0.9.4.5:
[sbcl.git] / src / runtime / gencgc.c
index eae5f70..ea715e3 100644 (file)
  *   <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
  */
 
-/*
- * FIXME: GC :FULL T seems to be unable to recover a lot of unused
- * space. After cold init is complete, GC :FULL T gets us down to
- * about 44 Mb total used, but PURIFY gets us down to about 17 Mb
- * total used.
- */
-
 #include <stdio.h>
 #include <signal.h>
-#include "runtime.h"
+#include <errno.h>
+#include <string.h>
 #include "sbcl.h"
+#include "runtime.h"
 #include "os.h"
 #include "interr.h"
 #include "globals.h"
 #include "validate.h"
 #include "lispregs.h"
 #include "arch.h"
+#include "fixnump.h"
 #include "gc.h"
-#include "gencgc.h"
+#include "gc-internal.h"
+#include "thread.h"
+#include "genesis/vector.h"
+#include "genesis/weak-pointer.h"
+#include "genesis/simple-fun.h"
+#include "genesis/hash-table.h"
+
+/* forward declarations */
+long gc_find_freeish_pages(long *restart_page_ptr, long nbytes, int unboxed);
+static void  gencgc_pickup_dynamic(void);
 
-/* a function defined externally in assembly language, called from
- * this file */
-void do_pending_interrupt(void);
 \f
 /*
  * GC parameters
  */
 
 /* the number of actual generations. (The number of 'struct
- * generation' objects is one more than this, because one serves as
- * scratch when GC'ing.) */
+ * generation' objects is one more than this, because one object
+ * serves as scratch when GC'ing.) */
 #define NUM_GENERATIONS 6
 
 /* Should we use page protection to help avoid the scavenging of pages
@@ -63,7 +65,7 @@ void do_pending_interrupt(void);
 boolean enable_page_protection = 1;
 
 /* Should we unmap a page and re-mmap it to have it zero filled? */
-#if defined(__FreeBSD__) || defined(__OpenBSD__)
+#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__sun)
 /* comment from cmucl-2.4.8: This can waste a lot of swap on FreeBSD
  * so don't unmap there.
  *
@@ -71,40 +73,30 @@ boolean enable_page_protection = 1;
  * old version of FreeBSD (pre-4.0), so this might no longer be true.
  * OTOH, if it is true, this behavior might exist on OpenBSD too, so
  * for now we don't unmap there either. -- WHN 2001-04-07 */
+/* Apparently this flag is required to be 0 for SunOS/x86, as there
+ * are reports of heap corruption otherwise. */
 boolean gencgc_unmap_zero = 0;
 #else
 boolean gencgc_unmap_zero = 1;
 #endif
 
 /* the minimum size (in bytes) for a large object*/
-unsigned large_object_size = 4 * 4096;
+unsigned large_object_size = 4 * PAGE_BYTES;
 
-/* Should we filter stack/register pointers? This could reduce the
- * number of invalid pointers accepted. KLUDGE: It will probably
- * degrades interrupt safety during object initialization. */
-boolean enable_pointer_filter = 1;
 \f
 /*
  * debugging
  */
 
-#define gc_abort() lose("GC invariant lost, file \"%s\", line %d", \
-                       __FILE__, __LINE__)
 
-/* FIXME: In CMU CL, this was "#if 0" with no explanation. Find out
- * how much it costs to make it "#if 1". If it's not too expensive,
- * keep it. */
-#if 1
-#define gc_assert(ex) do { \
-       if (!(ex)) gc_abort(); \
-} while (0)
-#else
-#define gc_assert(ex)
-#endif
 
 /* the verbosity level. All non-error messages are disabled at level 0;
  * and only a few rare messages are printed at level 1. */
-unsigned gencgc_verbose = (QSHOW ? 1 : 0);
+#ifdef QSHOW
+unsigned gencgc_verbose = 1;
+#else
+unsigned gencgc_verbose = 0;
+#endif
 
 /* FIXME: At some point enable the various error-checking things below
  * and see what they say. */
@@ -143,17 +135,14 @@ boolean gencgc_zero_check_during_free_heap = 0;
 
 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
 unsigned long bytes_allocated = 0;
-static unsigned long auto_gc_trigger = 0;
+extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
+unsigned long auto_gc_trigger = 0;
 
 /* the source and destination generations. These are set before a GC starts
  * scavenging. */
-static int from_space;
-static int new_space;
+long from_space;
+long new_space;
 
-/* FIXME: It would be nice to use this symbolic constant instead of
- * bare 4096 almost everywhere. We could also use an assertion that
- * it's equal to getpagesize(). */
-#define PAGE_BYTES 4096
 
 /* An array of page structures is statically allocated.
  * This helps quickly map between an address its page structure.
@@ -164,24 +153,30 @@ struct page page_table[NUM_PAGES];
  * is needed. */
 static void *heap_base = NULL;
 
+#if N_WORD_BITS == 32
+ #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG
+#elif N_WORD_BITS == 64
+ #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
+#endif
+
 /* Calculate the start address for the given page number. */
-inline void
-*page_address(int page_num)
+inline void *
+page_address(long page_num)
 {
-    return (heap_base + (page_num * 4096));
+    return (heap_base + (page_num * PAGE_BYTES));
 }
 
 /* Find the page index within the page_table for the given
  * address. Return -1 on failure. */
-inline int
+inline long
 find_page_index(void *addr)
 {
-    int index = addr-heap_base;
+    long index = addr-heap_base;
 
     if (index >= 0) {
-       index = ((unsigned int)index)/4096;
-       if (index < NUM_PAGES)
-           return (index);
+        index = ((unsigned long)index)/PAGE_BYTES;
+        if (index < NUM_PAGES)
+            return (index);
     }
 
     return (-1);
@@ -190,29 +185,29 @@ find_page_index(void *addr)
 /* a structure to hold the state of a generation */
 struct generation {
 
-    /* the first page that gc_alloc checks on its next call */
-    int alloc_start_page;
+    /* the first page that gc_alloc() checks on its next call */
+    long alloc_start_page;
 
-    /* the first page that gc_alloc_unboxed checks on its next call */
-    int alloc_unboxed_start_page;
+    /* the first page that gc_alloc_unboxed() checks on its next call */
+    long alloc_unboxed_start_page;
 
     /* the first page that gc_alloc_large (boxed) considers on its next
      * call. (Although it always allocates after the boxed_region.) */
-    int alloc_large_start_page;
+    long alloc_large_start_page;
 
     /* the first page that gc_alloc_large (unboxed) considers on its
      * next call. (Although it always allocates after the
      * current_unboxed_region.) */
-    int alloc_large_unboxed_start_page;
+    long alloc_large_unboxed_start_page;
 
     /* the bytes allocated to this generation */
-    int bytes_allocated;
+    long bytes_allocated;
 
     /* the number of bytes at which to trigger a GC */
-    int gc_trigger;
+    long gc_trigger;
 
     /* to calculate a new level for gc_trigger */
-    int bytes_consed_between_gc;
+    long bytes_consed_between_gc;
 
     /* the number of GCs since the last raise */
     int num_gc;
@@ -226,18 +221,22 @@ struct generation {
      * objects are added from a GC of a younger generation. Dividing by
      * the bytes_allocated will give the average age of the memory in
      * this generation since its last GC. */
-    int cum_sum_bytes_allocated;
+    long cum_sum_bytes_allocated;
 
     /* a minimum average memory age before a GC will occur helps
      * prevent a GC when a large number of new live objects have been
      * added, in which case a GC could be a waste of time */
     double min_av_mem_age;
 };
+/* the number of actual generations. (The number of 'struct
+ * generation' objects is one more than this, because one object
+ * serves as scratch when GC'ing.) */
+#define NUM_GENERATIONS 6
 
 /* an array of generation structures. There needs to be one more
  * generation structure than actual generations as the oldest
  * generation is temporarily raised then lowered. */
-static struct generation generations[NUM_GENERATIONS+1];
+struct generation generations[NUM_GENERATIONS+1];
 
 /* the oldest generation that is will currently be GCed by default.
  * Valid values are: 0, 1, ... (NUM_GENERATIONS-1)
@@ -257,8 +256,17 @@ unsigned int  gencgc_oldest_gen_to_gc = NUM_GENERATIONS-1;
  * ALLOCATION_POINTER which is used by the room function to limit its
  * search of the heap. XX Gencgc obviously needs to be better
  * integrated with the Lisp code. */
-static int  last_free_page;
-static int  last_used_page = 0;
+static long  last_free_page;
+\f
+/* This lock is to prevent multiple threads from simultaneously
+ * allocating new regions which overlap each other.  Note that the
+ * majority of GC is single-threaded, but alloc() may be called from
+ * >1 thread at a time and must be thread-safe.  This lock must be
+ * seized before all accesses to generations[] or to parts of
+ * page_table[] that other threads may want to see */
+
+static lispobj free_pages_lock=0;
+
 \f
 /*
  * miscellaneous heap functions
@@ -266,59 +274,59 @@ static int  last_used_page = 0;
 
 /* Count the number of pages which are write-protected within the
  * given generation. */
-static int
+static long
 count_write_protect_generation_pages(int generation)
 {
-    int i;
-    int cnt = 0;
+    long i;
+    long count = 0;
 
     for (i = 0; i < last_free_page; i++)
-       if ((page_table[i].allocated != FREE_PAGE)
-           && (page_table[i].gen == generation)
-           && (page_table[i].write_protected == 1))
-           cnt++;
-    return(cnt);
+        if ((page_table[i].allocated != FREE_PAGE_FLAG)
+            && (page_table[i].gen == generation)
+            && (page_table[i].write_protected == 1))
+            count++;
+    return count;
 }
 
-/* Count the number of pages within the given generation */
-static int
+/* Count the number of pages within the given generation. */
+static long
 count_generation_pages(int generation)
 {
-    int i;
-    int cnt = 0;
+    long i;
+    long count = 0;
 
     for (i = 0; i < last_free_page; i++)
-       if ((page_table[i].allocated != 0)
-           && (page_table[i].gen == generation))
-           cnt++;
-    return(cnt);
+        if ((page_table[i].allocated != 0)
+            && (page_table[i].gen == generation))
+            count++;
+    return count;
 }
 
-/* Count the number of dont_move pages. */
-static int
+#ifdef QSHOW
+static long
 count_dont_move_pages(void)
 {
-    int i;
-    int cnt = 0;
-
-    for (i = 0; i < last_free_page; i++)
-       if ((page_table[i].allocated != 0)
-           && (page_table[i].dont_move != 0))
-           cnt++;
-    return(cnt);
+    long i;
+    long count = 0;
+    for (i = 0; i < last_free_page; i++) {
+        if ((page_table[i].allocated != 0) && (page_table[i].dont_move != 0)) {
+            ++count;
+        }
+    }
+    return count;
 }
+#endif /* QSHOW */
 
 /* Work through the pages and add up the number of bytes used for the
  * given generation. */
-static int
-generation_bytes_allocated (int gen)
+static long
+count_generation_bytes_allocated (int gen)
 {
-    int i;
-    int result = 0;
-
+    long i;
+    long result = 0;
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
-           result += page_table[i].bytes_used;
+        if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
+            result += page_table[i].bytes_used;
     }
     return result;
 }
@@ -328,13 +336,15 @@ static double
 gen_av_mem_age(int gen)
 {
     if (generations[gen].bytes_allocated == 0)
-       return 0.0;
+        return 0.0;
 
     return
-       ((double)generations[gen].cum_sum_bytes_allocated)
-       / ((double)generations[gen].bytes_allocated);
+        ((double)generations[gen].cum_sum_bytes_allocated)
+        / ((double)generations[gen].bytes_allocated);
 }
 
+void fpu_save(int *);           /* defined in x86-assem.S */
+void fpu_restore(int *);        /* defined in x86-assem.S */
 /* The verbose argument controls how much to print: 0 for normal
  * level of detail; 1 for debugging. */
 static void
@@ -349,56 +359,58 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
 
     /* number of generations to print */
     if (verbose)
-       gens = NUM_GENERATIONS+1;
+        gens = NUM_GENERATIONS+1;
     else
-       gens = NUM_GENERATIONS;
+        gens = NUM_GENERATIONS;
 
     /* Print the heap stats. */
     fprintf(stderr,
-           "   Generation Boxed Unboxed LB   LUB    Alloc  Waste   Trig    WP  GCs Mem-age\n");
+            "   Gen Boxed Unboxed LB   LUB  !move  Alloc  Waste   Trig    WP  GCs Mem-age\n");
 
     for (i = 0; i < gens; i++) {
-       int j;
-       int boxed_cnt = 0;
-       int unboxed_cnt = 0;
-       int large_boxed_cnt = 0;
-       int large_unboxed_cnt = 0;
-
-       for (j = 0; j < last_free_page; j++)
-           if (page_table[j].gen == i) {
-
-               /* Count the number of boxed pages within the given
-                * generation. */
-               if (page_table[j].allocated == BOXED_PAGE) {
-                   if (page_table[j].large_object)
-                       large_boxed_cnt++;
-                   else
-                       boxed_cnt++;
-               }
-
-               /* Count the number of unboxed pages within the given
-                * generation. */
-               if (page_table[j].allocated == UNBOXED_PAGE) {
-                   if (page_table[j].large_object)
-                       large_unboxed_cnt++;
-                   else
-                       unboxed_cnt++;
-               }
-           }
-
-       gc_assert(generations[i].bytes_allocated
-                 == generation_bytes_allocated(i));
-       fprintf(stderr,
-               "   %8d: %5d %5d %5d %5d %8d %5d %8d %4d %3d %7.4f\n",
-               i,
-               boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
-               generations[i].bytes_allocated,
-               (count_generation_pages(i)*4096
-                - generations[i].bytes_allocated),
-               generations[i].gc_trigger,
-               count_write_protect_generation_pages(i),
-               generations[i].num_gc,
-               gen_av_mem_age(i));
+        int j;
+        int boxed_cnt = 0;
+        int unboxed_cnt = 0;
+        int large_boxed_cnt = 0;
+        int large_unboxed_cnt = 0;
+        int pinned_cnt=0;
+
+        for (j = 0; j < last_free_page; j++)
+            if (page_table[j].gen == i) {
+
+                /* Count the number of boxed pages within the given
+                 * generation. */
+                if (page_table[j].allocated & BOXED_PAGE_FLAG) {
+                    if (page_table[j].large_object)
+                        large_boxed_cnt++;
+                    else
+                        boxed_cnt++;
+                }
+                if(page_table[j].dont_move) pinned_cnt++;
+                /* Count the number of unboxed pages within the given
+                 * generation. */
+                if (page_table[j].allocated & UNBOXED_PAGE_FLAG) {
+                    if (page_table[j].large_object)
+                        large_unboxed_cnt++;
+                    else
+                        unboxed_cnt++;
+                }
+            }
+
+        gc_assert(generations[i].bytes_allocated
+                  == count_generation_bytes_allocated(i));
+        fprintf(stderr,
+                "   %1d: %5d %5d %5d %5d %5d %8ld %5ld %8ld %4ld %3d %7.4f\n",
+                i,
+                boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
+                pinned_cnt,
+                generations[i].bytes_allocated,
+                (count_generation_pages(i)*PAGE_BYTES
+                 - generations[i].bytes_allocated),
+                generations[i].gc_trigger,
+                count_write_protect_generation_pages(i),
+                generations[i].num_gc,
+                gen_av_mem_age(i));
     }
     fprintf(stderr,"   Total bytes allocated=%ld\n", bytes_allocated);
 
