_SimpleVector] = size_vector;
-    sizetab[type_SimpleArrayUnsignedByte2] = size_vector_unsigned_byte_2;
-    sizetab[type_SimpleArrayUnsignedByte4] = size_vector_unsigned_byte_4;
-    sizetab[type_SimpleArrayUnsignedByte8] = size_vector_unsigned_byte_8;
-    sizetab[type_SimpleArrayUnsignedByte16] = size_vector_unsigned_byte_16;
-    sizetab[type_SimpleArrayUnsignedByte32] = size_vector_unsigned_byte_32;
-#ifdef type_SimpleArraySignedByte8
-    sizetab[type_SimpleArraySignedByte8] = size_vector_unsigned_byte_8;
-#endif
-#ifdef type_SimpleArraySignedByte16
-    sizetab[type_SimpleArraySignedByte16] = size_vector_unsigned_byte_16;
-#endif
-#ifdef type_SimpleArraySignedByte30
-    sizetab[type_SimpleArraySignedByte30] = size_vector_unsigned_byte_32;
-#endif
-#ifdef type_SimpleArraySignedByte32
-    sizetab[type_SimpleArraySignedByte32] = size_vector_unsigned_byte_32;
-#endif
-    sizetab[type_SimpleArraySingleFloat] = size_vector_single_float;
-    sizetab[type_SimpleArrayDoubleFloat] = size_vector_double_float;
-#ifdef type_SimpleArrayLongFloat
-    sizetab[type_SimpleArrayLongFloat] = size_vector_long_float;
-#endif
-#ifdef type_SimpleArrayComplexSingleFloat
-    sizetab[type_SimpleArrayComplexSingleFloat] = size_vector_complex_single_float;
-#endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-    sizetab[type_SimpleArrayComplexDoubleFloat] = size_vector_complex_double_float;
-#endif
-#ifdef type_SimpleArrayComplexLongFloat
-    sizetab[type_SimpleArrayComplexLongFloat] = size_vector_complex_long_float;
-#endif
-    sizetab[type_ComplexString] = size_boxed;
-    sizetab[type_ComplexBitVector] = size_boxed;
-    sizetab[type_ComplexVector] = size_boxed;
-    sizetab[type_ComplexArray] = size_boxed;
-    sizetab[type_CodeHeader] = size_code_header;
-#if 0
-    /* We shouldn't see these, so just lose if it happens. */
-    sizetab[type_FunctionHeader] = size_function_header;
-    sizetab[type_ClosureFunctionHeader] = size_function_header;
-    sizetab[type_ReturnPcHeader] = size_return_pc_header;
-#endif
-    sizetab[type_ClosureHeader] = size_boxed;
-    sizetab[type_FuncallableInstanceHeader] = size_boxed;
-    sizetab[type_ValueCellHeader] = size_boxed;
-    sizetab[type_SymbolHeader] = size_boxed;
-    sizetab[type_BaseChar] = size_immediate;
-    sizetab[type_Sap] = size_unboxed;
-    sizetab[type_UnboundMarker] = size_immediate;
-    sizetab[type_WeakPointer] = size_weak_pointer;
-    sizetab[type_InstanceHeader] = size_boxed;
-    sizetab[type_Fdefn] = size_boxed;
+                       }
+                   }
+               }
+           }
+       }
+    }
+    return (CEILING(kv_length + 2, 2));
 }
+
+
 \f
-/* Scan an area looking for an object which encloses the given pointer.
- * Return the object start on success or NULL on failure. */
-static lispobj *
-search_space(lispobj *start, size_t words, lispobj *pointer)
+/*
+ * weak pointers
+ */
+
+/* XX This is a hack adapted from cgc.c. These don't work too
+ * efficiently with the gencgc as a list of the weak pointers is
+ * maintained within the objects which causes writes to the pages. A
+ * limited attempt is made to avoid unnecessary writes, but this needs
+ * a re-think. */
+#define WEAK_POINTER_NWORDS \
+    CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
+
+static long
+scav_weak_pointer(lispobj *where, lispobj object)
 {
-    while (words > 0) {
-       size_t count = 1;
-       lispobj thing = *start;
-
-       /* If thing is an immediate then this is a cons. */
-       if (is_lisp_pointer(thing)
-           || ((thing & 3) == 0) /* fixnum */
-           || (TypeOf(thing) == type_BaseChar)
-           || (TypeOf(thing) == type_UnboundMarker))
-           count = 2;
-       else
-           count = (sizetab[TypeOf(thing)])(start);
+    struct weak_pointer *wp = weak_pointers;
+    /* Push the weak pointer onto the list of weak pointers.
+     * Do I have to watch for duplicates? Originally this was
+     * part of trans_weak_pointer but that didn't work in the
+     * case where the WP was in a promoted region.
+     */
 
-       /* Check whether the pointer is within this object. */
-       if ((pointer >= start) && (pointer < (start+count))) {
-           /* found it! */
-           /*FSHOW((stderr,"/found %x in %x %x\n", pointer, start, thing));*/
-           return(start);
+    /* Check whether it's already in the list. */
+    while (wp != NULL) {
+       if (wp == (struct weak_pointer*)where) {
+           break;
+       }
+       wp = wp->next;
+    }
+    if (wp == NULL) {
+       /* Add it to the start of the list. */
+       wp = (struct weak_pointer*)where;
+       if (wp->next != weak_pointers) {
+           wp->next = weak_pointers;
+       } else {
+           /*SHOW("avoided write to weak pointer");*/
        }
+       weak_pointers = wp;
+    }
 
-       /* Round up the count. */
-       count = CEILING(count,2);
+    /* Do not let GC scavenge the value slot of the weak pointer.
+     * (That is why it is a weak pointer.) */
 
-       start += count;
-       words -= count;
-    }
-    return (NULL);
+    return WEAK_POINTER_NWORDS;
 }
 
-static lispobj*
-search_read_only_space(lispobj *pointer)
+\f
+lispobj *
+search_read_only_space(void *pointer)
 {
-    lispobj* start = (lispobj*)READ_ONLY_SPACE_START;
-    lispobj* end = (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER);
-    if ((pointer < start) || (pointer >= end))
+    lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
+    lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
+    if ((pointer < (void *)start) || (pointer >= (void *)end))
        return NULL;
-    return (search_space(start, (pointer+2)-start, pointer));
+    return (gc_search_space(start,
+                           (((lispobj *)pointer)+2)-start,
+                           (lispobj *) pointer));
 }
 
-static lispobj *
-search_static_space(lispobj *pointer)
+lispobj *
+search_static_space(void *pointer)
 {
-    lispobj* start = (lispobj*)STATIC_SPACE_START;
-    lispobj* end = (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER);
-    if ((pointer < start) || (pointer >= end))
+    lispobj *start = (lispobj *)STATIC_SPACE_START;
+    lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
+    if ((pointer < (void *)start) || (pointer >= (void *)end))
        return NULL;
-    return (search_space(start, (pointer+2)-start, pointer));
+    return (gc_search_space(start, 
+                           (((lispobj *)pointer)+2)-start, 
+                           (lispobj *) pointer));
 }
 
 /* a faster version for searching the dynamic space. This will work even
  * if the object is in a current allocation region. */
 lispobj *
-search_dynamic_space(lispobj *pointer)
+search_dynamic_space(void *pointer)
 {
-    int  page_index = find_page_index(pointer);
+    long page_index = find_page_index(pointer);
     lispobj *start;
 
     /* The address may be invalid, so do some checks. */
-    if ((page_index == -1) || (page_table[page_index].allocated == FREE_PAGE))
+    if ((page_index == -1) ||
+       (page_table[page_index].allocated == FREE_PAGE_FLAG))
        return NULL;
     start = (lispobj *)((void *)page_address(page_index)
                        + page_table[page_index].first_object_offset);
-    return (search_space(start, (pointer+2)-start, pointer));
+    return (gc_search_space(start, 
+                           (((lispobj *)pointer)+2)-start, 
+                           (lispobj *)pointer));
 }
 
 /* Is there any possibility that pointer is a valid Lisp object
  * reference, and/or something else (e.g. subroutine call return
- * address) which should prevent us from moving the referred-to thing? */
+ * address) which should prevent us from moving the referred-to thing?
+ * This is called from preserve_pointers() */
 static int
 possibly_valid_dynamic_space_pointer(lispobj *pointer)
 {
@@ -3928,7 +2018,7 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
     /* We need to allow raw pointers into Code objects for return
      * addresses. This will also pick up pointers to functions in code
      * objects. */
-    if (TypeOf(*start_addr) == type_CodeHeader) {
+    if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
        /* XXX could do some further checks here */
        return 1;
     }
@@ -3941,35 +2031,19 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
 