@@ -418,7 +430,7 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
  * e.g. boxed/unboxed, generation, ages; there may need to be many
  * allocation regions.
  *
- * Each allocation region may be start within a partly used page. Many
+ * Each allocation region may start within a partly used page. Many
  * features of memory use are noted on a page wise basis, e.g. the
  * generation; so if a region starts within an existing allocated page
  * it must be consistent with this page.
@@ -460,10 +472,6 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
 struct alloc_region boxed_region;
 struct alloc_region unboxed_region;
 
-/* XX hack. Current Lisp code uses the following. Need copying in/out. */
-void *current_region_free_pointer;
-void *current_region_end_addr;
-
 /* The generation currently being allocated to. */
 static int gc_alloc_generation;
 
@@ -474,7 +482,7 @@ static int gc_alloc_generation;
  * keeps the allocation contiguous when scavenging the newspace.
  *
  * The alloc_region should have been closed by a call to
- * gc_alloc_update_page_tables, and will thus be in an empty state.
+ * gc_alloc_update_page_tables(), and will thus be in an empty state.
  *
  * To assist the scavenging functions write-protected pages are not
  * used. Free pages should not be write-protected.
@@ -491,183 +499,102 @@ static int gc_alloc_generation;
  * are allocated, although they will initially be empty.
  */
 static void
-gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
+gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
 {
-    int first_page;
-    int last_page;
-    int region_size;
-    int restart_page;
-    int bytes_found;
-    int num_pages;
-    int i;
+    long first_page;
+    long last_page;
+    long bytes_found;
+    long i;
 
     /*
     FSHOW((stderr,
-          "/alloc_new_region for %d bytes from gen %d\n",
-          nbytes, gc_alloc_generation));
+           "/alloc_new_region for %d bytes from gen %d\n",
+           nbytes, gc_alloc_generation));
     */
 
     /* Check that the region is in a reset state. */
     gc_assert((alloc_region->first_page == 0)
-             && (alloc_region->last_page == -1)
-             && (alloc_region->free_pointer == alloc_region->end_addr));
-
+              && (alloc_region->last_page == -1)
+              && (alloc_region->free_pointer == alloc_region->end_addr));
+    get_spinlock(&free_pages_lock,(long) alloc_region);
     if (unboxed) {
-       restart_page =
-           generations[gc_alloc_generation].alloc_unboxed_start_page;
+        first_page =
+            generations[gc_alloc_generation].alloc_unboxed_start_page;
     } else {
-       restart_page =
-           generations[gc_alloc_generation].alloc_start_page;
-    }
-
-    /* Search for a contiguous free region of at least nbytes with the
-     * given properties: boxed/unboxed, generation. */
-    do {
-       first_page = restart_page;
-
-       /* First search for a page with at least 32 bytes free, which is
-        * not write-protected, and which is not marked dont_move. */
-       while ((first_page < NUM_PAGES)
-              && (page_table[first_page].allocated != FREE_PAGE) /* not free page */
-              && ((unboxed &&
-                   (page_table[first_page].allocated != UNBOXED_PAGE))
-                  || (!unboxed &&
-                      (page_table[first_page].allocated != BOXED_PAGE))
-                  || (page_table[first_page].large_object != 0)
-                  || (page_table[first_page].gen != gc_alloc_generation)
-                  || (page_table[first_page].bytes_used >= (4096-32))
-                  || (page_table[first_page].write_protected != 0)
-                  || (page_table[first_page].dont_move != 0)))
-           first_page++;
-       /* Check for a failure. */
-       if (first_page >= NUM_PAGES) {
-           fprintf(stderr,
-                   "Argh! gc_alloc_new_region failed on first_page, nbytes=%d.\n",
-                   nbytes);
-           print_generation_stats(1);
-           lose(NULL);
-       }
-
-       gc_assert(page_table[first_page].write_protected == 0);
-
-       /*
-       FSHOW((stderr,
-              "/first_page=%d bytes_used=%d\n",
-              first_page, page_table[first_page].bytes_used));
-       */
-
-       /* Now search forward to calculate the available region size. It
-        * tries to keeps going until nbytes are found and the number of
-        * pages is greater than some level. This helps keep down the
-        * number of pages in a region. */
-       last_page = first_page;
-       bytes_found = 4096 - page_table[first_page].bytes_used;
-       num_pages = 1;
-       while (((bytes_found < nbytes) || (num_pages < 2))
-              && (last_page < (NUM_PAGES-1))
-              && (page_table[last_page+1].allocated == FREE_PAGE)) {
-           last_page++;
-           num_pages++;
-           bytes_found += 4096;
-           gc_assert(page_table[last_page].write_protected == 0);
-       }
-
-       region_size = (4096 - page_table[first_page].bytes_used)
-           + 4096*(last_page-first_page);
-
-       gc_assert(bytes_found == region_size);
-
-       /*
-       FSHOW((stderr,
-              "/last_page=%d bytes_found=%d num_pages=%d\n",
-              last_page, bytes_found, num_pages));
-       */
-
-       restart_page = last_page + 1;
-    } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
-
-    /* Check for a failure. */
-    if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
-       fprintf(stderr,
-               "Argh! gc_alloc_new_region failed on restart_page, nbytes=%d.\n",
-               nbytes);
-       print_generation_stats(1);
-       lose(NULL);
+        first_page =
+            generations[gc_alloc_generation].alloc_start_page;
     }
-
-    /*
-    FSHOW((stderr,
-          "/gc_alloc_new_region gen %d: %d bytes: pages %d to %d: addr=%x\n",
-          gc_alloc_generation,
-          bytes_found,
-          first_page,
-          last_page,
-          page_address(first_page)));
-    */
+    last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
+    bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
+            + PAGE_BYTES*(last_page-first_page);
 
     /* Set up the alloc_region. */
     alloc_region->first_page = first_page;
     alloc_region->last_page = last_page;
     alloc_region->start_addr = page_table[first_page].bytes_used
-       + page_address(first_page);
+        + page_address(first_page);
     alloc_region->free_pointer = alloc_region->start_addr;
     alloc_region->end_addr = alloc_region->start_addr + bytes_found;
 
-    if (gencgc_zero_check) {
-       int *p;
-       for (p = (int *)alloc_region->start_addr;
-           p < (int *)alloc_region->end_addr; p++) {
-           if (*p != 0) {
-               /* KLUDGE: It would be nice to use %lx and explicit casts
-                * (long) in code like this, so that it is less likely to
-                * break randomly when running on a machine with different
-                * word sizes. -- WHN 19991129 */
-               lose("The new region at %x is not zero.", p);
-           }
-       }
-    }
-
     /* Set up the pages. */
 
     /* The first page may have already been in use. */
     if (page_table[first_page].bytes_used == 0) {
-       if (unboxed)
-           page_table[first_page].allocated = UNBOXED_PAGE;
-       else
-           page_table[first_page].allocated = BOXED_PAGE;
-       page_table[first_page].gen = gc_alloc_generation;
-       page_table[first_page].large_object = 0;
-       page_table[first_page].first_object_offset = 0;
+        if (unboxed)
+            page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
+        else
+            page_table[first_page].allocated = BOXED_PAGE_FLAG;
+        page_table[first_page].gen = gc_alloc_generation;
+        page_table[first_page].large_object = 0;
+        page_table[first_page].first_object_offset = 0;
     }
 
     if (unboxed)
-       gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
+        gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
     else
-       gc_assert(page_table[first_page].allocated == BOXED_PAGE);
+        gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
+    page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
+
     gc_assert(page_table[first_page].gen == gc_alloc_generation);
     gc_assert(page_table[first_page].large_object == 0);
 
     for (i = first_page+1; i <= last_page; i++) {
-       if (unboxed)
-           page_table[i].allocated = UNBOXED_PAGE;
-       else
-           page_table[i].allocated = BOXED_PAGE;
-       page_table[i].gen = gc_alloc_generation;
-       page_table[i].large_object = 0;
-       /* This may not be necessary for unboxed regions (think it was
-        * broken before!) */
-       page_table[i].first_object_offset =
-           alloc_region->start_addr - page_address(i);
+        if (unboxed)
+            page_table[i].allocated = UNBOXED_PAGE_FLAG;
+        else
+            page_table[i].allocated = BOXED_PAGE_FLAG;
+        page_table[i].gen = gc_alloc_generation;
+        page_table[i].large_object = 0;
+        /* This may not be necessary for unboxed regions (think it was
+         * broken before!) */
+        page_table[i].first_object_offset =
+            alloc_region->start_addr - page_address(i);
+        page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
     }
-
     /* Bump up last_free_page. */
     if (last_page+1 > last_free_page) {
-       last_free_page = last_page+1;
-       SetSymbolValue(ALLOCATION_POINTER,
-                      (lispobj)(((char *)heap_base) + last_free_page*4096));
-       if (last_page+1 > last_used_page)
-           last_used_page = last_page+1;
+        last_free_page = last_page+1;
+        SetSymbolValue(ALLOCATION_POINTER,
+                       (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),
+                       0);
     }
+    release_spinlock(&free_pages_lock);
+
+    /* we can do this after releasing free_pages_lock */
+    if (gencgc_zero_check) {
+        long *p;
+        for (p = (long *)alloc_region->start_addr;
+             p < (long *)alloc_region->end_addr; p++) {
+            if (*p != 0) {
+                /* KLUDGE: It would be nice to use %lx and explicit casts
+                 * (long) in code like this, so that it is less likely to
+                 * break randomly when running on a machine with different
+                 * word sizes. -- WHN 19991129 */
+                lose("The new region at %x is not zero.", p);
+            }
+    }
+}
+
 }
 
 /* If the record_new_objects flag is 2 then all new regions created
@@ -687,82 +614,81 @@ gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
  * scavenge of a generation. */
 #define NUM_NEW_AREAS 512
 static int record_new_objects = 0;
-static int new_areas_ignore_page;
+static long new_areas_ignore_page;
 struct new_area {
-    int  page;
-    int  offset;
-    int  size;
+    long  page;
+    long  offset;
+    long  size;
 };
 static struct new_area (*new_areas)[];
-static int new_areas_index;
-int max_new_areas;
+static long new_areas_index;
+long max_new_areas;
 
 /* Add a new area to new_areas. */
 static void
-add_new_area(int first_page, int offset, int size)
+add_new_area(long first_page, long offset, long size)
 {
     unsigned new_area_start,c;
-    int i;
+    long i;
 
     /* Ignore if full. */
     if (new_areas_index >= NUM_NEW_AREAS)
-       return;
+        return;
 
     switch (record_new_objects) {
     case 0:
-       return;
+        return;
     case 1:
-       if (first_page > new_areas_ignore_page)
-           return;
-       break;
+        if (first_page > new_areas_ignore_page)
+            return;
+        break;
     case 2:
-       break;
+        break;
     default:
-       gc_abort();
+        gc_abort();
     }
 
-    new_area_start = 4096*first_page + offset;
+    new_area_start = PAGE_BYTES*first_page + offset;
 
     /* Search backwards for a prior area that this follows from. If
        found this will save adding a new area. */
     for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
-       unsigned area_end =
-           4096*((*new_areas)[i].page)
-           + (*new_areas)[i].offset
-           + (*new_areas)[i].size;
-       /*FSHOW((stderr,
-              "/add_new_area S1 %d %d %d %d\n",
-              i, c, new_area_start, area_end));*/
-       if (new_area_start == area_end) {
-           /*FSHOW((stderr,
-                  "/adding to [%d] %d %d %d with %d %d %d:\n",
-                  i,
-                  (*new_areas)[i].page,
-                  (*new_areas)[i].offset,
-                  (*new_areas)[i].size,
-                  first_page,
-                  offset,
-                  size));*/
-           (*new_areas)[i].size += size;
-           return;
-       }
+        unsigned area_end =
+            PAGE_BYTES*((*new_areas)[i].page)
+            + (*new_areas)[i].offset
+            + (*new_areas)[i].size;
+        /*FSHOW((stderr,
+               "/add_new_area S1 %d %d %d %d\n",
+               i, c, new_area_start, area_end));*/
+        if (new_area_start == area_end) {
+            /*FSHOW((stderr,
+                   "/adding to [%d] %d %d %d with %d %d %d:\n",
+                   i,
+                   (*new_areas)[i].page,
+                   (*new_areas)[i].offset,
+                   (*new_areas)[i].size,
+                   first_page,
+                   offset,
+                    size);*/
+            (*new_areas)[i].size += size;
+            return;
+        }
     }
-    /*FSHOW((stderr, "/add_new_area S1 %d %d %d\n", i, c, new_area_start));*/
 
     (*new_areas)[new_areas_index].page = first_page;
     (*new_areas)[new_areas_index].offset = offset;
     (*new_areas)[new_areas_index].size = size;
     /*FSHOW((stderr,
-          "/new_area %d page %d offset %d size %d\n",
-          new_areas_index, first_page, offset, size));*/
+           "/new_area %d page %d offset %d size %d\n",
+           new_areas_index, first_page, offset, size));*/
     new_areas_index++;
 
     /* Note the max new_areas used. */
     if (new_areas_index > max_new_areas)
-       max_new_areas = new_areas_index;
+        max_new_areas = new_areas_index;
 }
 
-/* Update the tables for the alloc_region. The region maybe added to
+/* Update the tables for the alloc_region. The region may be added to
  * the new_areas.
  *
  * When done the alloc_region is set up so that the next quick alloc
@@ -772,279 +698,166 @@ add_new_area(int first_page, int offset, int size)
 void
 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
 {
-    int more;
-    int first_page;
-    int next_page;
-    int bytes_used;
-    int orig_first_page_bytes_used;
-    int region_size;
-    int byte_cnt;
+    long more;
+    long first_page;
+    long next_page;
+    long bytes_used;
+    long orig_first_page_bytes_used;
+    long region_size;
+    long byte_cnt;
 
-    /*
-    FSHOW((stderr,
-          "/gc_alloc_update_page_tables to gen %d:\n",
-          gc_alloc_generation));
-    */
 
     first_page = alloc_region->first_page;
 
     /* Catch an unused alloc_region. */
     if ((first_page == 0) && (alloc_region->last_page == -1))
-       return;
+        return;
 
     next_page = first_page+1;
 
-    /* Skip if no bytes were allocated */
+    get_spinlock(&free_pages_lock,(long) alloc_region);
     if (alloc_region->free_pointer != alloc_region->start_addr) {
-       orig_first_page_bytes_used = page_table[first_page].bytes_used;
-
-       gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
-
-       /* All the pages used need to be updated */
-
-       /* Update the first page. */
-
-       /* If the page was free then set up the gen, and
-           first_object_offset. */
-       if (page_table[first_page].bytes_used == 0)
-           gc_assert(page_table[first_page].first_object_offset == 0);
-
-       if (unboxed)
-           gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
-       else
-           gc_assert(page_table[first_page].allocated == BOXED_PAGE);
-       gc_assert(page_table[first_page].gen == gc_alloc_generation);
-       gc_assert(page_table[first_page].large_object == 0);
-
-       byte_cnt = 0;
-
-       /* Calc. the number of bytes used in this page. This is not always
-          the number of new bytes, unless it was free. */
-       more = 0;
-       if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>4096) {
-           bytes_used = 4096;
-           more = 1;
-       }
-       page_table[first_page].bytes_used = bytes_used;
-       byte_cnt += bytes_used;
-
-
-       /* All the rest of the pages should be free. Need to set their
-          first_object_offset pointer to the start of the region, and set
-          the bytes_used. */
-       while (more) {
-           if (unboxed)
-               gc_assert(page_table[next_page].allocated == UNBOXED_PAGE);
-           else
-               gc_assert(page_table[next_page].allocated == BOXED_PAGE);
-           gc_assert(page_table[next_page].bytes_used == 0);
-           gc_assert(page_table[next_page].gen == gc_alloc_generation);
-           gc_assert(page_table[next_page].large_object == 0);
-
-           gc_assert(page_table[next_page].first_object_offset ==
-                     alloc_region->start_addr - page_address(next_page));
-
-           /* Calculate the number of bytes used in this page. */
-           more = 0;
-           if ((bytes_used = (alloc_region->free_pointer
-                              - page_address(next_page)))>4096) {
-               bytes_used = 4096;
-               more = 1;
-           }
-           page_table[next_page].bytes_used = bytes_used;
-           byte_cnt += bytes_used;
-
-           next_page++;
-       }
-
-       region_size = alloc_region->free_pointer - alloc_region->start_addr;
-       bytes_allocated += region_size;
-       generations[gc_alloc_generation].bytes_allocated += region_size;
-
-       gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
-
-       /* Set the generations alloc restart page to the last page of
-          the region. */
-       if (unboxed)
-           generations[gc_alloc_generation].alloc_unboxed_start_page =
-               next_page-1;
-       else
-           generations[gc_alloc_generation].alloc_start_page = next_page-1;
-
-       /* Add the region to the new_areas if requested. */
-       if (!unboxed)
-           add_new_area(first_page,orig_first_page_bytes_used, region_size);
-
-       /*
-       FSHOW((stderr,
-              "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
-              region_size,
-              gc_alloc_generation));
-       */
+        /* some bytes were allocated in the region */
+        orig_first_page_bytes_used = page_table[first_page].bytes_used;
+
+        gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
+
+        /* All the pages used need to be updated */
+
+        /* Update the first page. */
+
+        /* If the page was free then set up the gen, and
+         * first_object_offset. */
+        if (page_table[first_page].bytes_used == 0)
+            gc_assert(page_table[first_page].first_object_offset == 0);
+        page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
+
+        if (unboxed)
+            gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
+        else
+            gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
+        gc_assert(page_table[first_page].gen == gc_alloc_generation);
+        gc_assert(page_table[first_page].large_object == 0);
+
+        byte_cnt = 0;
+
+        /* Calculate the number of bytes used in this page. This is not
+         * always the number of new bytes, unless it was free. */
+        more = 0;
+        if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>PAGE_BYTES) {
+            bytes_used = PAGE_BYTES;
+            more = 1;
+        }
+        page_table[first_page].bytes_used = bytes_used;
+        byte_cnt += bytes_used;
+
+
+        /* All the rest of the pages should be free. We need to set their
+         * first_object_offset pointer to the start of the region, and set
+         * the bytes_used. */
+        while (more) {
+            page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
+            if (unboxed)
+                gc_assert(page_table[next_page].allocated==UNBOXED_PAGE_FLAG);
+            else
+                gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
+            gc_assert(page_table[next_page].bytes_used == 0);
+            gc_assert(page_table[next_page].gen == gc_alloc_generation);
+            gc_assert(page_table[next_page].large_object == 0);
+
+            gc_assert(page_table[next_page].first_object_offset ==
+                      alloc_region->start_addr - page_address(next_page));
+
+            /* Calculate the number of bytes used in this page. */
+            more = 0;
+            if ((bytes_used = (alloc_region->free_pointer
+                               - page_address(next_page)))>PAGE_BYTES) {
+                bytes_used = PAGE_BYTES;
+                more = 1;
+            }
+            page_table[next_page].bytes_used = bytes_used;
+            byte_cnt += bytes_used;
+
+            next_page++;
+        }
+
+        region_size = alloc_region->free_pointer - alloc_region->start_addr;
+        bytes_allocated += region_size;
+        generations[gc_alloc_generation].bytes_allocated += region_size;
+
+        gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
+
+        /* Set the generations alloc restart page to the last page of
+         * the region. */
+        if (unboxed)
+            generations[gc_alloc_generation].alloc_unboxed_start_page =
+                next_page-1;
+        else
+            generations[gc_alloc_generation].alloc_start_page = next_page-1;
+
+        /* Add the region to the new_areas if requested. */
+        if (!unboxed)
+            add_new_area(first_page,orig_first_page_bytes_used, region_size);
+
+        /*
+        FSHOW((stderr,
+               "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
+               region_size,
+               gc_alloc_generation));
+        */
+    } else {
+        /* There are no bytes allocated. Unallocate the first_page if
+         * there are 0 bytes_used. */
+        page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
+        if (page_table[first_page].bytes_used == 0)
+            page_table[first_page].allocated = FREE_PAGE_FLAG;
     }
-    else
-       /* No bytes allocated. Unallocate the first_page if there are 0
-          bytes_used. */
-       if (page_table[first_page].bytes_used == 0)
-           page_table[first_page].allocated = FREE_PAGE;
 
     /* Unallocate any unused pages. */
     while (next_page <= alloc_region->last_page) {
-       gc_assert(page_table[next_page].bytes_used == 0);
-       page_table[next_page].allocated = FREE_PAGE;
-       next_page++;
+        gc_assert(page_table[next_page].bytes_used == 0);
+        page_table[next_page].allocated = FREE_PAGE_FLAG;
+        next_page++;
     }
-
-    /* Reset the alloc_region. */
-    alloc_region->first_page = 0;
-    alloc_region->last_page = -1;
-    alloc_region->start_addr = page_address(0);
-    alloc_region->free_pointer = page_address(0);
-    alloc_region->end_addr = page_address(0);
+    release_spinlock(&free_pages_lock);
+    /* alloc_region is per-thread, we're ok to do this unlocked */
+    gc_set_region_empty(alloc_region);
 }
 
-static inline void *gc_quick_alloc(int nbytes);
+static inline void *gc_quick_alloc(long nbytes);
 
 /* Allocate a possibly large object. */
-static void
-*gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
+void *
+gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
 {
-    int first_page;
-    int last_page;
-    int region_size;
-    int restart_page;
-    int bytes_found;
-    int num_pages;
-    int orig_first_page_bytes_used;
-    int byte_cnt;
-    int more;
-    int bytes_used;
-    int next_page;
-    int large = (nbytes >= large_object_size);
-
-    /*
-    if (nbytes > 200000)
-       FSHOW((stderr, "/alloc_large %d\n", nbytes));
-    */
+    long first_page;
+    long last_page;
+    long orig_first_page_bytes_used;
+    long byte_cnt;
+    long more;
+    long bytes_used;
+    long next_page;
 
-    /*
-    FSHOW((stderr,
-          "/gc_alloc_large for %d bytes from gen %d\n",
-          nbytes, gc_alloc_generation));
-    */
-
-    /* If the object is small, and there is room in the current region
-       then allocation it in the current region. */
-    if (!large
-       && ((alloc_region->end_addr-alloc_region->free_pointer) >= nbytes))
-       return gc_quick_alloc(nbytes);
-
-    /* Search for a contiguous free region of at least nbytes. If it's a
-       large object then align it on a page boundary by searching for a
-       free page. */
-
-    /* To allow the allocation of small objects without the danger of
-       using a page in the current boxed region, the search starts after
-       the current boxed free region. XX could probably keep a page
-       index ahead of the current region and bumped up here to save a
-       lot of re-scanning. */
-    if (unboxed)
-       restart_page = generations[gc_alloc_generation].alloc_large_unboxed_start_page;
-    else
-       restart_page = generations[gc_alloc_generation].alloc_large_start_page;
-    if (restart_page <= alloc_region->last_page)
-       restart_page = alloc_region->last_page+1;
-
-    do {
-       first_page = restart_page;
-
-       if (large)
-           while ((first_page < NUM_PAGES)
-                  && (page_table[first_page].allocated != FREE_PAGE))
-               first_page++;
-       else
-           while ((first_page < NUM_PAGES)
-                  && (page_table[first_page].allocated != FREE_PAGE)
-                  && ((unboxed &&
-                       (page_table[first_page].allocated != UNBOXED_PAGE))
-                      || (!unboxed &&
-                          (page_table[first_page].allocated != BOXED_PAGE))
-                      || (page_table[first_page].large_object != 0)
-                      || (page_table[first_page].gen != gc_alloc_generation)
-                      || (page_table[first_page].bytes_used >= (4096-32))
-                      || (page_table[first_page].write_protected != 0)
-                      || (page_table[first_page].dont_move != 0)))
-               first_page++;
-
-       if (first_page >= NUM_PAGES) {
-           fprintf(stderr,
-                   "Argh! gc_alloc_large failed (first_page), nbytes=%d.\n",
-                   nbytes);
-           print_generation_stats(1);
-           lose(NULL);
-       }
-
-       gc_assert(page_table[first_page].write_protected == 0);
-
-       /*
-       FSHOW((stderr,
-              "/first_page=%d bytes_used=%d\n",
-              first_page, page_table[first_page].bytes_used));
-       */
-
-       last_page = first_page;
-       bytes_found = 4096 - page_table[first_page].bytes_used;
-       num_pages = 1;
-       while ((bytes_found < nbytes)
-              && (last_page < (NUM_PAGES-1))
-              && (page_table[last_page+1].allocated == FREE_PAGE)) {
-           last_page++;
-           num_pages++;
-           bytes_found += 4096;
-           gc_assert(page_table[last_page].write_protected == 0);
-       }
-
-       region_size = (4096 - page_table[first_page].bytes_used)
-           + 4096*(last_page-first_page);
-
-       gc_assert(bytes_found == region_size);
-
-       /*
-       FSHOW((stderr,
-              "/last_page=%d bytes_found=%d num_pages=%d\n",
-              last_page, bytes_found, num_pages));
-       */
-
-       restart_page = last_page + 1;
-    } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
+    get_spinlock(&free_pages_lock,(long) alloc_region);
 
-    /* Check for a failure */
-    if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
-       fprintf(stderr,
-               "Argh! gc_alloc_large failed (restart_page), nbytes=%d.\n",
-               nbytes);
-       print_generation_stats(1);
-       lose(NULL);
+    if (unboxed) {
+        first_page =
+            generations[gc_alloc_generation].alloc_large_unboxed_start_page;
+    } else {
+        first_page = generations[gc_alloc_generation].alloc_large_start_page;
+    }
+    if (first_page <= alloc_region->last_page) {
+        first_page = alloc_region->last_page+1;
     }
 
-    /*
-    if (large)
-       FSHOW((stderr,
-              "/gc_alloc_large gen %d: %d of %d bytes: from pages %d to %d: addr=%x\n",
-              gc_alloc_generation,
-              nbytes,
-              bytes_found,
-              first_page,
-              last_page,
-              page_address(first_page)));
-    */
+    last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
 
     gc_assert(first_page > alloc_region->last_page);
     if (unboxed)
-       generations[gc_alloc_generation].alloc_large_unboxed_start_page =
-           last_page;
+        generations[gc_alloc_generation].alloc_large_unboxed_start_page =
+            last_page;
     else
-       generations[gc_alloc_generation].alloc_large_start_page = last_page;
+        generations[gc_alloc_generation].alloc_large_start_page = last_page;
 
     /* Set up the pages. */
     orig_first_page_bytes_used = page_table[first_page].bytes_used;
@@ -1052,30 +865,30 @@ static void
     /* If the first page was free then set up the gen, and
      * first_object_offset. */
     if (page_table[first_page].bytes_used == 0) {
-       if (unboxed)
-           page_table[first_page].allocated = UNBOXED_PAGE;
-       else
-           page_table[first_page].allocated = BOXED_PAGE;
-       page_table[first_page].gen = gc_alloc_generation;
-       page_table[first_page].first_object_offset = 0;
-       page_table[first_page].large_object = large;
+        if (unboxed)
+            page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
+        else
+            page_table[first_page].allocated = BOXED_PAGE_FLAG;
+        page_table[first_page].gen = gc_alloc_generation;
+        page_table[first_page].first_object_offset = 0;
+        page_table[first_page].large_object = 1;
     }
 
     if (unboxed)
-       gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
+        gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
     else
-       gc_assert(page_table[first_page].allocated == BOXED_PAGE);
+        gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
     gc_assert(page_table[first_page].gen == gc_alloc_generation);
-    gc_assert(page_table[first_page].large_object == large);
+    gc_assert(page_table[first_page].large_object == 1);
 
     byte_cnt = 0;
 