     /* Check that the object pointed to is consistent with the pointer
      * low tag.
-     *
-     * FIXME: It's not safe to rely on the result from this check
-     * before an object is initialized. Thus, if we were interrupted
-     * just as an object had been allocated but not initialized, the
-     * GC relying on this result could bogusly reclaim the memory.
-     * However, we can't really afford to do without this check. So
-     * we should make it safe somehow. 
-     *   (1) Perhaps just review the code to make sure
-     *       that WITHOUT-GCING or WITHOUT-INTERRUPTS or some such
-     *       thing is wrapped around critical sections where allocated
-     *       memory type bits haven't been set.
-     *   (2) Perhaps find some other hack to protect against this, e.g.
-     *       recording the result of the last call to allocate-lisp-memory,
-     *       and returning true from this function when *pointer is
-     *       a reference to that result. */
-    switch (LowtagOf((lispobj)pointer)) {
-    case type_FunctionPointer:
+     */
+    switch (lowtag_of((lispobj)pointer)) {
+    case FUN_POINTER_LOWTAG:
        /* Start_addr should be the enclosing code object, or a closure
         * header. */
-       switch (TypeOf(*start_addr)) {
-       case type_CodeHeader:
+       switch (widetag_of(*start_addr)) {
+       case CODE_HEADER_WIDETAG:
            /* This case is probably caught above. */
            break;
-       case type_ClosureHeader:
-       case type_FuncallableInstanceHeader:
-       case type_ByteCodeFunction:
-       case type_ByteCodeClosure:
+       case CLOSURE_HEADER_WIDETAG:
+       case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
            if ((unsigned)pointer !=
-               ((unsigned)start_addr+type_FunctionPointer)) {
+               ((unsigned)start_addr+FUN_POINTER_LOWTAG)) {
                if (gencgc_verbose)
                    FSHOW((stderr,
                           "/Wf2: %x %x %x\n",
@@ -3985,9 +2059,9 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
            return 0;
        }
        break;
-    case type_ListPointer:
+    case LIST_POINTER_LOWTAG:
        if ((unsigned)pointer !=
-           ((unsigned)start_addr+type_ListPointer)) {
+           ((unsigned)start_addr+LIST_POINTER_LOWTAG)) {
            if (gencgc_verbose)
                FSHOW((stderr,
                       "/Wl1: %x %x %x\n",
@@ -3996,13 +2070,19 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
        }
        /* Is it plausible cons? */
        if ((is_lisp_pointer(start_addr[0])
-           || ((start_addr[0] & 3) == 0) /* fixnum */
-           || (TypeOf(start_addr[0]) == type_BaseChar)
-           || (TypeOf(start_addr[0]) == type_UnboundMarker))
+           || (fixnump(start_addr[0]))
+           || (widetag_of(start_addr[0]) == CHARACTER_WIDETAG)
+#if N_WORD_BITS == 64
+           || (widetag_of(start_addr[0]) == SINGLE_FLOAT_WIDETAG)
+#endif
+           || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
           && (is_lisp_pointer(start_addr[1])
-              || ((start_addr[1] & 3) == 0) /* fixnum */
-              || (TypeOf(start_addr[1]) == type_BaseChar)
-              || (TypeOf(start_addr[1]) == type_UnboundMarker)))
+              || (fixnump(start_addr[1]))
+              || (widetag_of(start_addr[1]) == CHARACTER_WIDETAG)
+#if N_WORD_BITS == 64
+              || (widetag_of(start_addr[1]) == SINGLE_FLOAT_WIDETAG)
+#endif
+              || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
            break;
        else {
            if (gencgc_verbose)
@@ -4011,16 +2091,16 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
                       pointer, start_addr, *start_addr));
            return 0;
        }
-    case type_InstancePointer:
+    case INSTANCE_POINTER_LOWTAG:
        if ((unsigned)pointer !=
-           ((unsigned)start_addr+type_InstancePointer)) {
+           ((unsigned)start_addr+INSTANCE_POINTER_LOWTAG)) {
            if (gencgc_verbose)
                FSHOW((stderr,
                       "/Wi1: %x %x %x\n",
                       pointer, start_addr, *start_addr));
            return 0;
        }
-       if (TypeOf(start_addr[0]) != type_InstanceHeader) {
+       if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
            if (gencgc_verbose)
                FSHOW((stderr,
                       "/Wi2: %x %x %x\n",
@@ -4028,9 +2108,9 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
            return 0;
        }
        break;
-    case type_OtherPointer:
+    case OTHER_POINTER_LOWTAG:
        if ((unsigned)pointer !=
-           ((int)start_addr+type_OtherPointer)) {
+           ((int)start_addr+OTHER_POINTER_LOWTAG)) {
            if (gencgc_verbose)
                FSHOW((stderr,
                       "/Wo1: %x %x %x\n",
@@ -4045,9 +2125,12 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
                       pointer, start_addr, *start_addr));
            return 0;
        }
-       switch (TypeOf(start_addr[0])) {
-       case type_UnboundMarker:
-       case type_BaseChar:
+       switch (widetag_of(start_addr[0])) {
+       case UNBOUND_MARKER_WIDETAG:
+       case CHARACTER_WIDETAG:
+#if N_WORD_BITS == 64
+       case SINGLE_FLOAT_WIDETAG:
+#endif
            if (gencgc_verbose)
                FSHOW((stderr,
                       "*Wo3: %x %x %x\n",
@@ -4055,17 +2138,15 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
            return 0;
 
            /* only pointed to by function pointers? */
-       case type_ClosureHeader:
-       case type_FuncallableInstanceHeader:
-       case type_ByteCodeFunction:
-       case type_ByteCodeClosure:
+       case CLOSURE_HEADER_WIDETAG:
+       case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
            if (gencgc_verbose)
                FSHOW((stderr,
                       "*Wo4: %x %x %x\n",
                       pointer, start_addr, *start_addr));
            return 0;
 
-       case type_InstanceHeader:
+       case INSTANCE_HEADER_WIDETAG:
            if (gencgc_verbose)
                FSHOW((stderr,
                       "*Wo5: %x %x %x\n",
@@ -4073,68 +2154,99 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
            return 0;
 
            /* the valid other immediate pointer objects */
-       case type_SimpleVector:
-       case type_Ratio:
-       case type_Complex:
-#ifdef type_ComplexSingleFloat
-       case type_ComplexSingleFloat:
+       case SIMPLE_VECTOR_WIDETAG:
+       case RATIO_WIDETAG:
+       case COMPLEX_WIDETAG:
+#ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
+       case COMPLEX_SINGLE_FLOAT_WIDETAG:
+#endif
+#ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
+       case COMPLEX_DOUBLE_FLOAT_WIDETAG:
+#endif
+#ifdef COMPLEX_LONG_FLOAT_WIDETAG
+       case COMPLEX_LONG_FLOAT_WIDETAG:
+#endif
+       case SIMPLE_ARRAY_WIDETAG:
+       case COMPLEX_BASE_STRING_WIDETAG:
+#ifdef COMPLEX_CHARACTER_STRING_WIDETAG
+       case COMPLEX_CHARACTER_STRING_WIDETAG:
+#endif
+       case COMPLEX_VECTOR_NIL_WIDETAG:
+       case COMPLEX_BIT_VECTOR_WIDETAG:
+       case COMPLEX_VECTOR_WIDETAG:
+       case COMPLEX_ARRAY_WIDETAG:
+       case VALUE_CELL_HEADER_WIDETAG:
+       case SYMBOL_HEADER_WIDETAG:
+       case FDEFN_WIDETAG:
+       case CODE_HEADER_WIDETAG:
+       case BIGNUM_WIDETAG:
+#if N_WORD_BITS != 64
+       case SINGLE_FLOAT_WIDETAG:
+#endif
+       case DOUBLE_FLOAT_WIDETAG:
+#ifdef LONG_FLOAT_WIDETAG
+       case LONG_FLOAT_WIDETAG:
+#endif
+       case SIMPLE_BASE_STRING_WIDETAG:
+#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
+       case SIMPLE_CHARACTER_STRING_WIDETAG:
+#endif
+       case SIMPLE_BIT_VECTOR_WIDETAG:
+       case SIMPLE_ARRAY_NIL_WIDETAG:
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
+#endif
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
 #endif
-#ifdef type_ComplexDoubleFloat
-       case type_ComplexDoubleFloat:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
 #endif
-#ifdef type_ComplexLongFloat
-       case type_ComplexLongFloat:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
+       case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
 #endif
-       case type_SimpleArray:
-       case type_ComplexString:
-       case type_ComplexBitVector:
-       case type_ComplexVector:
-       case type_ComplexArray:
-       case type_ValueCellHeader:
-       case type_SymbolHeader:
-       case type_Fdefn:
-       case type_CodeHeader:
-       case type_Bignum:
-       case type_SingleFloat:
-       case type_DoubleFloat:
-#ifdef type_LongFloat
-       case type_LongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
+       case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
 #endif
-       case type_SimpleString:
-       case type_SimpleBitVector:
-       case type_SimpleArrayUnsignedByte2:
-       case type_SimpleArrayUnsignedByte4:
-       case type_SimpleArrayUnsignedByte8:
-       case type_SimpleArrayUnsignedByte16:
-       case type_SimpleArrayUnsignedByte32:
-#ifdef type_SimpleArraySignedByte8
-       case type_SimpleArraySignedByte8:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
+       case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte16
-       case type_SimpleArraySignedByte16:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
+       case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte30
-       case type_SimpleArraySignedByte30:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
+       case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte32
-       case type_SimpleArraySignedByte32:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
+       case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
 #endif
-       case type_SimpleArraySingleFloat:
-       case type_SimpleArrayDoubleFloat:
-#ifdef type_SimpleArrayLongFloat
-       case type_SimpleArrayLongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
+       case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexSingleFloat
-       case type_SimpleArrayComplexSingleFloat:
+       case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
+       case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
+#ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
+       case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-       case type_SimpleArrayComplexDoubleFloat:
+#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
+       case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexLongFloat
-       case type_SimpleArrayComplexLongFloat:
+#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
+       case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
 #endif
-       case type_Sap:
-       case type_WeakPointer:
+#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
+       case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
+#endif
+       case SAP_WIDETAG:
+       case WEAK_POINTER_WIDETAG:
            break;
 
        default:
@@ -4167,63 +2279,88 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
 static void
 maybe_adjust_large_object(lispobj *where)
 {
-    int first_page;
-    int nwords;
+    long first_page;
+    long nwords;
 
-    int remaining_bytes;
-    int next_page;
-    int bytes_freed;
-    int old_bytes_used;
+    long remaining_bytes;
+    long next_page;
+    long bytes_freed;
+    long old_bytes_used;
 
     int boxed;
 
     /* Check whether it's a vector or bignum object. */
-    switch (TypeOf(where[0])) {
-    case type_SimpleVector:
-       boxed = BOXED_PAGE;
+    switch (widetag_of(where[0])) {
+    case SIMPLE_VECTOR_WIDETAG:
+       boxed = BOXED_PAGE_FLAG;
        break;
-    case type_Bignum:
-    case type_SimpleString:
-    case type_SimpleBitVector:
-    case type_SimpleArrayUnsignedByte2:
-    case type_SimpleArrayUnsignedByte4:
-    case type_SimpleArrayUnsignedByte8:
-    case type_SimpleArrayUnsignedByte16:
-    case type_SimpleArrayUnsignedByte32:
-#ifdef type_SimpleArraySignedByte8
-    case type_SimpleArraySignedByte8:
+    case BIGNUM_WIDETAG:
+    case SIMPLE_BASE_STRING_WIDETAG:
+#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
+    case SIMPLE_CHARACTER_STRING_WIDETAG:
+#endif
+    case SIMPLE_BIT_VECTOR_WIDETAG:
+    case SIMPLE_ARRAY_NIL_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
+#endif
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte16
-    case type_SimpleArraySignedByte16:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte30
-    case type_SimpleArraySignedByte30:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte32
-    case type_SimpleArraySignedByte32:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
 #endif
-    case type_SimpleArraySingleFloat:
-    case type_SimpleArrayDoubleFloat:
-#ifdef type_SimpleArrayLongFloat
-    case type_SimpleArrayLongFloat:
+    case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
+    case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
+#ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
+    case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexSingleFloat
-    case type_SimpleArrayComplexSingleFloat:
+#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
+    case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-    case type_SimpleArrayComplexDoubleFloat:
+#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
+    case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexLongFloat
-    case type_SimpleArrayComplexLongFloat:
+#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
+    case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
 #endif
-       boxed = UNBOXED_PAGE;
+       boxed = UNBOXED_PAGE_FLAG;
        break;
     default:
        return;
     }
 
     /* Find its current size. */
-    nwords = (sizetab[TypeOf(where[0])])(where);
+    nwords = (sizetab[widetag_of(where[0])])(where);
 
     first_page = find_page_index((void *)where);
     gc_assert(first_page >= 0);
@@ -4237,22 +2374,22 @@ maybe_adjust_large_object(lispobj *where)
     gc_assert(page_table[first_page].first_object_offset == 0);
 
     next_page = first_page;
-    remaining_bytes = nwords*4;
-    while (remaining_bytes > 4096) {
+    remaining_bytes = nwords*N_WORD_BYTES;
+    while (remaining_bytes > PAGE_BYTES) {
        gc_assert(page_table[next_page].gen == from_space);
-       gc_assert((page_table[next_page].allocated == BOXED_PAGE)
-                 || (page_table[next_page].allocated == UNBOXED_PAGE));
+       gc_assert((page_table[next_page].allocated == BOXED_PAGE_FLAG)
+                 || (page_table[next_page].allocated == UNBOXED_PAGE_FLAG));
        gc_assert(page_table[next_page].large_object);
        gc_assert(page_table[next_page].first_object_offset ==
-                 -4096*(next_page-first_page));
-       gc_assert(page_table[next_page].bytes_used == 4096);
+                 -PAGE_BYTES*(next_page-first_page));
+       gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
 
        page_table[next_page].allocated = boxed;
 