     /* Calc. the number of bytes used in this page. This is not
      * always the number of new bytes, unless it was free. */
     more = 0;
-    if ((bytes_used = nbytes+orig_first_page_bytes_used) > 4096) {
-       bytes_used = 4096;
-       more = 1;
+    if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
+        bytes_used = PAGE_BYTES;
+        more = 1;
     }
     page_table[first_page].bytes_used = bytes_used;
     byte_cnt += bytes_used;
@@ -1086,28 +899,29 @@ static void
      * first_object_offset pointer to the start of the region, and
      * set the bytes_used. */
     while (more) {
-       gc_assert(page_table[next_page].allocated == FREE_PAGE);
-       gc_assert(page_table[next_page].bytes_used == 0);
-       if (unboxed)
-           page_table[next_page].allocated = UNBOXED_PAGE;
-       else
-           page_table[next_page].allocated = BOXED_PAGE;
-       page_table[next_page].gen = gc_alloc_generation;
-       page_table[next_page].large_object = large;
-
-       page_table[next_page].first_object_offset =
-           orig_first_page_bytes_used - 4096*(next_page-first_page);
-
-       /* Calculate the number of bytes used in this page. */
-       more = 0;
-       if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > 4096) {
-           bytes_used = 4096;
-           more = 1;
-       }
-       page_table[next_page].bytes_used = bytes_used;
-       byte_cnt += bytes_used;
-
-       next_page++;
+        gc_assert(page_table[next_page].allocated == FREE_PAGE_FLAG);
+        gc_assert(page_table[next_page].bytes_used == 0);
+        if (unboxed)
+            page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
+        else
+            page_table[next_page].allocated = BOXED_PAGE_FLAG;
+        page_table[next_page].gen = gc_alloc_generation;
+        page_table[next_page].large_object = 1;
+
+        page_table[next_page].first_object_offset =
+            orig_first_page_bytes_used - PAGE_BYTES*(next_page-first_page);
+
+        /* Calculate the number of bytes used in this page. */
+        more = 0;
+        if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > PAGE_BYTES) {
+            bytes_used = PAGE_BYTES;
+            more = 1;
+        }
+        page_table[next_page].bytes_used = bytes_used;
+        page_table[next_page].write_protected=0;
+        page_table[next_page].dont_move=0;
+        byte_cnt += bytes_used;
+        next_page++;
     }
 
     gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
@@ -1117,495 +931,331 @@ static void
 
     /* Add the region to the new_areas if requested. */
     if (!unboxed)
-       add_new_area(first_page,orig_first_page_bytes_used,nbytes);
+        add_new_area(first_page,orig_first_page_bytes_used,nbytes);
 
     /* Bump up last_free_page */
     if (last_page+1 > last_free_page) {
-       last_free_page = last_page+1;
-       SetSymbolValue(ALLOCATION_POINTER,
-                      (lispobj)(((char *)heap_base) + last_free_page*4096));
-       if (last_page+1 > last_used_page)
-           last_used_page = last_page+1;
+        last_free_page = last_page+1;
+        SetSymbolValue(ALLOCATION_POINTER,
+                       (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),0);
     }
+    release_spinlock(&free_pages_lock);
 
     return((void *)(page_address(first_page)+orig_first_page_bytes_used));
 }
 
-/* Allocate bytes from the boxed_region. It first checks if there is
- * room, if not then it calls gc_alloc_new_region to find a new region
- * with enough space. A pointer to the start of the region is returned. */
-static void
-*gc_alloc(int nbytes)
+long
+gc_find_freeish_pages(long *restart_page_ptr, long nbytes, int unboxed)
 {
-    void *new_free_pointer;
-
-    /* FSHOW((stderr, "/gc_alloc %d\n", nbytes)); */
-
-    /* Check whether there is room in the current alloc region. */
-    new_free_pointer = boxed_region.free_pointer + nbytes;
-
-    if (new_free_pointer <= boxed_region.end_addr) {
-       /* If so then allocate from the current alloc region. */
-       void *new_obj = boxed_region.free_pointer;
-       boxed_region.free_pointer = new_free_pointer;
-
-       /* Check whether the alloc region is almost empty. */
-       if ((boxed_region.end_addr - boxed_region.free_pointer) <= 32) {
-           /* If so finished with the current region. */
-           gc_alloc_update_page_tables(0, &boxed_region);
-           /* Set up a new region. */
-           gc_alloc_new_region(32, 0, &boxed_region);
-       }
-       return((void *)new_obj);
-    }
-
-    /* Else not enough free space in the current region. */
-
-    /* If there some room left in the current region, enough to be worth
-     * saving, then allocate a large object. */
-    /* FIXME: "32" should be a named parameter. */
-    if ((boxed_region.end_addr-boxed_region.free_pointer) > 32)
-       return gc_alloc_large(nbytes, 0, &boxed_region);
+    long first_page;
+    long last_page;
+    long region_size;
+    long restart_page=*restart_page_ptr;
+    long bytes_found;
+    long num_pages;
+    long large_p=(nbytes>=large_object_size);
+    gc_assert(free_pages_lock);
 
-    /* Else find a new region. */
+    /* Search for a contiguous free space of at least nbytes. If it's
+     * a large object then align it on a page boundary by searching
+     * for a free page. */
 
-    /* Finished with the current region. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-
-    /* Set up a new region. */
-    gc_alloc_new_region(nbytes, 0, &boxed_region);
-
-    /* Should now be enough room. */
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = boxed_region.free_pointer + nbytes;
-
-    if (new_free_pointer <= boxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = boxed_region.free_pointer;
-       boxed_region.free_pointer = new_free_pointer;
-
-       /* Check whether the current region is almost empty. */
-       if ((boxed_region.end_addr - boxed_region.free_pointer) <= 32) {
-           /* If so find, finished with the current region. */
-           gc_alloc_update_page_tables(0, &boxed_region);
-
-           /* Set up a new region. */
-           gc_alloc_new_region(32, 0, &boxed_region);
-       }
+    do {
+        first_page = restart_page;
+        if (large_p)
+            while ((first_page < NUM_PAGES)
+                   && (page_table[first_page].allocated != FREE_PAGE_FLAG))
+                first_page++;
+        else
+            while (first_page < NUM_PAGES) {
+                if(page_table[first_page].allocated == FREE_PAGE_FLAG)
+                    break;
+                if((page_table[first_page].allocated ==
+                    (unboxed ? UNBOXED_PAGE_FLAG : BOXED_PAGE_FLAG)) &&
+                   (page_table[first_page].large_object == 0) &&
+                   (page_table[first_page].gen == gc_alloc_generation) &&
+                   (page_table[first_page].bytes_used < (PAGE_BYTES-32)) &&
+                   (page_table[first_page].write_protected == 0) &&
+                   (page_table[first_page].dont_move == 0)) {
+                    break;
+                }
+                first_page++;
+            }
+
+        if (first_page >= NUM_PAGES) {
+            fprintf(stderr,
+                    "Argh! gc_find_free_space failed (first_page), nbytes=%ld.\n",
+                    nbytes);
+            print_generation_stats(1);
+            lose(NULL);
+        }
+
+        gc_assert(page_table[first_page].write_protected == 0);
+
+        last_page = first_page;
+        bytes_found = PAGE_BYTES - page_table[first_page].bytes_used;
+        num_pages = 1;
+        while (((bytes_found < nbytes)
+                || (!large_p && (num_pages < 2)))
+               && (last_page < (NUM_PAGES-1))
+               && (page_table[last_page+1].allocated == FREE_PAGE_FLAG)) {
+            last_page++;
+            num_pages++;
+            bytes_found += PAGE_BYTES;
+            gc_assert(page_table[last_page].write_protected == 0);
+        }
+
+        region_size = (PAGE_BYTES - page_table[first_page].bytes_used)
+            + PAGE_BYTES*(last_page-first_page);
+
+        gc_assert(bytes_found == region_size);
+        restart_page = last_page + 1;
+    } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
 
-       return((void *)new_obj);
+    /* Check for a failure */
+    if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
+        fprintf(stderr,
+                "Argh! gc_find_freeish_pages failed (restart_page), nbytes=%ld.\n",
+                nbytes);
+        print_generation_stats(1);
+        lose(NULL);
     }
-
-    /* shouldn't happen */
-    gc_assert(0);
-    return((void *) NIL); /* dummy value: return something ... */
+    *restart_page_ptr=first_page;
+    return last_page;
 }
 
-/* Allocate space from the boxed_region. If there is not enough free
- * space then call gc_alloc to do the job. A pointer to the start of
- * the region is returned. */
-static inline void
-*gc_quick_alloc(int nbytes)
+/* Allocate bytes.  All the rest of the special-purpose allocation
+ * functions will eventually call this  */
+
+void *
+gc_alloc_with_region(long nbytes,int unboxed_p, struct alloc_region *my_region,
+                     int quick_p)
 {
     void *new_free_pointer;
 
-    /* Check whether there is room in the current region. */
-    new_free_pointer = boxed_region.free_pointer + nbytes;
+    if(nbytes>=large_object_size)
+        return gc_alloc_large(nbytes,unboxed_p,my_region);
 
-    if (new_free_pointer <= boxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void  *new_obj = boxed_region.free_pointer;
-       boxed_region.free_pointer = new_free_pointer;
-       return((void *)new_obj);
+    /* Check whether there is room in the current alloc region. */
+    new_free_pointer = my_region->free_pointer + nbytes;
+
+    /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
+       my_region->free_pointer, new_free_pointer); */
+
+    if (new_free_pointer <= my_region->end_addr) {
+        /* If so then allocate from the current alloc region. */
+        void *new_obj = my_region->free_pointer;
+        my_region->free_pointer = new_free_pointer;
+
+        /* Unless a `quick' alloc was requested, check whether the
+           alloc region is almost empty. */
+        if (!quick_p &&
+            (my_region->end_addr - my_region->free_pointer) <= 32) {
+            /* If so, finished with the current region. */
+            gc_alloc_update_page_tables(unboxed_p, my_region);
+            /* Set up a new region. */
+            gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
+        }
+
+        return((void *)new_obj);
     }
 
-    /* Else call gc_alloc */
-    return (gc_alloc(nbytes));
-}
-
-/* Allocate space for the boxed object. If it is a large object then
- * do a large alloc else allocate from the current region. If there is
- * not enough free space then call gc_alloc to do the job. A pointer
- * to the start of the region is returned. */
-static inline void
-*gc_quick_alloc_large(int nbytes)
-{
-    void *new_free_pointer;
+    /* Else not enough free space in the current region: retry with a
+     * new region. */
 
-    if (nbytes >= large_object_size)
-       return gc_alloc_large(nbytes, 0, &boxed_region);
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = boxed_region.free_pointer + nbytes;
+    gc_alloc_update_page_tables(unboxed_p, my_region);
+    gc_alloc_new_region(nbytes, unboxed_p, my_region);
+    return gc_alloc_with_region(nbytes,unboxed_p,my_region,0);
+}
 
-    if (new_free_pointer <= boxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = boxed_region.free_pointer;
-       boxed_region.free_pointer = new_free_pointer;
-       return((void *)new_obj);
-    }
+/* these are only used during GC: all allocation from the mutator calls
+ * alloc() -> gc_alloc_with_region() with the appropriate per-thread
+ * region */
 
-    /* Else call gc_alloc */
-    return (gc_alloc(nbytes));
+void *
+gc_general_alloc(long nbytes,int unboxed_p,int quick_p)
+{
+    struct alloc_region *my_region =
+      unboxed_p ? &unboxed_region : &boxed_region;
+    return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
 }
 
-static void
-*gc_alloc_unboxed(int nbytes)
+static inline void *
+gc_quick_alloc(long nbytes)
 {
-    void *new_free_pointer;
-
-    /*
-    FSHOW((stderr, "/gc_alloc_unboxed %d\n", nbytes));
-    */
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = unboxed_region.free_pointer + nbytes;
-
-    if (new_free_pointer <= unboxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = unboxed_region.free_pointer;
-       unboxed_region.free_pointer = new_free_pointer;
-
-       /* Check whether the current region is almost empty. */
-       if ((unboxed_region.end_addr - unboxed_region.free_pointer) <= 32) {
-           /* If so finished with the current region. */
-           gc_alloc_update_page_tables(1, &unboxed_region);
-
-           /* Set up a new region. */
-           gc_alloc_new_region(32, 1, &unboxed_region);
-       }
-
-       return((void *)new_obj);
-    }
-
-    /* Else not enough free space in the current region. */
-
-    /* If there is a bit of room left in the current region then
-       allocate a large object. */
-    if ((unboxed_region.end_addr-unboxed_region.free_pointer) > 32)
-       return gc_alloc_large(nbytes,1,&unboxed_region);
-
-    /* Else find a new region. */
-
-    /* Finished with the current region. */
-    gc_alloc_update_page_tables(1, &unboxed_region);
-
-    /* Set up a new region. */
-    gc_alloc_new_region(nbytes, 1, &unboxed_region);
-
-    /* Should now be enough room. */
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = unboxed_region.free_pointer + nbytes;
-
-    if (new_free_pointer <= unboxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = unboxed_region.free_pointer;
-       unboxed_region.free_pointer = new_free_pointer;
-
-       /* Check whether the current region is almost empty. */
-       if ((unboxed_region.end_addr - unboxed_region.free_pointer) <= 32) {
-           /* If so find, finished with the current region. */
-           gc_alloc_update_page_tables(1, &unboxed_region);
-
-           /* Set up a new region. */
-           gc_alloc_new_region(32, 1, &unboxed_region);
-       }
-
-       return((void *)new_obj);
-    }
-
-    /* shouldn't happen? */
-    gc_assert(0);
-    return((void *) NIL); /* dummy value: return something ... */
+    return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
 }
 
-static inline void
-*gc_quick_alloc_unboxed(int nbytes)
+static inline void *
+gc_quick_alloc_large(long nbytes)
 {
-    void *new_free_pointer;
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = unboxed_region.free_pointer + nbytes;
-
-    if (new_free_pointer <= unboxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = unboxed_region.free_pointer;
-       unboxed_region.free_pointer = new_free_pointer;
-
-       return((void *)new_obj);
-    }
-
-    /* Else call gc_alloc */
-    return (gc_alloc_unboxed(nbytes));
+    return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
 }
 