        /* Shouldn't be write-protected at this stage. Essential that the
         * pages aren't. */
        gc_assert(!page_table[next_page].write_protected);
-       remaining_bytes -= 4096;
+       remaining_bytes -= PAGE_BYTES;
        next_page++;
     }
 
@@ -4274,13 +2411,13 @@ maybe_adjust_large_object(lispobj *where)
 
     /* Free any remaining pages; needs care. */
     next_page++;
-    while ((old_bytes_used == 4096) &&
+    while ((old_bytes_used == PAGE_BYTES) &&
           (page_table[next_page].gen == from_space) &&
-          ((page_table[next_page].allocated == UNBOXED_PAGE)
-           || (page_table[next_page].allocated == BOXED_PAGE)) &&
+          ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
+           || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
           page_table[next_page].large_object &&
           (page_table[next_page].first_object_offset ==
-           -(next_page - first_page)*4096)) {
+           -(next_page - first_page)*PAGE_BYTES)) {
        /* It checks out OK, free the page. We don't need to both zeroing
         * pages as this should have been done before shrinking the
         * object. These pages shouldn't be write protected as they
@@ -4288,7 +2425,7 @@ maybe_adjust_large_object(lispobj *where)
        gc_assert(page_table[next_page].write_protected == 0);
 
        old_bytes_used = page_table[next_page].bytes_used;
-       page_table[next_page].allocated = FREE_PAGE;
+       page_table[next_page].allocated = FREE_PAGE_FLAG;
        page_table[next_page].bytes_used = 0;
        bytes_freed += old_bytes_used;
        next_page++;
@@ -4310,11 +2447,8 @@ maybe_adjust_large_object(lispobj *where)
  * page_table so that it will not be relocated during a GC.
  *
  * This involves locating the page it points to, then backing up to
- * the first page that has its first object start at offset 0, and
- * then marking all pages dont_move from the first until a page that
- * ends by being full, or having free gen.
- *
- * This ensures that objects spanning pages are not broken.
+ * the start of its region, then marking all pages dont_move from there
+ * up to the first page that's not full or has a different generation
  *
  * It is assumed that all the page static flags have been cleared at
  * the start of a GC.
@@ -4324,52 +2458,60 @@ maybe_adjust_large_object(lispobj *where)
 static void
 preserve_pointer(void *addr)
 {
-    int addr_page_index = find_page_index(addr);
-    int first_page;
-    int i;
+    long addr_page_index = find_page_index(addr);
+    long first_page;
+    long i;
     unsigned region_allocation;
 
     /* quick check 1: Address is quite likely to have been invalid. */
     if ((addr_page_index == -1)
-       || (page_table[addr_page_index].allocated == FREE_PAGE)
+       || (page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
        || (page_table[addr_page_index].bytes_used == 0)
        || (page_table[addr_page_index].gen != from_space)
        /* Skip if already marked dont_move. */
        || (page_table[addr_page_index].dont_move != 0))
        return;
-
+    gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
     /* (Now that we know that addr_page_index is in range, it's
      * safe to index into page_table[] with it.) */
     region_allocation = page_table[addr_page_index].allocated;
 
     /* quick check 2: Check the offset within the page.
      *
-     * FIXME: The mask should have a symbolic name, and ideally should
-     * be derived from page size instead of hardwired to 0xfff.
-     * (Also fix other uses of 0xfff, elsewhere.) */
-    if (((unsigned)addr & 0xfff) > page_table[addr_page_index].bytes_used)
+     */
+    if (((unsigned)addr & (PAGE_BYTES - 1)) > page_table[addr_page_index].bytes_used)
        return;
 
     /* Filter out anything which can't be a pointer to a Lisp object
      * (or, as a special case which also requires dont_move, a return
      * address referring to something in a CodeObject). This is
      * expensive but important, since it vastly reduces the
-     * probability that random garbage will be bogusly interpreter as
+     * probability that random garbage will be bogusly interpreted as
      * a pointer which prevents a page from moving. */
-    if (!possibly_valid_dynamic_space_pointer(addr))
+    if (!(possibly_valid_dynamic_space_pointer(addr)))
        return;
 
-    /* Work backwards to find a page with a first_object_offset of 0.
-     * The pages should be contiguous with all bytes used in the same
-     * gen. Assumes the first_object_offset is negative or zero. */
+    /* Find the beginning of the region.  Note that there may be
+     * objects in the region preceding the one that we were passed a
+     * pointer to: if this is the case, we will write-protect all the
+     * previous objects' pages too.     */
+
+#if 0
+    /* I think this'd work just as well, but without the assertions.
+     * -dan 2004.01.01 */
+    first_page=
+       find_page_index(page_address(addr_page_index)+
+                       page_table[addr_page_index].first_object_offset);
+#else 
     first_page = addr_page_index;
     while (page_table[first_page].first_object_offset != 0) {
        --first_page;
        /* Do some checks. */
-       gc_assert(page_table[first_page].bytes_used == 4096);
+       gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
        gc_assert(page_table[first_page].gen == from_space);
        gc_assert(page_table[first_page].allocated == region_allocation);
     }
+#endif
 
     /* Adjust any large objects before promotion as they won't be
      * copied after promotion. */
@@ -4379,10 +2521,10 @@ preserve_pointer(void *addr)
         * free area in which case it's ignored here. Note it gets
         * through the valid pointer test above because the tail looks
         * like conses. */
-       if ((page_table[addr_page_index].allocated == FREE_PAGE)
+       if ((page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
            || (page_table[addr_page_index].bytes_used == 0)
            /* Check the offset within the page. */
-           || (((unsigned)addr & 0xfff)
+           || (((unsigned)addr & (PAGE_BYTES - 1))
                > page_table[addr_page_index].bytes_used)) {
            FSHOW((stderr,
                   "weird? ignore ptr 0x%x to freed area of large object\n",
@@ -4416,9 +2558,9 @@ preserve_pointer(void *addr)
        gc_assert(!page_table[i].write_protected);
 
        /* Check whether this is the last page in this contiguous block.. */
-       if ((page_table[i].bytes_used < 4096)
-           /* ..or it is 4096 and is the last in the block */
-           || (page_table[i+1].allocated == FREE_PAGE)
+       if ((page_table[i].bytes_used < PAGE_BYTES)
+           /* ..or it is PAGE_BYTES and is the last in the block */
+           || (page_table[i+1].allocated == FREE_PAGE_FLAG)
            || (page_table[i+1].bytes_used == 0) /* next page free */
            || (page_table[i+1].gen != from_space) /* diff. gen */
            || (page_table[i+1].first_object_offset == 0))
@@ -4443,21 +2585,22 @@ preserve_pointer(void *addr)
  *
  * We return 1 if the page was write-protected, else 0. */
 static int
-update_page_write_prot(int page)
+update_page_write_prot(long page)
 {
     int gen = page_table[page].gen;
-    int j;
+    long j;
     int wp_it = 1;
     void **page_addr = (void **)page_address(page);
-    int num_words = page_table[page].bytes_used / 4;
+    long num_words = page_table[page].bytes_used / N_WORD_BYTES;
 
     /* Shouldn't be a free page. */
-    gc_assert(page_table[page].allocated != FREE_PAGE);
+    gc_assert(page_table[page].allocated != FREE_PAGE_FLAG);
     gc_assert(page_table[page].bytes_used != 0);
 
-    /* Skip if it's already write-protected or an unboxed page. */
+    /* Skip if it's already write-protected, pinned, or unboxed */
     if (page_table[page].write_protected
-       || (page_table[page].allocated == UNBOXED_PAGE))
+       || page_table[page].dont_move
+       || (page_table[page].allocated & UNBOXED_PAGE_FLAG))
        return (0);
 
     /* Scan the page for pointers to younger generations or the
@@ -4465,12 +2608,12 @@ update_page_write_prot(int page)
 
     for (j = 0; j < num_words; j++) {
        void *ptr = *(page_addr+j);
-       int index = find_page_index(ptr);
+       long index = find_page_index(ptr);
 
        /* Check that it's in the dynamic space */
        if (index != -1)
            if (/* Does it point to a younger or the temp. generation? */
-               ((page_table[index].allocated != FREE_PAGE)
+               ((page_table[index].allocated != FREE_PAGE_FLAG)
                 && (page_table[index].bytes_used != 0)
                 && ((page_table[index].gen < gen)
                     || (page_table[index].gen == NUM_GENERATIONS)))
@@ -4490,7 +2633,7 @@ update_page_write_prot(int page)
        /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
 
        os_protect((void *)page_addr,
-                  4096,
+                  PAGE_BYTES,
                   OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
 
        /* Note the page as protected in the page tables. */
@@ -4503,7 +2646,7 @@ update_page_write_prot(int page)
 /* Scavenge a generation.
  *
  * This will not resolve all pointers when generation is the new
- * space, as new objects may be added which are not check here - use
+ * space, as new objects may be added which are not checked here - use
  * scavenge_newspace generation.
  *
  * Write-protected pages should not have any pointers to the
@@ -4534,7 +2677,7 @@ update_page_write_prot(int page)
 static void
 scavenge_generation(int generation)
 {
-    int i;
+    long i;
     int num_wp = 0;
 
 #define SC_GEN_CK 0
@@ -4545,61 +2688,43 @@ scavenge_generation(int generation)
 #endif
 
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated == BOXED_PAGE)
+       if ((page_table[i].allocated & BOXED_PAGE_FLAG)
            && (page_table[i].bytes_used != 0)
            && (page_table[i].gen == generation)) {
-           int last_page;
+           long last_page,j;
+           int write_protected=1;
 
-           /* This should be the start of a contiguous block. */
+           /* This should be the start of a region */
            gc_assert(page_table[i].first_object_offset == 0);
 
-           /* We need to find the full extent of this contiguous
-            * block in case objects span pages. */
-
-           /* Now work forward until the end of this contiguous area
-            * is found. A small area is preferred as there is a
-            * better chance of its pages being write-protected. */
-           for (last_page = i; ; last_page++)
-               /* Check whether this is the last page in this contiguous
-                * block. */
-               if ((page_table[last_page].bytes_used < 4096)
-                   /* Or it is 4096 and is the last in the block */
-                   || (page_table[last_page+1].allocated != BOXED_PAGE)
+           /* Now work forward until the end of the region */
+           for (last_page = i; ; last_page++) {
+               write_protected =
+                   write_protected && page_table[last_page].write_protected;
+               if ((page_table[last_page].bytes_used < PAGE_BYTES)
+                   /* Or it is PAGE_BYTES and is the last in the block */
+                   || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
                    || (page_table[last_page+1].bytes_used == 0)
                    || (page_table[last_page+1].gen != generation)
                    || (page_table[last_page+1].first_object_offset == 0))
                    break;
-
-           /* Do a limited check for write_protected pages. If all pages
-            * are write_protected then there is no need to scavenge. */
-           {
-               int j, all_wp = 1;
-               for (j = i; j <= last_page; j++)
-                   if (page_table[j].write_protected == 0) {
-                       all_wp = 0;
-                       break;
-                   }
-#if !SC_GEN_CK
-               if (all_wp == 0)
-#endif
-                   {
-                       scavenge(page_address(i), (page_table[last_page].bytes_used
-                                                  + (last_page-i)*4096)/4);
-
-                       /* Now scan the pages and write protect those
-                        * that don't have pointers to younger
-                        * generations. */
-                       if (enable_page_protection) {
-                           for (j = i; j <= last_page; j++) {
-                               num_wp += update_page_write_prot(j);
-                           }
-                       }
+           }
+           if (!write_protected) {
+               scavenge(page_address(i), 
+                        (page_table[last_page].bytes_used +
+                         (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
+               
+               /* Now scan the pages and write protect those that
+                * don't have pointers to younger generations. */
+               if (enable_page_protection) {
+                   for (j = i; j <= last_page; j++) {
+                       num_wp += update_page_write_prot(j);
                    }
+               }
            }
            i = last_page;
        }
     }
-
     if ((gencgc_verbose > 1) && (num_wp != 0)) {
        FSHOW((stderr,
               "/write protected %d pages within generation %d\n",
@@ -4610,7 +2735,7 @@ scavenge_generation(int generation)
     /* Check that none of the write_protected pages in this generation
      * have been written to. */
     for (i = 0; i < NUM_PAGES; i++) {
-       if ((page_table[i].allocation ! =FREE_PAGE)
+       if ((page_table[i].allocation != FREE_PAGE_FLAG)
            && (page_table[i].bytes_used != 0)
            && (page_table[i].gen == generation)
            && (page_table[i].write_protected_cleared != 0)) {
@@ -4657,21 +2782,22 @@ static struct new_area new_areas_2[NUM_NEW_AREAS];
 static void
 scavenge_newspace_generation_one_scan(int generation)
 {
-    int i;
+    long i;
 
     FSHOW((stderr,
           "/starting one full scan of newspace generation %d\n",
           generation));
-
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated == BOXED_PAGE)
+       /* Note that this skips over open regions when it encounters them. */
+       if ((page_table[i].allocated & BOXED_PAGE_FLAG)
            && (page_table[i].bytes_used != 0)
            && (page_table[i].gen == generation)
            && ((page_table[i].write_protected == 0)
                /* (This may be redundant as write_protected is now
                 * cleared before promotion.) */
                || (page_table[i].dont_move == 1))) {
-           int last_page;
+           long last_page;
+           int all_wp=1;
 
            /* The scavenge will start at the first_object_offset of page i.
             *
@@ -4682,52 +2808,36 @@ scavenge_newspace_generation_one_scan(int generation)
             * is found. A small area is preferred as there is a
             * better chance of its pages being write-protected. */
            for (last_page = i; ;last_page++) {
+               /* If all pages are write-protected and movable, 
+                * then no need to scavenge */
+               all_wp=all_wp && page_table[last_page].write_protected && 
+                   !page_table[last_page].dont_move;
+               
                /* Check whether this is the last page in this
                 * contiguous block */
-               if ((page_table[last_page].bytes_used < 4096)
-                   /* Or it is 4096 and is the last in the block */
-                   || (page_table[last_page+1].allocated != BOXED_PAGE)
+               if ((page_table[last_page].bytes_used < PAGE_BYTES)
+                   /* Or it is PAGE_BYTES and is the last in the block */
+                   || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
                    || (page_table[last_page+1].bytes_used == 0)
                    || (page_table[last_page+1].gen != generation)
                    || (page_table[last_page+1].first_object_offset == 0))
                    break;
            }
 
-           /* Do a limited check for write-protected pages. If all
-            * pages are write-protected then no need to scavenge,
-            * except if the pages are marked dont_move. */
-           {
-               int j, all_wp = 1;
-               for (j = i; j <= last_page; j++)
-                   if ((page_table[j].write_protected == 0)
-                       || (page_table[j].dont_move != 0)) {
-                       all_wp = 0;
-                       break;
-                   }
-
-               if (!all_wp) {
-                   int size;
-
-                   /* Calculate the size. */
-                   if (last_page == i)
-                       size = (page_table[last_page].bytes_used
-                               - page_table[i].first_object_offset)/4;
-                   else
-                       size = (page_table[last_page].bytes_used
-                               + (last_page-i)*4096
-                               - page_table[i].first_object_offset)/4;
-                   
-                   {
-                       new_areas_ignore_page = last_page;
-                       
-                       scavenge(page_address(i) +
-                                page_table[i].first_object_offset,
-                                size);
-
-                   }
-               }
+           /* Do a limited check for write-protected pages.  */
+           if (!all_wp) {
+               long size;
+               
+               size = (page_table[last_page].bytes_used
+                       + (last_page-i)*PAGE_BYTES
+                       - page_table[i].first_object_offset)/N_WORD_BYTES;
+               new_areas_ignore_page = last_page;
+               
+               scavenge(page_address(i) +
+                        page_table[i].first_object_offset,
+                        size);
+               
            }
-
            i = last_page;
        }
     }
@@ -4740,19 +2850,18 @@ scavenge_newspace_generation_one_scan(int generation)
 static void
 scavenge_newspace_generation(int generation)
 {
-    int i;
+    long i;
 
     /* the new_areas array currently being written to by gc_alloc() */
     struct new_area (*current_new_areas)[] = &new_areas_1;
-    int current_new_areas_index;
+    long current_new_areas_index;
 
-    /* the new_areas created but the previous scavenge cycle */
+    /* the new_areas created by the previous scavenge cycle */
     struct new_area (*previous_new_areas)[] = NULL;
-    int previous_new_areas_index;
+    long previous_new_areas_index;
 
     /* Flush the current regions updating the tables. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
 
     /* Turn on the recording of new areas by gc_alloc(). */
     new_areas = current_new_areas;
@@ -4769,8 +2878,7 @@ scavenge_newspace_generation(int generation)
     record_new_objects = 2;
 
     /* Flush the current regions updating the tables. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
 
     /* Grab new_areas_index. */
     current_new_areas_index = new_areas_index;
@@ -4817,26 +2925,21 @@ scavenge_newspace_generation(int generation)
            record_new_objects = 2;
 
            /* Flush the current regions updating the tables. */
-           gc_alloc_update_page_tables(0, &boxed_region);
-           gc_alloc_update_page_tables(1, &unboxed_region);
+           gc_alloc_update_all_page_tables();
 
        } else {
 
            /* Work through previous_new_areas. */
            for (i = 0; i < previous_new_areas_index; i++) {
-               /* FIXME: All these bare *4 and /4 should be something
-                * like BYTES_PER_WORD or WBYTES. */
-               int page = (*previous_new_areas)[i].page;
-               int offset = (*previous_new_areas)[i].offset;
-               int size = (*previous_new_areas)[i].size / 4;
-               gc_assert((*previous_new_areas)[i].size % 4 == 0);
-
+               long page = (*previous_new_areas)[i].page;
+               long offset = (*previous_new_areas)[i].offset;
+               long size = (*previous_new_areas)[i].size / N_WORD_BYTES;
+               gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
                scavenge(page_address(page)+offset, size);
            }
 
            /* Flush the current regions updating the tables. */
-           gc_alloc_update_page_tables(0, &boxed_region);
-           gc_alloc_update_page_tables(1, &unboxed_region);
+           gc_alloc_update_all_page_tables();
        }
 
        current_new_areas_index = new_areas_index;
@@ -4853,7 +2956,7 @@ scavenge_newspace_generation(int generation)
     /* Check that none of the write_protected pages in this generation
      * have been written to. */
     for (i = 0; i < NUM_PAGES; i++) {
-       if ((page_table[i].allocation != FREE_PAGE)
+       if ((page_table[i].allocation != FREE_PAGE_FLAG)
            && (page_table[i].bytes_used != 0)
            && (page_table[i].gen == generation)
            && (page_table[i].write_protected_cleared != 0)
@@ -4873,10 +2976,10 @@ scavenge_newspace_generation(int generation)
 static void
 unprotect_oldspace(void)
 {
-    int i;
+    long i;
 
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated != FREE_PAGE)
+       if ((page_table[i].allocated != FREE_PAGE_FLAG)
            && (page_table[i].bytes_used != 0)
            && (page_table[i].gen == from_space)) {
            void *page_start;
@@ -4886,7 +2989,7 @@ unprotect_oldspace(void)
            /* Remove any write-protection. We should be able to rely
             * on the write-protect flag to avoid redundant calls. */
            if (page_table[i].write_protected) {
-               os_protect(page_start, 4096, OS_VM_PROT_ALL);
+               os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
                page_table[i].write_protected = 0;
            }
        }
@@ -4897,19 +3000,18 @@ unprotect_oldspace(void)
  * assumes that all objects have been copied or promoted to an older
  * generation. Bytes_allocated and the generation bytes_allocated
  * counter are updated. The number of bytes freed is returned. */
-extern void i586_bzero(void *addr, int nbytes);
-static int
+static long
 free_oldspace(void)
 {
-    int bytes_freed = 0;
-    int first_page, last_page;
+    long bytes_freed = 0;
+    long first_page, last_page;
 
     first_page = 0;
 
     do {
        /* Find a first page for the next region of pages. */
        while ((first_page < last_free_page)
-              && ((page_table[first_page].allocated == FREE_PAGE)
+              && ((page_table[first_page].allocated == FREE_PAGE_FLAG)
                   || (page_table[first_page].bytes_used == 0)
                   || (page_table[first_page].gen != from_space)))
            first_page++;
@@ -4925,7 +3027,7 @@ free_oldspace(void)
            bytes_freed += page_table[last_page].bytes_used;
            generations[page_table[last_page].gen].bytes_allocated -=
                page_table[last_page].bytes_used;
-           page_table[last_page].allocated = FREE_PAGE;
+           page_table[last_page].allocated = FREE_PAGE_FLAG;
            page_table[last_page].bytes_used = 0;
 
            /* Remove any write-protection. We should be able to rely
@@ -4934,14 +3036,14 @@ free_oldspace(void)
                void  *page_start = (void *)page_address(last_page);
        
                if (page_table[last_page].write_protected) {
-                   os_protect(page_start, 4096, OS_VM_PROT_ALL);
+                   os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
                    page_table[last_page].write_protected = 0;
                }
            }
            last_page++;
        }
        while ((last_page < last_free_page)
-              && (page_table[last_page].allocated != FREE_PAGE)
+              && (page_table[last_page].allocated != FREE_PAGE_FLAG)
               && (page_table[last_page].bytes_used != 0)
               && (page_table[last_page].gen == from_space));
 
@@ -4955,26 +3057,17 @@ free_oldspace(void)
 
            page_start = (void *)page_address(first_page);
 