-/* Allocate space for the object. If it is a large object then do a
- * large alloc else allocate from the current region. If there is not
- * enough free space then call gc_alloc to do the job.
- *
- * A pointer to the start of the region is returned. */
-static inline void
-*gc_quick_alloc_large_unboxed(int nbytes)
+static inline void *
+gc_alloc_unboxed(long nbytes)
 {
-    void *new_free_pointer;
-
-    if (nbytes >= large_object_size)
-       return gc_alloc_large(nbytes,1,&unboxed_region);
-
-    /* Check whether there is room in the current region. */
-    new_free_pointer = unboxed_region.free_pointer + nbytes;
-
-    if (new_free_pointer <= unboxed_region.end_addr) {
-       /* If so then allocate from the current region. */
-       void *new_obj = unboxed_region.free_pointer;
-       unboxed_region.free_pointer = new_free_pointer;
-
-       return((void *)new_obj);
-    }
-
-    /* Else call gc_alloc. */
-    return (gc_alloc_unboxed(nbytes));
+    return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
 }
-\f
-/*
- * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
- */
-
-static int (*scavtab[256])(lispobj *where, lispobj object);
-static lispobj (*transother[256])(lispobj object);
-static int (*sizetab[256])(lispobj *where);
-
-static struct weak_pointer *weak_pointers;
-
-#define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
-\f
-/*
- * predicates
- */
 
-static inline boolean
-from_space_p(lispobj obj)
+static inline void *
+gc_quick_alloc_unboxed(long nbytes)
 {
-    int page_index=(void*)obj - heap_base;
-    return ((page_index >= 0)
-           && ((page_index = ((unsigned int)page_index)/4096) < NUM_PAGES)
-           && (page_table[page_index].gen == from_space));
+    return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
 }
 
-static inline boolean
-new_space_p(lispobj obj)
+static inline void *
+gc_quick_alloc_large_unboxed(long nbytes)
 {
-    int page_index = (void*)obj - heap_base;
-    return ((page_index >= 0)
-           && ((page_index = ((unsigned int)page_index)/4096) < NUM_PAGES)
-           && (page_table[page_index].gen == new_space));
+    return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
 }
 \f
 /*
- * copying objects
+ * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
  */
 
-/* to copy a boxed object */
-static inline lispobj
-copy_object(lispobj object, int nwords)
-{
-    int tag;
-    lispobj *new;
-    lispobj *source, *dest;
-
-    gc_assert(Pointerp(object));
-    gc_assert(from_space_p(object));
-    gc_assert((nwords & 0x01) == 0);
-
-    /* Get tag of object. */
-    tag = LowtagOf(object);
+extern long (*scavtab[256])(lispobj *where, lispobj object);
+extern lispobj (*transother[256])(lispobj object);
+extern long (*sizetab[256])(lispobj *where);
 
-    /* Allocate space. */
-    new = gc_quick_alloc(nwords*4);
-
-    dest = new;
-    source = (lispobj *) PTR(object);
-
-    /* Copy the object. */
-    while (nwords > 0) {
-       dest[0] = source[0];
-       dest[1] = source[1];
-       dest += 2;
-       source += 2;
-       nwords -= 2;
-    }
-
-    /* Return Lisp pointer of new object. */
-    return ((lispobj) new) | tag;
-}
-
-/* to copy a large boxed object. If the object is in a large object
+/* Copy a large boxed object. If the object is in a large object
  * region then it is simply promoted, else it is copied. If it's large
  * enough then it's copied to a large object region.
  *
  * Vectors may have shrunk. If the object is not copied the space
  * needs to be reclaimed, and the page_tables corrected. */
-static lispobj
-copy_large_object(lispobj object, int nwords)
+lispobj
+copy_large_object(lispobj object, long nwords)
 {
     int tag;
     lispobj *new;
-    lispobj *source, *dest;
-    int first_page;
+    long first_page;
 
-    gc_assert(Pointerp(object));
+    gc_assert(is_lisp_pointer(object));
     gc_assert(from_space_p(object));
     gc_assert((nwords & 0x01) == 0);
 
-    if ((nwords > 1024*1024) && gencgc_verbose) {
-       FSHOW((stderr, "/copy_large_object: %d bytes\n", nwords*4));
-    }
 
-    /* Check whether it's a large object. */
+    /* Check whether it's in a large object region. */
     first_page = find_page_index((void *)object);
     gc_assert(first_page >= 0);
 
     if (page_table[first_page].large_object) {
 
-       /* Promote the object. */
-
-       int remaining_bytes;
-       int next_page;
-       int bytes_freed;
-       int old_bytes_used;
-
-       /* Note: Any page write-protection must be removed, else a
-        * later scavenge_newspace may incorrectly not scavenge these
-        * pages. This would not be necessary if they are added to the
-        * new areas, but let's do it for them all (they'll probably
-        * be written anyway?). */
-
-       gc_assert(page_table[first_page].first_object_offset == 0);
-
-       next_page = first_page;
-       remaining_bytes = nwords*4;
-       while (remaining_bytes > 4096) {
-           gc_assert(page_table[next_page].gen == from_space);
-           gc_assert(page_table[next_page].allocated == BOXED_PAGE);
-           gc_assert(page_table[next_page].large_object);
-           gc_assert(page_table[next_page].first_object_offset==
-                     -4096*(next_page-first_page));
-           gc_assert(page_table[next_page].bytes_used == 4096);
-
-           page_table[next_page].gen = new_space;
-
-           /* Remove any write-protection. We should be able to rely
-            * on the write-protect flag to avoid redundant calls. */
-           if (page_table[next_page].write_protected) {
-               os_protect(page_address(next_page), 4096, OS_VM_PROT_ALL);
-               page_table[next_page].write_protected = 0;
-           }
-           remaining_bytes -= 4096;
-           next_page++;
-       }
-
-       /* Now only one page remains, but the object may have shrunk
-        * so there may be more unused pages which will be freed. */
-
-       /* The object may have shrunk but shouldn't have grown. */
-       gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
-
-       page_table[next_page].gen = new_space;
-       gc_assert(page_table[next_page].allocated = BOXED_PAGE);
-
-       /* Adjust the bytes_used. */
-       old_bytes_used = page_table[next_page].bytes_used;
-       page_table[next_page].bytes_used = remaining_bytes;
-
-       bytes_freed = old_bytes_used - remaining_bytes;
-
-       /* Free any remaining pages; needs care. */
-       next_page++;
-       while ((old_bytes_used == 4096) &&
-              (page_table[next_page].gen == from_space) &&
-              (page_table[next_page].allocated == BOXED_PAGE) &&
-              page_table[next_page].large_object &&
-              (page_table[next_page].first_object_offset ==
-               -(next_page - first_page)*4096)) {
-           /* Checks out OK, free the page. Don't need to both zeroing
-            * pages as this should have been done before shrinking the
-            * object. These pages shouldn't be write-protected as they
-            * should be zero filled. */
-           gc_assert(page_table[next_page].write_protected == 0);
-
-           old_bytes_used = page_table[next_page].bytes_used;
-           page_table[next_page].allocated = FREE_PAGE;
-           page_table[next_page].bytes_used = 0;
-           bytes_freed += old_bytes_used;
-           next_page++;
-       }
-
-       if ((bytes_freed > 0) && gencgc_verbose)
-           FSHOW((stderr, "/copy_large_boxed bytes_freed=%d\n", bytes_freed));
-
-       generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
-       generations[new_space].bytes_allocated += 4*nwords;
-       bytes_allocated -= bytes_freed;
-
-       /* Add the region to the new_areas if requested. */
-       add_new_area(first_page,0,nwords*4);
-
-       return(object);
+        /* Promote the object. */
+
+        long remaining_bytes;
+        long next_page;
+        long bytes_freed;
+        long old_bytes_used;
+
+        /* Note: Any page write-protection must be removed, else a
+         * later scavenge_newspace may incorrectly not scavenge these
+         * pages. This would not be necessary if they are added to the
+         * new areas, but let's do it for them all (they'll probably
+         * be written anyway?). */
+
+        gc_assert(page_table[first_page].first_object_offset == 0);
+
+        next_page = first_page;
+        remaining_bytes = nwords*N_WORD_BYTES;
+        while (remaining_bytes > PAGE_BYTES) {
+            gc_assert(page_table[next_page].gen == from_space);
+            gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
+            gc_assert(page_table[next_page].large_object);
+            gc_assert(page_table[next_page].first_object_offset==
+                      -PAGE_BYTES*(next_page-first_page));
+            gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
+
+            page_table[next_page].gen = new_space;
+
+            /* Remove any write-protection. We should be able to rely
+             * on the write-protect flag to avoid redundant calls. */
+            if (page_table[next_page].write_protected) {
+                os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
+                page_table[next_page].write_protected = 0;
+            }
+            remaining_bytes -= PAGE_BYTES;
+            next_page++;
+        }
+
+        /* Now only one page remains, but the object may have shrunk
+         * so there may be more unused pages which will be freed. */
+
+        /* The object may have shrunk but shouldn't have grown. */
+        gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
+
+        page_table[next_page].gen = new_space;
+        gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
+
+        /* Adjust the bytes_used. */
+        old_bytes_used = page_table[next_page].bytes_used;
+        page_table[next_page].bytes_used = remaining_bytes;
+
+        bytes_freed = old_bytes_used - remaining_bytes;
+
+        /* Free any remaining pages; needs care. */
+        next_page++;
+        while ((old_bytes_used == PAGE_BYTES) &&
+               (page_table[next_page].gen == from_space) &&
+               (page_table[next_page].allocated == BOXED_PAGE_FLAG) &&
+               page_table[next_page].large_object &&
+               (page_table[next_page].first_object_offset ==
+                -(next_page - first_page)*PAGE_BYTES)) {
+            /* Checks out OK, free the page. Don't need to bother zeroing
+             * pages as this should have been done before shrinking the
+             * object. These pages shouldn't be write-protected as they
+             * should be zero filled. */
+            gc_assert(page_table[next_page].write_protected == 0);
+
+            old_bytes_used = page_table[next_page].bytes_used;
+            page_table[next_page].allocated = FREE_PAGE_FLAG;
+            page_table[next_page].bytes_used = 0;
+            bytes_freed += old_bytes_used;
+            next_page++;
+        }
+
+        generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords +
+          bytes_freed;
+        generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
+        bytes_allocated -= bytes_freed;
+
+        /* Add the region to the new_areas if requested. */
+        add_new_area(first_page,0,nwords*N_WORD_BYTES);
+
+        return(object);
     } else {
-       /* Get tag of object. */
-       tag = LowtagOf(object);
-
-       /* Allocate space. */
-       new = gc_quick_alloc_large(nwords*4);
-
-       dest = new;
-       source = (lispobj *) PTR(object);
-
-       /* Copy the object. */
-       while (nwords > 0) {
-           dest[0] = source[0];
-           dest[1] = source[1];
-           dest += 2;
-           source += 2;
-           nwords -= 2;
-       }
-
-       /* Return Lisp pointer of new object. */
-       return ((lispobj) new) | tag;
+        /* Get tag of object. */
+        tag = lowtag_of(object);
+
+        /* Allocate space. */
+        new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
+
+        memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
+
+        /* Return Lisp pointer of new object. */
+        return ((lispobj) new) | tag;
     }
 }
 
 /* to copy unboxed objects */
-static inline lispobj
-copy_unboxed_object(lispobj object, int nwords)
+lispobj
+copy_unboxed_object(lispobj object, long nwords)
 {
-    int tag;
+    long tag;
     lispobj *new;
-    lispobj *source, *dest;
 
-    gc_assert(Pointerp(object));
+    gc_assert(is_lisp_pointer(object));
     gc_assert(from_space_p(object));
     gc_assert((nwords & 0x01) == 0);
 
     /* Get tag of object. */
-    tag = LowtagOf(object);
+    tag = lowtag_of(object);
 
     /* Allocate space. */
-    new = gc_quick_alloc_unboxed(nwords*4);
-
-    dest = new;
-    source = (lispobj *) PTR(object);
-
-    /* Copy the object. */
-    while (nwords > 0) {
-       dest[0] = source[0];
-       dest[1] = source[1];
-       dest += 2;
-       source += 2;
-       nwords -= 2;
-    }
+    new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
+
+    memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
 
     /* Return Lisp pointer of new object. */
     return ((lispobj) new) | tag;
@@ -1622,294 +1272,126 @@ copy_unboxed_object(lispobj object, int nwords)
  *
  * KLUDGE: There's a lot of cut-and-paste duplication between this
  * function and copy_large_object(..). -- WHN 20000619 */
-static lispobj
-copy_large_unboxed_object(lispobj object, int nwords)
+lispobj
+copy_large_unboxed_object(lispobj object, long nwords)
 {
     int tag;
     lispobj *new;
-    lispobj *source, *dest;
-    int first_page;
+    long first_page;
 
-    gc_assert(Pointerp(object));
+    gc_assert(is_lisp_pointer(object));
     gc_assert(from_space_p(object));
     gc_assert((nwords & 0x01) == 0);
 
     if ((nwords > 1024*1024) && gencgc_verbose)
-       FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*4));
+        FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*N_WORD_BYTES));
 