-           os_invalidate(page_start, 4096*(last_page-first_page));
-           addr = os_validate(page_start, 4096*(last_page-first_page));
+           os_invalidate(page_start, PAGE_BYTES*(last_page-first_page));
+           addr = os_validate(page_start, PAGE_BYTES*(last_page-first_page));
            if (addr == NULL || addr != page_start) {
-               /* Is this an error condition? I couldn't really tell from
-                * the old CMU CL code, which fprintf'ed a message with
-                * an exclamation point at the end. But I've never seen the
-                * message, so it must at least be unusual..
-                *
-                * (The same condition is also tested for in gc_free_heap.)
-                *
-                * -- WHN 19991129 */
-               lose("i586_bzero: page moved, 0x%08x ==> 0x%08x",
-                    page_start,
+               lose("free_oldspace: page moved, 0x%08x ==> 0x%08x",page_start,
                     addr);
            }
        } else {
-           int *page_start;
+           long *page_start;
 
-           page_start = (int *)page_address(first_page);
-           i586_bzero(page_start, 4096*(last_page-first_page));
+           page_start = (long *)page_address(first_page);
+           memset(page_start, 0,PAGE_BYTES*(last_page-first_page));
        }
 
        first_page = last_page;
@@ -4991,11 +3084,11 @@ static void
 print_ptr(lispobj *addr)
 {
     /* If addr is in the dynamic space then out the page information. */
-    int pi1 = find_page_index((void*)addr);
+    long pi1 = find_page_index((void*)addr);
 
     if (pi1 != -1)
        fprintf(stderr,"  %x: page %d  alloc %d  gen %d  bytes_used %d  offset %d  dont_move %d\n",
-               (unsigned int) addr,
+               (unsigned long) addr,
                pi1,
                page_table[pi1].allocated,
                page_table[pi1].gen,
@@ -5015,7 +3108,7 @@ print_ptr(lispobj *addr)
 }
 #endif
 
-extern int undefined_tramp;
+extern long undefined_tramp;
 
 static void
 verify_space(lispobj *start, size_t words)
@@ -5023,26 +3116,26 @@ verify_space(lispobj *start, size_t words)
     int is_in_dynamic_space = (find_page_index((void*)start) != -1);
     int is_in_readonly_space =
        (READ_ONLY_SPACE_START <= (unsigned)start &&
-        (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER));
+        (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
 
     while (words > 0) {
        size_t count = 1;
        lispobj thing = *(lispobj*)start;
 
        if (is_lisp_pointer(thing)) {
-           int page_index = find_page_index((void*)thing);
-           int to_readonly_space =
+           long page_index = find_page_index((void*)thing);
+           long to_readonly_space =
                (READ_ONLY_SPACE_START <= thing &&
-                thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER));
-           int to_static_space =
+                thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
+           long to_static_space =
                (STATIC_SPACE_START <= thing &&
-                thing < SymbolValue(STATIC_SPACE_FREE_POINTER));
+                thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
 
            /* Does it point to the dynamic space? */
            if (page_index != -1) {
                /* If it's within the dynamic space it should point to a used
                 * page. XX Could check the offset too. */
-               if ((page_table[page_index].allocated != FREE_PAGE)
+               if ((page_table[page_index].allocated != FREE_PAGE_FLAG)
                    && (page_table[page_index].bytes_used == 0))
                    lose ("Ptr %x @ %x sees free page.", thing, start);
                /* Check that it doesn't point to a forwarding pointer! */
@@ -5058,9 +3151,17 @@ verify_space(lispobj *start, size_t words)
                /* Does it point to a plausible object? This check slows
                 * it down a lot (so it's commented out).
                 *
-                * FIXME: Add a variable to enable this dynamically. */
-               /* if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
-                *     lose("ptr %x to invalid object %x", thing, start); */
+                * "a lot" is serious: it ate 50 minutes cpu time on
+                * my duron 950 before I came back from lunch and
+                * killed it.
+                *
+                *   FIXME: Add a variable to enable this
+                * dynamically. */
+               /*
+               if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
+                   lose("ptr %x to invalid object %x", thing, start); 
+               }
+               */
            } else {
                /* Verify that it points to another valid space. */
                if (!to_readonly_space && !to_static_space
@@ -5069,40 +3170,44 @@ verify_space(lispobj *start, size_t words)
                }
            }
        } else {
-           if (thing & 0x3) { /* Skip fixnums. FIXME: There should be an
-                               * is_fixnum for this. */
-
-               switch(TypeOf(*start)) {
+           if (!(fixnump(thing))) { 
+               /* skip fixnums */
+               switch(widetag_of(*start)) {
 
                    /* boxed objects */
-               case type_SimpleVector:
-               case type_Ratio:
-               case type_Complex:
-               case type_SimpleArray:
-               case type_ComplexString:
-               case type_ComplexBitVector:
-               case type_ComplexVector:
-               case type_ComplexArray:
-               case type_ClosureHeader:
-               case type_FuncallableInstanceHeader:
-               case type_ByteCodeFunction:
-               case type_ByteCodeClosure:
-               case type_ValueCellHeader:
-               case type_SymbolHeader:
-               case type_BaseChar:
-               case type_UnboundMarker:
-               case type_InstanceHeader:
-               case type_Fdefn:
+               case SIMPLE_VECTOR_WIDETAG:
+               case RATIO_WIDETAG:
+               case COMPLEX_WIDETAG:
+               case SIMPLE_ARRAY_WIDETAG:
+               case COMPLEX_BASE_STRING_WIDETAG:
+#ifdef COMPLEX_CHARACTER_STRING_WIDETAG
+               case COMPLEX_CHARACTER_STRING_WIDETAG:
+#endif
+               case COMPLEX_VECTOR_NIL_WIDETAG:
+               case COMPLEX_BIT_VECTOR_WIDETAG:
+               case COMPLEX_VECTOR_WIDETAG:
+               case COMPLEX_ARRAY_WIDETAG:
+               case CLOSURE_HEADER_WIDETAG:
+               case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
+               case VALUE_CELL_HEADER_WIDETAG:
+               case SYMBOL_HEADER_WIDETAG:
+               case CHARACTER_WIDETAG:
+#if N_WORD_BITS == 64
+               case SINGLE_FLOAT_WIDETAG:
+#endif
+               case UNBOUND_MARKER_WIDETAG:
+               case INSTANCE_HEADER_WIDETAG:
+               case FDEFN_WIDETAG:
                    count = 1;
                    break;
 
-               case type_CodeHeader:
+               case CODE_HEADER_WIDETAG:
                    {
                        lispobj object = *start;
                        struct code *code;
-                       int nheader_words, ncode_words, nwords;
+                       long nheader_words, ncode_words, nwords;
                        lispobj fheaderl;
-                       struct function *fheaderp;
+                       struct simple_fun *fheaderp;
 
                        code = (struct code *) start;
 
@@ -5112,8 +3217,14 @@ verify_space(lispobj *start, size_t words)
                        if (is_in_dynamic_space
                            /* It's ok if it's byte compiled code. The trace
                             * table offset will be a fixnum if it's x86
-                            * compiled code - check. */
-                           && !(code->trace_table_offset & 0x3)
+                            * compiled code - check.
+                            *
+                            * FIXME: #^#@@! lack of abstraction here..
+                            * This line can probably go away now that
+                            * there's no byte compiler, but I've got
+                            * too much to worry about right now to try
+                            * to make sure. -- WHN 2001-10-06 */
+                           && fixnump(code->trace_table_offset)
                            /* Only when enabled */
                            && verify_dynamic_code_check) {
                            FSHOW((stderr,
@@ -5128,12 +3239,13 @@ verify_space(lispobj *start, size_t words)
                        /* Scavenge the boxed section of the code data block */
                        verify_space(start + 1, nheader_words - 1);
 
-                       /* Scavenge the boxed section of each function object in
-                        * the code data block. */
+                       /* Scavenge the boxed section of each function
+                        * object in the code data block. */
                        fheaderl = code->entry_points;
                        while (fheaderl != NIL) {
-                           fheaderp = (struct function *) native_pointer(fheaderl);
-                           gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
+                           fheaderp =
+                               (struct simple_fun *) native_pointer(fheaderl);
+                           gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
                            verify_space(&fheaderp->name, 1);
                            verify_space(&fheaderp->arglist, 1);
                            verify_space(&fheaderp->type, 1);
@@ -5144,57 +3256,84 @@ verify_space(lispobj *start, size_t words)
                    }
        
                    /* unboxed objects */
-               case type_Bignum:
-               case type_SingleFloat:
-               case type_DoubleFloat:
-#ifdef type_ComplexLongFloat
-               case type_LongFloat:
+               case BIGNUM_WIDETAG:
+#if N_WORD_BITS != 64
+               case SINGLE_FLOAT_WIDETAG:
+#endif
+               case DOUBLE_FLOAT_WIDETAG:
+#ifdef COMPLEX_LONG_FLOAT_WIDETAG
+               case LONG_FLOAT_WIDETAG:
+#endif
+#ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
+               case COMPLEX_SINGLE_FLOAT_WIDETAG:
+#endif
+#ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
+               case COMPLEX_DOUBLE_FLOAT_WIDETAG:
 #endif
-#ifdef type_ComplexSingleFloat
-               case type_ComplexSingleFloat:
+#ifdef COMPLEX_LONG_FLOAT_WIDETAG
+               case COMPLEX_LONG_FLOAT_WIDETAG:
 #endif
-#ifdef type_ComplexDoubleFloat
-               case type_ComplexDoubleFloat:
+               case SIMPLE_BASE_STRING_WIDETAG:
+#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
+               case SIMPLE_CHARACTER_STRING_WIDETAG:
 #endif
-#ifdef type_ComplexLongFloat
-               case type_ComplexLongFloat:
+               case SIMPLE_BIT_VECTOR_WIDETAG:
+               case SIMPLE_ARRAY_NIL_WIDETAG:
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
 #endif
-               case type_SimpleString:
-               case type_SimpleBitVector:
-               case type_SimpleArrayUnsignedByte2:
-               case type_SimpleArrayUnsignedByte4:
-               case type_SimpleArrayUnsignedByte8:
-               case type_SimpleArrayUnsignedByte16:
-               case type_SimpleArrayUnsignedByte32:
-#ifdef type_SimpleArraySignedByte8
-               case type_SimpleArraySignedByte8:
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte16
-               case type_SimpleArraySignedByte16:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte30
-               case type_SimpleArraySignedByte30:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
+               case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte32
-               case type_SimpleArraySignedByte32:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
+               case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
 #endif
-               case type_SimpleArraySingleFloat:
-               case type_SimpleArrayDoubleFloat:
-#ifdef type_SimpleArrayComplexLongFloat
-               case type_SimpleArrayLongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
+               case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexSingleFloat
-               case type_SimpleArrayComplexSingleFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
+               case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-               case type_SimpleArrayComplexDoubleFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
+               case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexLongFloat
-               case type_SimpleArrayComplexLongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
+               case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
 #endif
-               case type_Sap:
-               case type_WeakPointer:
-                   count = (sizetab[TypeOf(*start)])(start);
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
+               case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
+#endif
+               case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
+               case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
+#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
+               case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
+               case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
+               case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
+               case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
+#endif
+               case SAP_WIDETAG:
+               case WEAK_POINTER_WIDETAG:
+                   count = (sizetab[widetag_of(*start)])(start);
                    break;
 
                default:
@@ -5216,19 +3355,21 @@ verify_gc(void)
      * Some counts of lispobjs are called foo_count; it might be good
      * to grep for all foo_size and rename the appropriate ones to
      * foo_count. */
-    int read_only_space_size =
-       (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER)
+    long read_only_space_size =
+       (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
        - (lispobj*)READ_ONLY_SPACE_START;
-    int static_space_size =
-       (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER)
+    long static_space_size =
+       (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
        - (lispobj*)STATIC_SPACE_START;
-    int binding_stack_size =
-       (lispobj*)SymbolValue(BINDING_STACK_POINTER)
-       - (lispobj*)BINDING_STACK_START;
-
+    struct thread *th;
+    for_each_thread(th) {
+    long binding_stack_size =
+           (lispobj*)SymbolValue(BINDING_STACK_POINTER,th)
+           - (lispobj*)th->binding_stack_start;
+       verify_space(th->binding_stack_start, binding_stack_size);
+    }
     verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
     verify_space((lispobj*)STATIC_SPACE_START   , static_space_size);
-    verify_space((lispobj*)BINDING_STACK_START  , binding_stack_size);
 }
 
 static void
@@ -5237,10 +3378,10 @@ verify_generation(int  generation)
     int i;
 