     /* Check whether it's a large object. */
     first_page = find_page_index((void *)object);
     gc_assert(first_page >= 0);
 
     if (page_table[first_page].large_object) {
-       /* Promote the object. Note: Unboxed objects may have been
-        * allocated to a BOXED region so it may be necessary to
-        * change the region to UNBOXED. */
-       int remaining_bytes;
-       int next_page;
-       int bytes_freed;
-       int old_bytes_used;
-
-       gc_assert(page_table[first_page].first_object_offset == 0);
-
-       next_page = first_page;
-       remaining_bytes = nwords*4;
-       while (remaining_bytes > 4096) {
-           gc_assert(page_table[next_page].gen == from_space);
-           gc_assert((page_table[next_page].allocated == UNBOXED_PAGE)
-                     || (page_table[next_page].allocated == BOXED_PAGE));
-           gc_assert(page_table[next_page].large_object);
-           gc_assert(page_table[next_page].first_object_offset==
-                     -4096*(next_page-first_page));
-           gc_assert(page_table[next_page].bytes_used == 4096);
-
-           page_table[next_page].gen = new_space;
-           page_table[next_page].allocated = UNBOXED_PAGE;
-           remaining_bytes -= 4096;
-           next_page++;
-       }
-
-       /* Now only one page remains, but the object may have shrunk so
-        * there may be more unused pages which will be freed. */
-
-       /* Object may have shrunk but shouldn't have grown - check. */
-       gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
-
-       page_table[next_page].gen = new_space;
-       page_table[next_page].allocated = UNBOXED_PAGE;
-
-       /* Adjust the bytes_used. */
-       old_bytes_used = page_table[next_page].bytes_used;
-       page_table[next_page].bytes_used = remaining_bytes;
-
-       bytes_freed = old_bytes_used - remaining_bytes;
-
-       /* Free any remaining pages; needs care. */
-       next_page++;
-       while ((old_bytes_used == 4096) &&
-              (page_table[next_page].gen == from_space) &&
-              ((page_table[next_page].allocated == UNBOXED_PAGE)
-               || (page_table[next_page].allocated == BOXED_PAGE)) &&
-              page_table[next_page].large_object &&
-              (page_table[next_page].first_object_offset ==
-               -(next_page - first_page)*4096)) {
-           /* Checks out OK, free the page. Don't need to both zeroing
-            * pages as this should have been done before shrinking the
-            * object. These pages shouldn't be write-protected, even if
-            * boxed they should be zero filled. */
-           gc_assert(page_table[next_page].write_protected == 0);
-
-           old_bytes_used = page_table[next_page].bytes_used;
-           page_table[next_page].allocated = FREE_PAGE;
-           page_table[next_page].bytes_used = 0;
-           bytes_freed += old_bytes_used;
-           next_page++;
-       }
-
-       if ((bytes_freed > 0) && gencgc_verbose)
-           FSHOW((stderr,
-                  "/copy_large_unboxed bytes_freed=%d\n",
-                  bytes_freed));
-
-       generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
-       generations[new_space].bytes_allocated += 4*nwords;
-       bytes_allocated -= bytes_freed;
-
-       return(object);
+        /* Promote the object. Note: Unboxed objects may have been
+         * allocated to a BOXED region so it may be necessary to
+         * change the region to UNBOXED. */
+        long remaining_bytes;
+        long next_page;
+        long bytes_freed;
+        long old_bytes_used;
+
+        gc_assert(page_table[first_page].first_object_offset == 0);
+
+        next_page = first_page;
+        remaining_bytes = nwords*N_WORD_BYTES;
+        while (remaining_bytes > PAGE_BYTES) {
+            gc_assert(page_table[next_page].gen == from_space);
+            gc_assert((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
+                      || (page_table[next_page].allocated == BOXED_PAGE_FLAG));
+            gc_assert(page_table[next_page].large_object);
+            gc_assert(page_table[next_page].first_object_offset==
+                      -PAGE_BYTES*(next_page-first_page));
+            gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
+
+            page_table[next_page].gen = new_space;
+            page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
+            remaining_bytes -= PAGE_BYTES;
+            next_page++;
+        }
+
+        /* Now only one page remains, but the object may have shrunk so
+         * there may be more unused pages which will be freed. */
+
+        /* Object may have shrunk but shouldn't have grown - check. */
+        gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
+
+        page_table[next_page].gen = new_space;
+        page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
+
+        /* Adjust the bytes_used. */
+        old_bytes_used = page_table[next_page].bytes_used;
+        page_table[next_page].bytes_used = remaining_bytes;
+
+        bytes_freed = old_bytes_used - remaining_bytes;
+
+        /* Free any remaining pages; needs care. */
+        next_page++;
+        while ((old_bytes_used == PAGE_BYTES) &&
+               (page_table[next_page].gen == from_space) &&
+               ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
+                || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
+               page_table[next_page].large_object &&
+               (page_table[next_page].first_object_offset ==
+                -(next_page - first_page)*PAGE_BYTES)) {
+            /* Checks out OK, free the page. Don't need to both zeroing
+             * pages as this should have been done before shrinking the
+             * object. These pages shouldn't be write-protected, even if
+             * boxed they should be zero filled. */
+            gc_assert(page_table[next_page].write_protected == 0);
+
+            old_bytes_used = page_table[next_page].bytes_used;
+            page_table[next_page].allocated = FREE_PAGE_FLAG;
+            page_table[next_page].bytes_used = 0;
+            bytes_freed += old_bytes_used;
+            next_page++;
+        }
+
+        if ((bytes_freed > 0) && gencgc_verbose)
+            FSHOW((stderr,
+                   "/copy_large_unboxed bytes_freed=%d\n",
+                   bytes_freed));
+
+        generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES + bytes_freed;
+        generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
+        bytes_allocated -= bytes_freed;
+
+        return(object);
     }
     else {
-       /* Get tag of object. */
-       tag = LowtagOf(object);
-
-       /* Allocate space. */
-       new = gc_quick_alloc_large_unboxed(nwords*4);
-
-       dest = new;
-       source = (lispobj *) PTR(object);
-
-       /* Copy the object. */
-       while (nwords > 0) {
-           dest[0] = source[0];
-           dest[1] = source[1];
-           dest += 2;
-           source += 2;
-           nwords -= 2;
-       }
-
-       /* Return Lisp pointer of new object. */
-       return ((lispobj) new) | tag;
-    }
-}
-\f
-/*
- * scavenging
- */
-
-#define DIRECT_SCAV 0
-
-/* FIXME: Most calls end up going to a little trouble to compute an
- * 'nwords' value. The system might be a little simpler if this
- * function used an 'end' parameter instead. */
-static void
-scavenge(lispobj *start, long nwords)
-{
-    while (nwords > 0) {
-       lispobj object;
-#if DIRECT_SCAV
-       int type;
-#endif
-       int words_scavenged;
-
-       object = *start;
-       
-/*     FSHOW((stderr, "Scavenge: %p, %ld\n", start, nwords)); */
+        /* Get tag of object. */
+        tag = lowtag_of(object);
 
-       gc_assert(object != 0x01); /* not a forwarding pointer */
+        /* Allocate space. */
+        new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
 
-#if DIRECT_SCAV
-       type = TypeOf(object);
-       words_scavenged = (scavtab[type])(start, object);
-#else
-       if (Pointerp(object)) {
-           /* It's a pointer. */
-           if (from_space_p(object)) {
-               /* It currently points to old space. Check for a forwarding
-                * pointer. */
-               lispobj *ptr = (lispobj *)PTR(object);
-               lispobj first_word = *ptr;
-       
-               if (first_word == 0x01) {
-                   /* Yes, there's a forwarding pointer. */
-                   *start = ptr[1];
-                   words_scavenged = 1;
-               }
-               else
-                   /* Scavenge that pointer. */
-                   words_scavenged = (scavtab[TypeOf(object)])(start, object);
-           } else {
-               /* It points somewhere other than oldspace. Leave it alone. */
-               words_scavenged = 1;
-           }
-       } else {
-           if ((object & 3) == 0) {
-               /* It's a fixnum: really easy.. */
-               words_scavenged = 1;
-           } else {
-               /* It's some sort of header object or another. */
-               words_scavenged = (scavtab[TypeOf(object)])(start, object);
-           }
-       }
-#endif
+        /* Copy the object. */
+        memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
 
-       start += words_scavenged;
-       nwords -= words_scavenged;
+        /* Return Lisp pointer of new object. */
+        return ((lispobj) new) | tag;
     }
-    gc_assert(nwords == 0);
 }
 
+
+
 \f
+
 /*
  * code and code-related objects
  */
-
-#define RAW_ADDR_OFFSET (6*sizeof(lispobj) - type_FunctionPointer)
-
-static lispobj trans_function_header(lispobj object);
+/*
+static lispobj trans_fun_header(lispobj object);
 static lispobj trans_boxed(lispobj object);
-
-#if DIRECT_SCAV
-static int
-scav_function_pointer(lispobj *where, lispobj object)
-{
-    gc_assert(Pointerp(object));
-
-    if (from_space_p(object)) {
-       lispobj first, *first_pointer;
-
-       /* object is a pointer into from space. Check to see whether
-        * it has been forwarded. */
-       first_pointer = (lispobj *) PTR(object);
-       first = *first_pointer;
-
-       if (first == 0x01) {
-           /* Forwarded */
-           *where = first_pointer[1];
-           return 1;
-       }
-       else {
-           int type;
-           lispobj copy;
-
-           /* must transport object -- object may point to either a
-            * function header, a closure function header, or to a
-            * closure header. */
-
-           type = TypeOf(first);
-           switch (type) {
-           case type_FunctionHeader:
-           case type_ClosureFunctionHeader:
-               copy = trans_function_header(object);
-               break;
-           default:
-               copy = trans_boxed(object);
-               break;
-           }
-
-           if (copy != object) {
-               /* Set forwarding pointer. */
-               first_pointer[0] = 0x01;
-               first_pointer[1] = copy;
-           }
-
-           first = copy;
-       }
-
-       gc_assert(Pointerp(first));
-       gc_assert(!from_space_p(first));
-
-       *where = first;
-    }
-    return 1;
-}
-#else
-static int
-scav_function_pointer(lispobj *where, lispobj object)
-{
-    lispobj *first_pointer;
-    lispobj copy;
-
-    gc_assert(Pointerp(object));
-
-    /* Object is a pointer into from space - no a FP. */
-    first_pointer = (lispobj *) PTR(object);
-
-    /* must transport object -- object may point to either a function
-     * header, a closure function header, or to a closure header. */
-
-    switch (TypeOf(*first_pointer)) {
-    case type_FunctionHeader:
-    case type_ClosureFunctionHeader:
-       copy = trans_function_header(object);
-       break;
-    default:
-       copy = trans_boxed(object);
-       break;
-    }
-
-    if (copy != object) {
-       /* Set forwarding pointer */
-       first_pointer[0] = 0x01;
-       first_pointer[1] = copy;
-    }
-
-    gc_assert(Pointerp(copy));
-    gc_assert(!from_space_p(copy));
-
-    *where = copy;
-
-    return 1;
-}
-#endif
+*/
 
 /* Scan a x86 compiled code object, looking for possible fixups that
  * have been missed after a move.
@@ -1923,2462 +1405,971 @@ scav_function_pointer(lispobj *where, lispobj object)
 void
 sniff_code_object(struct code *code, unsigned displacement)
 {
-    int nheader_words, ncode_words, nwords;
+    long nheader_words, ncode_words, nwords;
     void *p;
     void *constants_start_addr, *constants_end_addr;
     void *code_start_addr, *code_end_addr;
     int fixup_found = 0;
 
     if (!check_code_fixups)
-       return;
-
-    /* It's ok if it's byte compiled code. The trace table offset will
-     * be a fixnum if it's x86 compiled code - check. */
-    if (code->trace_table_offset & 0x3) {
-       FSHOW((stderr, "/Sniffing byte compiled code object at %x.\n", code));
-       return;
-    }
-
-    /* Else it's x86 machine code. */
+        return;
 
     ncode_words = fixnum_value(code->code_size);
     nheader_words = HeaderValue(*(lispobj *)code);
     nwords = ncode_words + nheader_words;
 
-    constants_start_addr = (void *)code + 5*4;
-    constants_end_addr = (void *)code + nheader_words*4;
-    code_start_addr = (void *)code + nheader_words*4;
-    code_end_addr = (void *)code + nwords*4;
+    constants_start_addr = (void *)code + 5*N_WORD_BYTES;
+    constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
+    code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
+    code_end_addr = (void *)code + nwords*N_WORD_BYTES;
 
     /* Work through the unboxed code. */
     for (p = code_start_addr; p < code_end_addr; p++) {
-       void *data = *(void **)p;
-       unsigned d1 = *((unsigned char *)p - 1);
-       unsigned d2 = *((unsigned char *)p - 2);
-       unsigned d3 = *((unsigned char *)p - 3);
-       unsigned d4 = *((unsigned char *)p - 4);
-       unsigned d5 = *((unsigned char *)p - 5);
-       unsigned d6 = *((unsigned char *)p - 6);
-
-       /* Check for code references. */
-       /* Check for a 32 bit word that looks like an absolute
-          reference to within the code adea of the code object. */
-       if ((data >= (code_start_addr-displacement))
-           && (data < (code_end_addr-displacement))) {
-           /* function header */
-           if ((d4 == 0x5e)
-               && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
-               /* Skip the function header */
-               p += 6*4 - 4 - 1;
-               continue;
-           }
-           /* the case of PUSH imm32 */
-           if (d1 == 0x68) {
-               fixup_found = 1;
-               FSHOW((stderr,
-                      "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                      p, d6, d5, d4, d3, d2, d1, data));
-               FSHOW((stderr, "/PUSH $0x%.8x\n", data));
-           }
-           /* the case of MOV [reg-8],imm32 */
-           if ((d3 == 0xc7)
-               && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
-                   || d2==0x45 || d2==0x46 || d2==0x47)
-               && (d1 == 0xf8)) {
-               fixup_found = 1;
-               FSHOW((stderr,
-                      "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                      p, d6, d5, d4, d3, d2, d1, data));
-               FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
-           }
-           /* the case of LEA reg,[disp32] */
-           if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
-               fixup_found = 1;
-               FSHOW((stderr,
-                      "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                      p, d6, d5, d4, d3, d2, d1, data));
-               FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
-           }
-       }
-
-       /* Check for constant references. */
-       /* Check for a 32 bit word that looks like an absolute
-          reference to within the constant vector. Constant references
-          will be aligned. */
-       if ((data >= (constants_start_addr-displacement))
-           && (data < (constants_end_addr-displacement))
-           && (((unsigned)data & 0x3) == 0)) {
-           /*  Mov eax,m32 */
-           if (d1 == 0xa1) {
-               fixup_found = 1;
-               FSHOW((stderr,
-                      "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                      p, d6, d5, d4, d3, d2, d1, data));
-               FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
-           }
-
-           /*  the case of MOV m32,EAX */
-           if (d1 == 0xa3) {
-               fixup_found = 1;
-               FSHOW((stderr,
-                      "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                      p, d6, d5, d4, d3, d2, d1, data));
-               FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
-           }
-
-           /* the case of CMP m32,imm32 */             
-           if ((d1 == 0x3d) && (d2 == 0x81)) {
-               fixup_found = 1;
-               FSHOW((stderr,
-                      "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                      p, d6, d5, d4, d3, d2, d1, data));
-               /* XX Check this */
-               FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
-           }
-
-           /* Check for a mod=00, r/m=101 byte. */
-           if ((d1 & 0xc7) == 5) {
-               /* Cmp m32,reg */
-               if (d2 == 0x39) {
-                   fixup_found = 1;
-                   FSHOW((stderr,
-                          "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                          p, d6, d5, d4, d3, d2, d1, data));
-                   FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
-               }
-               /* the case of CMP reg32,m32 */
-               if (d2 == 0x3b) {
-                   fixup_found = 1;
-                   FSHOW((stderr,
-                          "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                          p, d6, d5, d4, d3, d2, d1, data));
-                   FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
-               }
-               /* the case of MOV m32,reg32 */
-               if (d2 == 0x89) {
-                   fixup_found = 1;
-                   FSHOW((stderr,
-                          "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                          p, d6, d5, d4, d3, d2, d1, data));
-                   FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
-               }
-               /* the case of MOV reg32,m32 */
-               if (d2 == 0x8b) {
-                   fixup_found = 1;
-                   FSHOW((stderr,
-                          "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                          p, d6, d5, d4, d3, d2, d1, data));
-                   FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
-               }
-               /* the case of LEA reg32,m32 */
-               if (d2 == 0x8d) {
-                   fixup_found = 1;
-                   FSHOW((stderr,
-                          "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
-                          p, d6, d5, d4, d3, d2, d1, data));
-                   FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
-               }
-           }
-       }
+        void *data = *(void **)p;
+        unsigned d1 = *((unsigned char *)p - 1);
+        unsigned d2 = *((unsigned char *)p - 2);
+        unsigned d3 = *((unsigned char *)p - 3);
+        unsigned d4 = *((unsigned char *)p - 4);
+#ifdef QSHOW
+        unsigned d5 = *((unsigned char *)p - 5);
+        unsigned d6 = *((unsigned char *)p - 6);
+#endif
+
+        /* Check for code references. */
+        /* Check for a 32 bit word that looks like an absolute
+           reference to within the code adea of the code object. */
+        if ((data >= (code_start_addr-displacement))
+            && (data < (code_end_addr-displacement))) {
+            /* function header */
+            if ((d4 == 0x5e)
+                && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
+                /* Skip the function header */
+                p += 6*4 - 4 - 1;
+                continue;
+            }
+            /* the case of PUSH imm32 */
+            if (d1 == 0x68) {
+                fixup_found = 1;
+                FSHOW((stderr,
+                       "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                       p, d6, d5, d4, d3, d2, d1, data));
+                FSHOW((stderr, "/PUSH $0x%.8x\n", data));
+            }
+            /* the case of MOV [reg-8],imm32 */
+            if ((d3 == 0xc7)
+                && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
+                    || d2==0x45 || d2==0x46 || d2==0x47)
+                && (d1 == 0xf8)) {
+                fixup_found = 1;
+                FSHOW((stderr,
+                       "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                       p, d6, d5, d4, d3, d2, d1, data));
+                FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
+            }
+            /* the case of LEA reg,[disp32] */
+            if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
+                fixup_found = 1;
+                FSHOW((stderr,
+                       "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                       p, d6, d5, d4, d3, d2, d1, data));
+                FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
+            }
+        }
+
+        /* Check for constant references. */
+        /* Check for a 32 bit word that looks like an absolute
+           reference to within the constant vector. Constant references
+           will be aligned. */
+        if ((data >= (constants_start_addr-displacement))
+            && (data < (constants_end_addr-displacement))
+            && (((unsigned)data & 0x3) == 0)) {
+            /*  Mov eax,m32 */
+            if (d1 == 0xa1) {
+                fixup_found = 1;
+                FSHOW((stderr,
+                       "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                       p, d6, d5, d4, d3, d2, d1, data));
+                FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
+            }
+
+            /*  the case of MOV m32,EAX */
+            if (d1 == 0xa3) {
+                fixup_found = 1;
+                FSHOW((stderr,
+                       "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                       p, d6, d5, d4, d3, d2, d1, data));
+                FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
+            }
+
+            /* the case of CMP m32,imm32 */
+            if ((d1 == 0x3d) && (d2 == 0x81)) {
+                fixup_found = 1;
+                FSHOW((stderr,
+                       "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                       p, d6, d5, d4, d3, d2, d1, data));
+                /* XX Check this */
+                FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
+            }
+
+            /* Check for a mod=00, r/m=101 byte. */
+            if ((d1 & 0xc7) == 5) {
+                /* Cmp m32,reg */
+                if (d2 == 0x39) {
+                    fixup_found = 1;
+                    FSHOW((stderr,
+                           "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                           p, d6, d5, d4, d3, d2, d1, data));
+                    FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
+                }
+                /* the case of CMP reg32,m32 */
+                if (d2 == 0x3b) {
+                    fixup_found = 1;
+                    FSHOW((stderr,
+                           "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                           p, d6, d5, d4, d3, d2, d1, data));
+                    FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
+                }
+                /* the case of MOV m32,reg32 */
+                if (d2 == 0x89) {
+                    fixup_found = 1;
+                    FSHOW((stderr,
+                           "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                           p, d6, d5, d4, d3, d2, d1, data));
+                    FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
+                }
+                /* the case of MOV reg32,m32 */
+                if (d2 == 0x8b) {
+                    fixup_found = 1;
+                    FSHOW((stderr,
+                           "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                           p, d6, d5, d4, d3, d2, d1, data));
+                    FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
+                }
+                /* the case of LEA reg32,m32 */
+                if (d2 == 0x8d) {
+                    fixup_found = 1;
+                    FSHOW((stderr,
+                           "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
+                           p, d6, d5, d4, d3, d2, d1, data));
+                    FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
+                }
+            }
+        }
     }
 
     /* If anything was found, print some information on the code
      * object. */
     if (fixup_found) {
-       FSHOW((stderr,
-              "/compiled code object at %x: header words = %d, code words = %d\n",
-              code, nheader_words, ncode_words));
-       FSHOW((stderr,
-              "/const start = %x, end = %x\n",
-              constants_start_addr, constants_end_addr));
-       FSHOW((stderr,
-              "/code start = %x, end = %x\n",
-              code_start_addr, code_end_addr));
+        FSHOW((stderr,
+               "/compiled code object at %x: header words = %d, code words = %d\n",
+               code, nheader_words, ncode_words));
+        FSHOW((stderr,
+               "/const start = %x, end = %x\n",
+               constants_start_addr, constants_end_addr));
+        FSHOW((stderr,
+               "/code start = %x, end = %x\n",
+               code_start_addr, code_end_addr));
     }
 }
 
-static void
-apply_code_fixups(struct code *old_code, struct code *new_code)
+void
+gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
 {
-    int nheader_words, ncode_words, nwords;
+    long nheader_words, ncode_words, nwords;
     void *constants_start_addr, *constants_end_addr;
     void *code_start_addr, *code_end_addr;
     lispobj fixups = NIL;
     unsigned displacement = (unsigned)new_code - (unsigned)old_code;
     struct vector *fixups_vector;
 
-    /* It's OK if it's byte compiled code. The trace table offset will
-     * be a fixnum if it's x86 compiled code - check. */
-    if (new_code->trace_table_offset & 0x3) {
-/*     FSHOW((stderr, "/byte compiled code object at %x\n", new_code)); */
-       return;
-    }
-
-    /* Else it's x86 machine code. */
     ncode_words = fixnum_value(new_code->code_size);
     nheader_words = HeaderValue(*(lispobj *)new_code);
     nwords = ncode_words + nheader_words;
     /* FSHOW((stderr,
-            "/compiled code object at %x: header words = %d, code words = %d\n",
-            new_code, nheader_words, ncode_words)); */
-    constants_start_addr = (void *)new_code + 5*4;
-    constants_end_addr = (void *)new_code + nheader_words*4;
-    code_start_addr = (void *)new_code + nheader_words*4;
-    code_end_addr = (void *)new_code + nwords*4;
+             "/compiled code object at %x: header words = %d, code words = %d\n",
+             new_code, nheader_words, ncode_words)); */
+    constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
+    constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
+    code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
+    code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
     /*
     FSHOW((stderr,
-          "/const start = %x, end = %x\n",
-          constants_start_addr,constants_end_addr));
+           "/const start = %x, end = %x\n",
+           constants_start_addr,constants_end_addr));
     FSHOW((stderr,
-          "/code start = %x; end = %x\n",
-          code_start_addr,code_end_addr));
+           "/code start = %x; end = %x\n",
+           code_start_addr,code_end_addr));
     */
 
     /* The first constant should be a pointer to the fixups for this
        code objects. Check. */
     fixups = new_code->constants[0];
 
-    /* It will be 0 or the unbound-marker if there are no fixups, and
-     * will be an other pointer if it is valid. */
-    if ((fixups == 0) || (fixups == type_UnboundMarker) || !Pointerp(fixups)) {
-       /* Check for possible errors. */
-       if (check_code_fixups)
-           sniff_code_object(new_code, displacement);
-
-       /*fprintf(stderr,"Fixups for code object not found!?\n");
-         fprintf(stderr,"*** Compiled code object at %x: header_words=%d code_words=%d .\n",
-         new_code, nheader_words, ncode_words);
-         fprintf(stderr,"*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
-         constants_start_addr,constants_end_addr,
-         code_start_addr,code_end_addr);*/
-       return;
+    /* It will be 0 or the unbound-marker if there are no fixups (as
+     * will be the case if the code object has been purified, for
+     * example) and will be an other pointer if it is valid. */
+    if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
+        !is_lisp_pointer(fixups)) {
+        /* Check for possible errors. */
+        if (check_code_fixups)
+            sniff_code_object(new_code, displacement);
+
+        return;
     }
 
-    fixups_vector = (struct vector *)PTR(fixups);
+    fixups_vector = (struct vector *)native_pointer(fixups);
 
     /* Could be pointing to a forwarding pointer. */
-    if (Pointerp(fixups) && (find_page_index((void*)fixups_vector) != -1)
-       && (fixups_vector->header == 0x01)) {
-       /* If so, then follow it. */
-       /*SHOW("following pointer to a forwarding pointer");*/
-       fixups_vector = (struct vector *)PTR((lispobj)fixups_vector->length);
+    /* FIXME is this always in from_space?  if so, could replace this code with
+     * forwarding_pointer_p/forwarding_pointer_value */
+    if (is_lisp_pointer(fixups) &&
+        (find_page_index((void*)fixups_vector) != -1) &&
+        (fixups_vector->header == 0x01)) {
+        /* If so, then follow it. */
+        /*SHOW("following pointer to a forwarding pointer");*/
+        fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
     }
 
     /*SHOW("got fixups");*/
 
-    if (TypeOf(fixups_vector->header) == type_SimpleArrayUnsignedByte32) {
-       /* Got the fixups for the code block. Now work through the vector,
-          and apply a fixup at each address. */
-       int length = fixnum_value(fixups_vector->length);
-       int i;
-       for (i = 0; i < length; i++) {
-           unsigned offset = fixups_vector->data[i];
-           /* Now check the current value of offset. */
-           unsigned old_value =
-               *(unsigned *)((unsigned)code_start_addr + offset);
-
-           /* If it's within the old_code object then it must be an
-            * absolute fixup (relative ones are not saved) */
-           if ((old_value >= (unsigned)old_code)
-               && (old_value < ((unsigned)old_code + nwords*4)))
-               /* So add the dispacement. */
-               *(unsigned *)((unsigned)code_start_addr + offset) =
-                   old_value + displacement;
-           else
-               /* It is outside the old code object so it must be a
-                * relative fixup (absolute fixups are not saved). So
-                * subtract the displacement. */
-               *(unsigned *)((unsigned)code_start_addr + offset) =
-                   old_value - displacement;
-       }
+    if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
+        /* Got the fixups for the code block. Now work through the vector,
+           and apply a fixup at each address. */
+        long length = fixnum_value(fixups_vector->length);
+        long i;
+        for (i = 0; i < length; i++) {
+            unsigned offset = fixups_vector->data[i];
+            /* Now check the current value of offset. */
+            unsigned old_value =
+                *(unsigned *)((unsigned)code_start_addr + offset);
+
+            /* If it's within the old_code object then it must be an
+             * absolute fixup (relative ones are not saved) */
+            if ((old_value >= (unsigned)old_code)
+                && (old_value < ((unsigned)old_code + nwords*N_WORD_BYTES)))
+                /* So add the dispacement. */
+                *(unsigned *)((unsigned)code_start_addr + offset) =
+                    old_value + displacement;
+            else
+                /* It is outside the old code object so it must be a
+                 * relative fixup (absolute fixups are not saved). So
+                 * subtract the displacement. */
+                *(unsigned *)((unsigned)code_start_addr + offset) =
+                    old_value - displacement;
+        }
+    } else {
+        fprintf(stderr, "widetag of fixup vector is %d\n", widetag_of(fixups_vector->header));
     }
 
     /* Check for possible errors. */
     if (check_code_fixups) {
-       sniff_code_object(new_code,displacement);
+        sniff_code_object(new_code,displacement);
     }
 }
 
-static struct code *
-trans_code(struct code *code)
+
+static lispobj
+trans_boxed_large(lispobj object)
 {
-    struct code *new_code;
-    lispobj l_code, l_new_code;
-    int nheader_words, ncode_words, nwords;
-    unsigned long displacement;
-    lispobj fheaderl, *prev_pointer;
+    lispobj header;
+    unsigned long length;
 
-    /* FSHOW((stderr,
-             "\n/transporting code object located at 0x%08x\n",
-            (unsigned long) code)); */
+    gc_assert(is_lisp_pointer(object));
 
-    /* If object has already been transported, just return pointer. */
-    if (*((lispobj *)code) == 0x01)
-       return (struct code*)(((lispobj *)code)[1]);
+    header = *((lispobj *) native_pointer(object));
+    length = HeaderValue(header) + 1;
+    length = CEILING(length, 2);
 
-    gc_assert(TypeOf(code->header) == type_CodeHeader);
+    return copy_large_object(object, length);
+}
 
-    /* Prepare to transport the code vector. */
-    l_code = (lispobj) code | type_OtherPointer;
+/* Doesn't seem to be used, delete it after the grace period. */
+#if 0
+static lispobj
+trans_unboxed_large(lispobj object)
+{
+    lispobj header;
+    unsigned long length;
 