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated != FREE_PAGE)
+       if ((page_table[i].allocated != FREE_PAGE_FLAG)
            && (page_table[i].bytes_used != 0)
            && (page_table[i].gen == generation)) {
-           int last_page;
+           long last_page;
            int region_allocation = page_table[i].allocated;
 
            /* This should be the start of a contiguous block */
@@ -5254,8 +3395,8 @@ verify_generation(int  generation)
            for (last_page = i; ;last_page++)
                /* Check whether this is the last page in this contiguous
                 * block. */
-               if ((page_table[last_page].bytes_used < 4096)
-                   /* Or it is 4096 and is the last in the block */
+               if ((page_table[last_page].bytes_used < PAGE_BYTES)
+                   /* Or it is PAGE_BYTES and is the last in the block */
                    || (page_table[last_page+1].allocated != region_allocation)
                    || (page_table[last_page+1].bytes_used == 0)
                    || (page_table[last_page+1].gen != generation)
@@ -5263,7 +3404,7 @@ verify_generation(int  generation)
                    break;
 
            verify_space(page_address(i), (page_table[last_page].bytes_used
-                                          + (last_page-i)*4096)/4);
+                                          + (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
            i = last_page;
        }
     }
@@ -5273,26 +3414,26 @@ verify_generation(int  generation)
 static void
 verify_zero_fill(void)
 {
-    int page;
+    long page;
 
     for (page = 0; page < last_free_page; page++) {
-       if (page_table[page].allocated == FREE_PAGE) {
+       if (page_table[page].allocated == FREE_PAGE_FLAG) {
            /* The whole page should be zero filled. */
-           int *start_addr = (int *)page_address(page);
-           int size = 1024;
-           int i;
+           long *start_addr = (long *)page_address(page);
+           long size = 1024;
+           long i;
            for (i = 0; i < size; i++) {
                if (start_addr[i] != 0) {
                    lose("free page not zero at %x", start_addr + i);
                }
            }
        } else {
-           int free_bytes = 4096 - page_table[page].bytes_used;
+           long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
            if (free_bytes > 0) {
-               int *start_addr = (int *)((unsigned)page_address(page)
+               long *start_addr = (long *)((unsigned)page_address(page)
                                          + page_table[page].bytes_used);
-               int size = free_bytes / 4;
-               int i;
+               long size = free_bytes / N_WORD_BYTES;
+               long i;
                for (i = 0; i < size; i++) {
                    if (start_addr[i] != 0) {
                        lose("free region not zero at %x", start_addr + i);
@@ -5308,19 +3449,15 @@ void
 gencgc_verify_zero_fill(void)
 {
     /* Flush the alloc regions updating the tables. */
-    boxed_region.free_pointer = current_region_free_pointer;
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
     SHOW("verifying zero fill");
     verify_zero_fill();
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
 }
 
 static void
 verify_dynamic_space(void)
 {
-    int i;
+    long i;
 
     for (i = 0; i < NUM_GENERATIONS; i++)
        verify_generation(i);
@@ -5333,20 +3470,21 @@ verify_dynamic_space(void)
 static void
 write_protect_generation_pages(int generation)
 {
-    int i;
+    long i;
 
     gc_assert(generation < NUM_GENERATIONS);
 
     for (i = 0; i < last_free_page; i++)
-       if ((page_table[i].allocated == BOXED_PAGE)
+       if ((page_table[i].allocated == BOXED_PAGE_FLAG)
            && (page_table[i].bytes_used != 0)
+           && !page_table[i].dont_move
            && (page_table[i].gen == generation))  {
            void *page_start;
 
            page_start = (void *)page_address(i);
 
            os_protect(page_start,
-                      4096,
+                      PAGE_BYTES,
                       OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
 
            /* Note the page as protected in the page tables. */
@@ -5369,8 +3507,8 @@ garbage_collect_generation(int generation, int raise)
 {
     unsigned long bytes_freed;
     unsigned long i;
-    unsigned long read_only_space_size, static_space_size;
-
+    unsigned long static_space_size;
+    struct thread *th;
     gc_assert(generation <= (NUM_GENERATIONS-1));
 
     /* The oldest generation can't be raised. */
@@ -5383,8 +3521,9 @@ garbage_collect_generation(int generation, int raise)
      * temporary generation (NUM_GENERATIONS), and lowered when
      * done. Set up this new generation. There should be no pages
      * allocated to it yet. */
-    if (!raise)
-       gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
+    if (!raise) {
+        gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
+    }
 
     /* Set the global src and dest. generations */
     from_space = generation;
@@ -5403,7 +3542,8 @@ garbage_collect_generation(int generation, int raise)
     /* Before any pointers are preserved, the dont_move flags on the
      * pages need to be cleared. */
     for (i = 0; i < last_free_page; i++)
-       page_table[i].dont_move = 0;
+       if(page_table[i].gen==from_space)
+           page_table[i].dont_move = 0;
 
     /* Un-write-protect the old-space pages. This is essential for the
      * promoted pages as they may contain pointers into the old-space
@@ -5412,25 +3552,57 @@ garbage_collect_generation(int generation, int raise)
      * be un-protected anyway before unmapping later. */
     unprotect_oldspace();
 
-    /* Scavenge the stack's conservative roots. */
-    {
+    /* Scavenge the stacks' conservative roots. */
+
+    /* there are potentially two stacks for each thread: the main
+     * stack, which may contain Lisp pointers, and the alternate stack.
+     * We don't ever run Lisp code on the altstack, but it may 
+     * host a sigcontext with lisp objects in it */
+
+    /* what we need to do: (1) find the stack pointer for the main
+     * stack; scavenge it (2) find the interrupt context on the
+     * alternate stack that might contain lisp values, and scavenge
+     * that */
+
+    /* we assume that none of the preceding applies to the thread that
+     * initiates GC.  If you ever call GC from inside an altstack
+     * handler, you will lose. */
+    for_each_thread(th) {
        void **ptr;
-       for (ptr = (void **)CONTROL_STACK_END - 1;
-            ptr > (void **)&raise;
-            ptr--) {
+       void **esp=(void **)-1;
+#ifdef LISP_FEATURE_SB_THREAD
+       long i,free;
+       if(th==arch_os_get_current_thread()) {
+           esp = (void **) &raise;
+       } else {
+           void **esp1;
+           free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
+           for(i=free-1;i>=0;i--) {
+               os_context_t *c=th->interrupt_contexts[i];
+               esp1 = (void **) *os_context_register_addr(c,reg_SP);
+               if(esp1>=th->control_stack_start&& esp1<th->control_stack_end){
+                   if(esp1<esp) esp=esp1;
+                   for(ptr = (void **)(c+1); ptr>=(void **)c; ptr--) {
+                       preserve_pointer(*ptr);
+                   }
+               }
+           }
+       }
+#else
+       esp = (void **) &raise;
+#endif
+       for (ptr = (void **)th->control_stack_end; ptr > esp;  ptr--) {
            preserve_pointer(*ptr);
        }
     }
 
-#if QSHOW
+#ifdef QSHOW
     if (gencgc_verbose > 1) {
-       int num_dont_move_pages = count_dont_move_pages();
+       long num_dont_move_pages = count_dont_move_pages();
        fprintf(stderr,
                "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
                num_dont_move_pages,
-               /* FIXME: 4096 should be symbolic constant here and
-                * prob'ly elsewhere too. */
-               num_dont_move_pages * 4096);
+               num_dont_move_pages * PAGE_BYTES);
     }
 #endif
 
@@ -5438,18 +3610,31 @@ garbage_collect_generation(int generation, int raise)
 
     /* Scavenge the Lisp functions of the interrupt handlers, taking
      * care to avoid SIG_DFL and SIG_IGN. */
+    for_each_thread(th) {
+       struct interrupt_data *data=th->interrupt_data;
     for (i = 0; i < NSIG; i++) {
-       union interrupt_handler handler = interrupt_handlers[i];
+           union interrupt_handler handler = data->interrupt_handlers[i];
        if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
            !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
-           scavenge((lispobj *)(interrupt_handlers + i), 1);
+               scavenge((lispobj *)(data->interrupt_handlers + i), 1);
+           }
+       }
+    }
+    /* Scavenge the binding stacks. */
+ {
+     struct thread *th;
+     for_each_thread(th) {
+        long len= (lispobj *)SymbolValue(BINDING_STACK_POINTER,th) -
+            th->binding_stack_start;
+        scavenge((lispobj *) th->binding_stack_start,len);
+#ifdef LISP_FEATURE_SB_THREAD
+        /* do the tls as well */
+        len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
+            (sizeof (struct thread))/(sizeof (lispobj));
+         scavenge((lispobj *) (th+1),len);
+#endif
        }
     }
-
-    /* Scavenge the binding stack. */
-    scavenge((lispobj *) BINDING_STACK_START,
-            (lispobj *)SymbolValue(BINDING_STACK_POINTER) -
-            (lispobj *)BINDING_STACK_START);
 
     /* The original CMU CL code had scavenge-read-only-space code
      * controlled by the Lisp-level variable
@@ -5460,7 +3645,7 @@ garbage_collect_generation(int generation, int raise)
      * please submit a patch. */
 #if 0
     if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
-       read_only_space_size =
+       unsigned long read_only_space_size =
            (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
            (lispobj*)READ_ONLY_SPACE_START;
        FSHOW((stderr,
@@ -5472,7 +3657,7 @@ garbage_collect_generation(int generation, int raise)
 
     /* Scavenge static space. */
     static_space_size =
-       (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER) -
+       (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
        (lispobj *)STATIC_SPACE_START;
     if (gencgc_verbose > 1) {
        FSHOW((stderr,
@@ -5505,15 +3690,14 @@ garbage_collect_generation(int generation, int raise)
     /* As a check re-scavenge the newspace once; no new objects should
      * be found. */
     {
-       int old_bytes_allocated = bytes_allocated;
-       int bytes_allocated;
+       long old_bytes_allocated = bytes_allocated;
+       long bytes_allocated;
 
        /* Start with a full scavenge. */
        scavenge_newspace_generation_one_scan(new_space);
 
        /* Flush the current regions, updating the tables. */
-       gc_alloc_update_page_tables(0, &boxed_region);
-       gc_alloc_update_page_tables(1, &unboxed_region);
+       gc_alloc_update_all_page_tables();
 
        bytes_allocated = bytes_allocated - old_bytes_allocated;
 
@@ -5527,8 +3711,7 @@ garbage_collect_generation(int generation, int raise)
     scan_weak_pointers();
 
     /* Flush the current regions, updating the tables. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
 
     /* Free the pages in oldspace, but not those marked dont_move. */
     bytes_freed = free_oldspace();
@@ -5571,41 +3754,40 @@ garbage_collect_generation(int generation, int raise)
 }
 
 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
-int
+long
 update_x86_dynamic_space_free_pointer(void)
 {
-    int last_page = -1;
-    int i;
+    long last_page = -1;
+    long i;
 
-    for (i = 0; i < NUM_PAGES; i++)
-       if ((page_table[i].allocated != FREE_PAGE)
+    for (i = 0; i < last_free_page; i++)
+       if ((page_table[i].allocated != FREE_PAGE_FLAG)
            && (page_table[i].bytes_used != 0))
            last_page = i;
 
     last_free_page = last_page+1;
 
     SetSymbolValue(ALLOCATION_POINTER,
-                  (lispobj)(((char *)heap_base) + last_free_page*4096));
+                  (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),0);
     return 0; /* dummy value: return something ... */
 }
 
-/* GC all generations below last_gen, raising their objects to the
- * next generation until all generations below last_gen are empty.
- * Then if last_gen is due for a GC then GC it. In the special case
- * that last_gen==NUM_GENERATIONS, the last generation is always
- * GC'ed. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
+/* GC all generations newer than last_gen, raising the objects in each
+ * to the next older generation - we finish when all generations below
+ * last_gen are empty.  Then if last_gen is due for a GC, or if
+ * last_gen==NUM_GENERATIONS (the scratch generation?  eh?) we GC that
+ * too.  The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
  *
- * The oldest generation to be GCed will always be
- * gencgc_oldest_gen_to_gc, partly ignoring last_gen if necessary. */
+ * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
+ * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
 void
 collect_garbage(unsigned last_gen)
 {
     int gen = 0;
     int raise;
     int gen_to_wp;
-    int i;
-
-    boxed_region.free_pointer = current_region_free_pointer;
+    long i;
 
     FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
 
@@ -5617,12 +3799,11 @@ collect_garbage(unsigned last_gen)
     }
 
     /* Flush the alloc regions updating the tables. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
 
     /* Verify the new objects created by Lisp code. */
     if (pre_verify_gen_0) {
-       SHOW((stderr, "pre-checking generation 0\n"));
+       FSHOW((stderr, "pre-checking generation 0\n"));
        verify_generation(0);
     }
 
@@ -5709,14 +3890,10 @@ collect_garbage(unsigned last_gen)
     gc_alloc_generation = 0;
 
     update_x86_dynamic_space_free_pointer();
-
-    /* This is now done by Lisp SCRUB-CONTROL-STACK in Lisp SUB-GC, so
-     * we needn't do it here: */
-    /*  zero_stack();*/
-
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
-
+    auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
+    if(gencgc_verbose)
+       fprintf(stderr,"Next gc when %ld bytes have been consed\n",
+               auto_gc_trigger);
     SHOW("returning from collect_garbage");
 }
 
@@ -5728,33 +3905,33 @@ collect_garbage(unsigned last_gen)
 void
 gc_free_heap(void)
 {
-    int page;
+    long page;
 
     if (gencgc_verbose > 1)
        SHOW("entering gc_free_heap");
 
     for (page = 0; page < NUM_PAGES; page++) {
        /* Skip free pages which should already be zero filled. */
-       if (page_table[page].allocated != FREE_PAGE) {
+       if (page_table[page].allocated != FREE_PAGE_FLAG) {
            void *page_start, *addr;
 
            /* Mark the page free. The other slots are assumed invalid
-            * when it is a FREE_PAGE and bytes_used is 0 and it
+            * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
             * should not be write-protected -- except that the
             * generation is used for the current region but it sets
             * that up. */
-           page_table[page].allocated = FREE_PAGE;
+           page_table[page].allocated = FREE_PAGE_FLAG;
            page_table[page].bytes_used = 0;
 
            /* Zero the page. */
            page_start = (void *)page_address(page);
 
            /* First, remove any write-protection. */
-           os_protect(page_start, 4096, OS_VM_PROT_ALL);
+           os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
            page_table[page].write_protected = 0;
 
-           os_invalidate(page_start,4096);
-           addr = os_validate(page_start,4096);
+           os_invalidate(page_start,PAGE_BYTES);
+           addr = os_validate(page_start,PAGE_BYTES);
            if (addr == NULL || addr != page_start) {
                lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x",
                     page_start,
@@ -5762,10 +3939,10 @@ gc_free_heap(void)
            }
        } else if (gencgc_zero_check_during_free_heap) {
            /* Double-check that the page is zero filled. */
-           int *page_start, i;
-           gc_assert(page_table[page].allocated == FREE_PAGE);
+           long *page_start, i;
+           gc_assert(page_table[page].allocated == FREE_PAGE_FLAG);
            gc_assert(page_table[page].bytes_used == 0);
-           page_start = (int *)page_address(page);
+           page_start = (long *)page_address(page);
            for (i=0; i<1024; i++) {
                if (page_start[i] != 0) {
                    lose("free region not zero at %x", page_start + i);
@@ -5793,26 +3970,12 @@ gc_free_heap(void)
 
     /* Initialize gc_alloc(). */
     gc_alloc_generation = 0;
-    boxed_region.first_page = 0;
-    boxed_region.last_page = -1;
-    boxed_region.start_addr = page_address(0);
-    boxed_region.free_pointer = page_address(0);
-    boxed_region.end_addr = page_address(0);
-    unboxed_region.first_page = 0;
-    unboxed_region.last_page = -1;
-    unboxed_region.start_addr = page_address(0);
-    unboxed_region.free_pointer = page_address(0);
-    unboxed_region.end_addr = page_address(0);
-
-#if 0 /* Lisp PURIFY is currently running on the C stack so don't do this. */
-    zero_stack();
-#endif
 
-    last_free_page = 0;
-    SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base));
+    gc_set_region_empty(&boxed_region);
+    gc_set_region_empty(&unboxed_region);
 
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
+    last_free_page = 0;
+    SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base),0);
 
     if (verify_after_free_heap) {
        /* Check whether purify has left any bad pointers. */
@@ -5825,16 +3988,19 @@ gc_free_heap(void)
 void
 gc_init(void)
 {
-    int i;
+    long i;
 
     gc_init_tables();
+    scavtab[SIMPLE_VECTOR_WIDETAG] = scav_vector;
+    scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
+    transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
 
     heap_base = (void*)DYNAMIC_SPACE_START;
 
     /* Initialize each page structure. */
     for (i = 0; i < NUM_PAGES; i++) {
        /* Initialize all pages as free. */
-       page_table[i].allocated = FREE_PAGE;
+       page_table[i].allocated = FREE_PAGE_FLAG;
        page_table[i].bytes_used = 0;
 
        /* Pages are not write-protected at startup. */
@@ -5861,60 +4027,55 @@ gc_init(void)
        generations[i].min_av_mem_age = 0.75;
     }
 
-    /* Initialize gc_alloc.
-     *
-     * FIXME: identical with code in gc_free_heap(), should be shared */
+    /* Initialize gc_alloc. */
     gc_alloc_generation = 0;
-    boxed_region.first_page = 0;
-    boxed_region.last_page = -1;
-    boxed_region.start_addr = page_address(0);
-    boxed_region.free_pointer = page_address(0);
-    boxed_region.end_addr = page_address(0);
-    unboxed_region.first_page = 0;
-    unboxed_region.last_page = -1;
-    unboxed_region.start_addr = page_address(0);
-    unboxed_region.free_pointer = page_address(0);
-    unboxed_region.end_addr = page_address(0);
+    gc_set_region_empty(&boxed_region);
+    gc_set_region_empty(&unboxed_region);
 
     last_free_page = 0;
 
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
 }
 
 /*  Pick up the dynamic space from after a core load.
  *
  *  The ALLOCATION_POINTER points to the end of the dynamic space.
- *
- *  XX A scan is needed to identify the closest first objects for pages. */
-void
+ */
+
+static void
 gencgc_pickup_dynamic(void)
 {
-    int page = 0;
-    int addr = DYNAMIC_SPACE_START;
-    int alloc_ptr = SymbolValue(ALLOCATION_POINTER);
+    long page = 0;
+    long alloc_ptr = SymbolValue(ALLOCATION_POINTER,0);
+    lispobj *prev=(lispobj *)page_address(page);
 
-    /* Initialize the first region. */
     do {
-       page_table[page].allocated = BOXED_PAGE;
+       lispobj *first,*ptr= (lispobj *)page_address(page);
+       page_table[page].allocated = BOXED_PAGE_FLAG;
        page_table[page].gen = 0;
-       page_table[page].bytes_used = 4096;
+       page_table[page].bytes_used = PAGE_BYTES;
        page_table[page].large_object = 0;
+
+       first=gc_search_space(prev,(ptr+2)-prev,ptr);
+       if(ptr == first)  prev=ptr; 
        page_table[page].first_object_offset =
-           (void *)DYNAMIC_SPACE_START - page_address(page);
-       addr += 4096;
+           (void *)prev - page_address(page);
        page++;
-    } while (addr < alloc_ptr);
+    } while (page_address(page) < alloc_ptr);
+
+    generations[0].bytes_allocated = PAGE_BYTES*page;
+    bytes_allocated = PAGE_BYTES*page;
+
+}
 
-    generations[0].bytes_allocated = 4096*page;
-    bytes_allocated = 4096*page;
 
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
+void
+gc_initialize_pointers(void)
+{
+    gencgc_pickup_dynamic();
 }
+
+
 \f
-/* a counter for how deep we are in alloc(..) calls */
-int alloc_entered = 0;
 
 /* alloc(..) is the external interface for memory allocation. It
  * allocates to generation 0. It is not called from within the garbage
@@ -5926,188 +4087,87 @@ int alloc_entered = 0;
  * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
  *
  * The check for a GC trigger is only performed when the current
- * region is full, so in most cases it's not needed. Further MAYBE-GC
- * is only called once because Lisp will remember "need to collect
- * garbage" and get around to it when it can. */
+ * region is full, so in most cases it's not needed. */
+
 char *
-alloc(int nbytes)
+alloc(long nbytes)
 {
+    struct thread *th=arch_os_get_current_thread();
+    struct alloc_region *region=
+#ifdef LISP_FEATURE_SB_THREAD
+       th ? &(th->alloc_region) : &boxed_region; 
+#else
+        &boxed_region; 
+#endif
+    void *new_obj;
+    void *new_free_pointer;
+    gc_assert(nbytes>0);
     /* Check for alignment allocation problems. */
-    gc_assert((((unsigned)current_region_free_pointer & 0x7) == 0)
-             && ((nbytes & 0x7) == 0));
-
-    if (SymbolValue(PSEUDO_ATOMIC_ATOMIC)) {/* if already in a pseudo atomic */
-       
-       void *new_free_pointer;
-
-    retry1:
-       if (alloc_entered) {
-           SHOW("alloc re-entered in already-pseudo-atomic case");
-       }
-       ++alloc_entered;
-
-       /* Check whether there is room in the current region. */
-       new_free_pointer = current_region_free_pointer + nbytes;
-
-       /* FIXME: Shouldn't we be doing some sort of lock here, to
-        * keep from getting screwed if an interrupt service routine
-        * allocates memory between the time we calculate new_free_pointer
-        * and the time we write it back to current_region_free_pointer?
-        * Perhaps I just don't understand pseudo-atomics..
-        *
-        * Perhaps I don't. It looks as though what happens is if we
-        * were interrupted any time during the pseudo-atomic
-        * interval (which includes now) we discard the allocated
-        * memory and try again. So, at least we don't return
-        * a memory area that was allocated out from underneath us
-        * by code in an ISR.
-        * Still, that doesn't seem to prevent
-        * current_region_free_pointer from getting corrupted:
-        *   We read current_region_free_pointer.
-        *   They read current_region_free_pointer.
-        *   They write current_region_free_pointer.
-        *   We write current_region_free_pointer, scribbling over
-        *     whatever they wrote. */
-
-       if (new_free_pointer <= boxed_region.end_addr) {
-           /* If so then allocate from the current region. */
-           void  *new_obj = current_region_free_pointer;
-           current_region_free_pointer = new_free_pointer;
-           alloc_entered--;
-           return((void *)new_obj);
-       }
-
-       if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
-           /* Double the trigger. */
-           auto_gc_trigger *= 2;
-           alloc_entered--;
-           /* Exit the pseudo-atomic. */
-           SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
-           if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
-               /* Handle any interrupts that occurred during
-                * gc_alloc(..). */
-               do_pending_interrupt();
-           }
-           funcall0(SymbolFunction(MAYBE_GC));
-           /* Re-enter the pseudo-atomic. */
-           SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(0));
-           SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(1));
-           goto retry1;
-       }
-       /* Call gc_alloc(). */
-       boxed_region.free_pointer = current_region_free_pointer;
-       {
-           void *new_obj = gc_alloc(nbytes);
-           current_region_free_pointer = boxed_region.free_pointer;
-           current_region_end_addr = boxed_region.end_addr;
-           alloc_entered--;
-           return (new_obj);
-       }
-    } else {
-       void *result;
-       void *new_free_pointer;
-
-    retry2:
-       /* At least wrap this allocation in a pseudo atomic to prevent
-        * gc_alloc() from being re-entered. */
-       SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(0));
-       SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(1));
-
-       if (alloc_entered)
-           SHOW("alloc re-entered in not-already-pseudo-atomic case");
-       ++alloc_entered;
-
-       /* Check whether there is room in the current region. */
-       new_free_pointer = current_region_free_pointer + nbytes;
-
-       if (new_free_pointer <= boxed_region.end_addr) {
-           /* If so then allocate from the current region. */
-           void *new_obj = current_region_free_pointer;
-           current_region_free_pointer = new_free_pointer;
-           alloc_entered--;
-           SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
-           if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED)) {
-               /* Handle any interrupts that occurred during
-                * gc_alloc(..). */
-               do_pending_interrupt();
-               goto retry2;
-           }
-
-           return((void *)new_obj);
-       }
-
-       /* KLUDGE: There's lots of code around here shared with the
-        * the other branch. Is there some way to factor out the
-        * duplicate code? -- WHN 19991129 */
-       if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
-           /* Double the trigger. */
-           auto_gc_trigger *= 2;
-           alloc_entered--;
-           /* Exit the pseudo atomic. */
-           SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
-           if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
-               /* Handle any interrupts that occurred during
-                * gc_alloc(..); */
-               do_pending_interrupt();
-           }
-           funcall0(SymbolFunction(MAYBE_GC));
-           goto retry2;
-       }
-
-       /* Else call gc_alloc(). */
-       boxed_region.free_pointer = current_region_free_pointer;
-       result = gc_alloc(nbytes);
-       current_region_free_pointer = boxed_region.free_pointer;
-       current_region_end_addr = boxed_region.end_addr;
-
-       alloc_entered--;
-       SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
-       if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
-           /* Handle any interrupts that occurred during gc_alloc(..). */
-           do_pending_interrupt();
-           goto retry2;
+    gc_assert((((unsigned)region->free_pointer & LOWTAG_MASK) == 0)
+             && ((nbytes & LOWTAG_MASK) == 0));
+#if 0
+    if(all_threads)
+       /* there are a few places in the C code that allocate data in the
+        * heap before Lisp starts.  This is before interrupts are enabled,
+        * so we don't need to check for pseudo-atomic */
+#ifdef LISP_FEATURE_SB_THREAD
+       if(!SymbolValue(PSEUDO_ATOMIC_ATOMIC,th)) {
+           register u32 fs;
+           fprintf(stderr, "fatal error in thread 0x%x, tid=%ld\n",
+                   th,th->os_thread);
+           __asm__("movl %fs,%0" : "=r" (fs)  : );
+           fprintf(stderr, "fs is %x, th->tls_cookie=%x \n",
+                   debug_get_fs(),th->tls_cookie);
+           lose("If you see this message before 2004.01.31, mail details to sbcl-devel\n");
        }
-
-       return result;
+#else
+    gc_assert(SymbolValue(PSEUDO_ATOMIC_ATOMIC,th));
+#endif
+#endif
+    
+    /* maybe we can do this quickly ... */
+    new_free_pointer = region->free_pointer + nbytes;
+    if (new_free_pointer <= region->end_addr) {
+       new_obj = (void*)(region->free_pointer);
+       region->free_pointer = new_free_pointer;
+       return(new_obj);        /* yup */
     }
-}
-\f
-/*
- * noise to manipulate the gc trigger stuff
- */
-
-void
-set_auto_gc_trigger(os_vm_size_t dynamic_usage)
-{
-    auto_gc_trigger += dynamic_usage;
-}
-
-void
-clear_auto_gc_trigger(void)
-{
-    auto_gc_trigger = 0;
-}
-\f
-/* Find the code object for the given pc, or return NULL on failure.
- *
- * FIXME: PC shouldn't be lispobj*, should it? Maybe void*? */
-lispobj *
-component_ptr_from_pc(lispobj *pc)
-{
-    lispobj *object = NULL;
-
-    if ( (object = search_read_only_space(pc)) )
-       ;
-    else if ( (object = search_static_space(pc)) )
-       ;
-    else
-       object = search_dynamic_space(pc);
-
-    if (object) /* if we found something */
-       if (TypeOf(*object) == type_CodeHeader) /* if it's a code object */
-           return(object);
-
-    return (NULL);
+    
+    /* we have to go the long way around, it seems.  Check whether 
+     * we should GC in the near future
+     */
+    if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
+        struct thread *thread=arch_os_get_current_thread();
+        /* Don't flood the system with interrupts if the need to gc is
+         * already noted. This can happen for example when SUB-GC
+         * allocates or after a gc triggered in a WITHOUT-GCING. */
+        if (SymbolValue(NEED_TO_COLLECT_GARBAGE,thread) == NIL) {
+            /* set things up so that GC happens when we finish the PA
+             * section.  We only do this if there wasn't a pending
+             * handler already, in case it was a gc.  If it wasn't a
+             * GC, the next allocation will get us back to this point
+             * anyway, so no harm done
+             */
+            struct interrupt_data *data=th->interrupt_data;
+            sigset_t new_mask,old_mask;
+            sigemptyset(&new_mask);
+            sigaddset_blockable(&new_mask);
+            thread_sigmask(SIG_BLOCK,&new_mask,&old_mask);
+
+            if((!data->pending_handler) &&
+               maybe_defer_handler(interrupt_maybe_gc_int,data,0,0,0)) {
+                /* Leave the signals blocked just as if it was
+                 * deferred the normal way and set the
+                 * pending_mask. */
+                sigcopyset(&(data->pending_mask),&old_mask);
+                SetSymbolValue(NEED_TO_COLLECT_GARBAGE,T,thread);
+            } else {
+                thread_sigmask(SIG_SETMASK,&old_mask,0);
+            }
+        }
+    }
+    new_obj = gc_alloc_with_region(nbytes,0,region,0);
+    return (new_obj);
 }
 \f
 /*
@@ -6126,12 +4186,13 @@ void unhandled_sigmemoryfault(void);
  * Return true if this signal is a normal generational GC thing that
  * we were able to handle, or false if it was abnormal and control
  * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
+
 int
 gencgc_handle_wp_violation(void* fault_addr)
 {
-    int  page_index = find_page_index(fault_addr);
+    long  page_index = find_page_index(fault_addr);
 
-#if defined QSHOW_SIGNALS
+#ifdef QSHOW_SIGNALS
     FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
           fault_addr, page_index));
 #endif
@@ -6147,23 +4208,25 @@ gencgc_handle_wp_violation(void* fault_addr)
        return 0;
 
     } else {
-
-       /* The only acceptable reason for an signal like this from the
-        * heap is that the generational GC write-protected the page. */
-       if (page_table[page_index].write_protected != 1) {
-           lose("access failure in heap page not marked as write-protected");
+       if (page_table[page_index].write_protected) {
+           /* Unprotect the page. */
+           os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
+           page_table[page_index].write_protected_cleared = 1;
+           page_table[page_index].write_protected = 0;
+       } else {  
+           /* The only acceptable reason for this signal on a heap
+            * access is that GENCGC write-protected the page.
+            * However, if two CPUs hit a wp page near-simultaneously,
+            * we had better not have the second one lose here if it
+            * does this test after the first one has already set wp=0
+            */
+           if(page_table[page_index].write_protected_cleared != 1) 
+               lose("fault in heap page not marked as write-protected");
        }
-       
-       /* Unprotect the page. */
-       os_protect(page_address(page_index), 4096, OS_VM_PROT_ALL);
-       page_table[page_index].write_protected = 0;
-       page_table[page_index].write_protected_cleared = 1;
-
        /* Don't worry, we can handle it. */
        return 1;
     }
 }
-
 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
  * it's not just a case of the program hitting the write barrier, and
  * are about to let Lisp deal with it. It's basically just a
@@ -6171,3 +4234,23 @@ gencgc_handle_wp_violation(void* fault_addr)
 void
 unhandled_sigmemoryfault()
 {}
+
+void gc_alloc_update_all_page_tables(void)
+{
+    /* Flush the alloc regions updating the tables. */
+    struct thread *th;
+    for_each_thread(th) 
+        gc_alloc_update_page_tables(0, &th->alloc_region);
+    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_page_tables(0, &boxed_region);
+}
+void 
+gc_set_region_empty(struct alloc_region *region)
+{
+    region->first_page = 0;
+    region->last_page = -1;
+    region->start_addr = page_address(0);
+    region->free_pointer = page_address(0);
+    region->end_addr = page_address(0);
+}
+