-    ncode_words = fixnum_value(code->code_size);
-    nheader_words = HeaderValue(code->header);
-    nwords = ncode_words + nheader_words;
-    nwords = CEILING(nwords, 2);
 
-    l_new_code = copy_large_object(l_code, nwords);
-    new_code = (struct code *) PTR(l_new_code);
+    gc_assert(is_lisp_pointer(object));
 
-    /* may not have been moved.. */
-    if (new_code == code)
-       return new_code;
-
-    displacement = l_new_code - l_code;
-
-    /*
-    FSHOW((stderr,
-          "/old code object at 0x%08x, new code object at 0x%08x\n",
-          (unsigned long) code,
-          (unsigned long) new_code));
-    FSHOW((stderr, "/Code object is %d words long.\n", nwords));
-    */
-
-    /* Set forwarding pointer. */
-    ((lispobj *)code)[0] = 0x01;
-    ((lispobj *)code)[1] = l_new_code;
-
-    /* Set forwarding pointers for all the function headers in the
-     * code object. Also fix all self pointers. */
-
-    fheaderl = code->entry_points;
-    prev_pointer = &new_code->entry_points;
-
-    while (fheaderl != NIL) {
-       struct function *fheaderp, *nfheaderp;
-       lispobj nfheaderl;
-
-       fheaderp = (struct function *) PTR(fheaderl);
-       gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
-
-       /* Calculate the new function pointer and the new */
-       /* function header. */
-       nfheaderl = fheaderl + displacement;
-       nfheaderp = (struct function *) PTR(nfheaderl);
-
-       /* Set forwarding pointer. */
-       ((lispobj *)fheaderp)[0] = 0x01;
-       ((lispobj *)fheaderp)[1] = nfheaderl;
-
-       /* Fix self pointer. */
-       nfheaderp->self = nfheaderl + RAW_ADDR_OFFSET;
-
-       *prev_pointer = nfheaderl;
-
-       fheaderl = fheaderp->next;
-       prev_pointer = &nfheaderp->next;
-    }
-
-    /*  sniff_code_object(new_code,displacement);*/
-    apply_code_fixups(code,new_code);
-
-    return new_code;
-}
-
-static int
-scav_code_header(lispobj *where, lispobj object)
-{
-    struct code *code;
-    int nheader_words, ncode_words, nwords;
-    lispobj fheaderl;
-    struct function *fheaderp;
-
-    code = (struct code *) where;
-    ncode_words = fixnum_value(code->code_size);
-    nheader_words = HeaderValue(object);
-    nwords = ncode_words + nheader_words;
-    nwords = CEILING(nwords, 2);
-
-    /* Scavenge the boxed section of the code data block. */
-    scavenge(where + 1, nheader_words - 1);
-
-    /* Scavenge the boxed section of each function object in the */
-    /* code data block. */
-    fheaderl = code->entry_points;
-    while (fheaderl != NIL) {
-       fheaderp = (struct function *) PTR(fheaderl);
-       gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
-
-       scavenge(&fheaderp->name, 1);
-       scavenge(&fheaderp->arglist, 1);
-       scavenge(&fheaderp->type, 1);
-               
-       fheaderl = fheaderp->next;
-    }
-       
-    return nwords;
-}
-
-static lispobj
-trans_code_header(lispobj object)
-{
-    struct code *ncode;
-
-    ncode = trans_code((struct code *) PTR(object));
-    return (lispobj) ncode | type_OtherPointer;
-}
-
-static int
-size_code_header(lispobj *where)
-{
-    struct code *code;
-    int nheader_words, ncode_words, nwords;
-
-    code = (struct code *) where;
-       
-    ncode_words = fixnum_value(code->code_size);
-    nheader_words = HeaderValue(code->header);
-    nwords = ncode_words + nheader_words;
-    nwords = CEILING(nwords, 2);
-
-    return nwords;
-}
-
-static int
-scav_return_pc_header(lispobj *where, lispobj object)
-{
-    lose("attempted to scavenge a return PC header where=0x%08x object=0x%08x",
-        (unsigned long) where,
-        (unsigned long) object);
-    return 0; /* bogus return value to satisfy static type checking */
-}
-
-static lispobj
-trans_return_pc_header(lispobj object)
-{
-    struct function *return_pc;
-    unsigned long offset;
-    struct code *code, *ncode;
-
-    SHOW("/trans_return_pc_header: Will this work?");
-
-    return_pc = (struct function *) PTR(object);
-    offset = HeaderValue(return_pc->header) * 4;
-
-    /* Transport the whole code object. */
-    code = (struct code *) ((unsigned long) return_pc - offset);
-    ncode = trans_code(code);
-
-    return ((lispobj) ncode + offset) | type_OtherPointer;
-}
+    header = *((lispobj *) native_pointer(object));
+    length = HeaderValue(header) + 1;
+    length = CEILING(length, 2);
 
-/* On the 386, closures hold a pointer to the raw address instead of the
- * function object. */
-#ifdef __i386__
-static int
-scav_closure_header(lispobj *where, lispobj object)
-{
-    struct closure *closure;
-    lispobj fun;
-
-    closure = (struct closure *)where;
-    fun = closure->function - RAW_ADDR_OFFSET;
-    scavenge(&fun, 1);
-    /* The function may have moved so update the raw address. But
-     * don't write unnecessarily. */
-    if (closure->function != fun + RAW_ADDR_OFFSET)
-       closure->function = fun + RAW_ADDR_OFFSET;
-
-    return 2;
+    return copy_large_unboxed_object(object, length);
 }
 #endif
 
-static int
-scav_function_header(lispobj *where, lispobj object)
-{
-    lose("attempted to scavenge a function header where=0x%08x object=0x%08x",
-        (unsigned long) where,
-        (unsigned long) object);
-    return 0; /* bogus return value to satisfy static type checking */
-}
-
-static lispobj
-trans_function_header(lispobj object)
-{
-    struct function *fheader;
-    unsigned long offset;
-    struct code *code, *ncode;
-
-    fheader = (struct function *) PTR(object);
-    offset = HeaderValue(fheader->header) * 4;
-
-    /* Transport the whole code object. */
-    code = (struct code *) ((unsigned long) fheader - offset);
-    ncode = trans_code(code);
-
-    return ((lispobj) ncode + offset) | type_FunctionPointer;
-}
-\f
-/*
- * instances
- */
-
-#if DIRECT_SCAV
-static int
-scav_instance_pointer(lispobj *where, lispobj object)
-{
-    if (from_space_p(object)) {
-       lispobj first, *first_pointer;
-
-       /* Object is a pointer into from space. Check to see */
-       /* whether it has been forwarded. */
-       first_pointer = (lispobj *) PTR(object);
-       first = *first_pointer;
-
-       if (first == 0x01) {
-           /* forwarded */
-           first = first_pointer[1];
-       } else {
-           first = trans_boxed(object);
-           gc_assert(first != object);
-           /* Set forwarding pointer. */
-           first_pointer[0] = 0x01;
-           first_pointer[1] = first;
-       }
-       *where = first;
-    }
-    return 1;
-}
-#else
-static int
-scav_instance_pointer(lispobj *where, lispobj object)
-{
-    lispobj copy, *first_pointer;
-
-    /* Object is a pointer into from space - not a FP. */
-    copy = trans_boxed(object);
-
-    gc_assert(copy != object);
-
-    first_pointer = (lispobj *) PTR(object);
-
-    /* Set forwarding pointer. */
-    first_pointer[0] = 0x01;
-    first_pointer[1] = copy;
-    *where = copy;
-
-    return 1;
-}
-#endif
 \f
 /*
- * lists and conses
+ * vector-like objects
  */
 
-static lispobj trans_list(lispobj object);
-
-#if DIRECT_SCAV
-static int
-scav_list_pointer(lispobj *where, lispobj object)
-{
-    /* KLUDGE: There's lots of cut-and-paste duplication between this
-     * and scav_instance_pointer(..), scav_other_pointer(..), and
-     * perhaps other functions too. -- WHN 20000620 */
-
-    gc_assert(Pointerp(object));
-
-    if (from_space_p(object)) {
-       lispobj first, *first_pointer;
-
-       /* Object is a pointer into from space. Check to see whether it has
-        * been forwarded. */
-       first_pointer = (lispobj *) PTR(object);
-       first = *first_pointer;
-
-       if (first == 0x01) {
-           /* forwarded */
-           first = first_pointer[1];
-       } else {
-           first = trans_list(object);
-
-           /* Set forwarding pointer */
-           first_pointer[0] = 0x01;
-           first_pointer[1] = first;
-       }
-
-       gc_assert(Pointerp(first));
-       gc_assert(!from_space_p(first));
-       *where = first;
-    }
-    return 1;
-}
-#else
-static int
-scav_list_pointer(lispobj *where, lispobj object)
-{
-    lispobj first, *first_pointer;
-
-    gc_assert(Pointerp(object));
-
-    /* Object is a pointer into from space - not FP. */
-
-    first = trans_list(object);
-    gc_assert(first != object);
 
-    first_pointer = (lispobj *) PTR(object);
-
-    /* Set forwarding pointer */
-    first_pointer[0] = 0x01;
-    first_pointer[1] = first;
-
-    gc_assert(Pointerp(first));
-    gc_assert(!from_space_p(first));
-    *where = first;
-    return 1;
-}
-#endif
+/* FIXME: What does this mean? */
+int gencgc_hash = 1;
 
-static lispobj
-trans_list(lispobj object)
+static long
+scav_vector(lispobj *where, lispobj object)
 {
-    lispobj new_list_pointer;
-    struct cons *cons, *new_cons;
-    lispobj cdr;
-
-    gc_assert(from_space_p(object));
-
-    cons = (struct cons *) PTR(object);
-
-    /* Copy 'object'. */
-    new_cons = (struct cons *) gc_quick_alloc(sizeof(struct cons));
-    new_cons->car = cons->car;
-    new_cons->cdr = cons->cdr; /* updated later */
-    new_list_pointer = (lispobj)new_cons | LowtagOf(object);
-
-    /* Grab the cdr before it is clobbered. */
-    cdr = cons->cdr;
-
-    /* Set forwarding pointer (clobbers start of list). */
-    cons->car = 0x01;
-    cons->cdr = new_list_pointer;
-
-    /* Try to linearize the list in the cdr direction to help reduce
-     * paging. */
-    while (1) {
-       lispobj  new_cdr;
-       struct cons *cdr_cons, *new_cdr_cons;
-
-       if (LowtagOf(cdr) != type_ListPointer || !from_space_p(cdr)
-           || (*((lispobj *)PTR(cdr)) == 0x01))
-           break;
-
-       cdr_cons = (struct cons *) PTR(cdr);
-
-       /* Copy 'cdr'. */
-       new_cdr_cons = (struct cons*) gc_quick_alloc(sizeof(struct cons));
-       new_cdr_cons->car = cdr_cons->car;
-       new_cdr_cons->cdr = cdr_cons->cdr;
-       new_cdr = (lispobj)new_cdr_cons | LowtagOf(cdr);
-
-       /* Grab the cdr before it is clobbered. */
-       cdr = cdr_cons->cdr;
-
-       /* Set forwarding pointer. */
-       cdr_cons->car = 0x01;
-       cdr_cons->cdr = new_cdr;
+    unsigned long kv_length;
+    lispobj *kv_vector;
+    unsigned long length = 0; /* (0 = dummy to stop GCC warning) */
+    struct hash_table *hash_table;
+    lispobj empty_symbol;
+    unsigned long *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
+    unsigned long *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
+    unsigned long *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
+    lispobj weak_p_obj;
+    unsigned next_vector_length = 0;
 
-       /* Update the cdr of the last cons copied into new space to
-        * keep the newspace scavenge from having to do it. */
-       new_cons->cdr = new_cdr;
+    /* FIXME: A comment explaining this would be nice. It looks as
+     * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
+     * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
+    if (HeaderValue(object) != subtype_VectorValidHashing)
+        return 1;
 
-       new_cons = new_cdr_cons;
+    if (!gencgc_hash) {
+        /* This is set for backward compatibility. FIXME: Do we need
+         * this any more? */
+        *where =
+            (subtype_VectorMustRehash<<N_WIDETAG_BITS) | SIMPLE_VECTOR_WIDETAG;
+        return 1;
     }
 
-    return new_list_pointer;
-}
-
-\f
-/*
- * scavenging and transporting other pointers
- */
+    kv_length = fixnum_value(where[1]);
+    kv_vector = where + 2;  /* Skip the header and length. */
+    /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
 
-#if DIRECT_SCAV
-static int
-scav_other_pointer(lispobj *where, lispobj object)
-{
-    gc_assert(Pointerp(object));
-
-    if (from_space_p(object)) {
-       lispobj first, *first_pointer;
-
-       /* Object is a pointer into from space. Check to see */
-       /* whether it has been forwarded. */
-       first_pointer = (lispobj *) PTR(object);
-       first = *first_pointer;
-
-       if (first == 0x01) {
-           /* Forwarded. */
-           first = first_pointer[1];
-           *where = first;
-       } else {
-           first = (transother[TypeOf(first)])(object);
-
-           if (first != object) {
-               /* Set forwarding pointer */
-               first_pointer[0] = 0x01;
-               first_pointer[1] = first;
-               *where = first;
-           }
-       }
-
-       gc_assert(Pointerp(first));
-       gc_assert(!from_space_p(first));
+    /* Scavenge element 0, which may be a hash-table structure. */
+    scavenge(where+2, 1);
+    if (!is_lisp_pointer(where[2])) {
+        lose("no pointer at %x in hash table", where[2]);
     }
-    return 1;
-}
-#else
-static int
-scav_other_pointer(lispobj *where, lispobj object)
-{
-    lispobj first, *first_pointer;
-
-    gc_assert(Pointerp(object));
-
-    /* Object is a pointer into from space - not FP. */
-    first_pointer = (lispobj *) PTR(object);
-
-    first = (transother[TypeOf(*first_pointer)])(object);
-
-    if (first != object) {
-       /* Set forwarding pointer. */
-       first_pointer[0] = 0x01;
-       first_pointer[1] = first;
-       *where = first;
+    hash_table = (struct hash_table *)native_pointer(where[2]);
+    /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
+    if (widetag_of(hash_table->header) != INSTANCE_HEADER_WIDETAG) {
+        lose("hash table not instance (%x at %x)",
+             hash_table->header,
+             hash_table);
     }
 
-    gc_assert(Pointerp(first));
-    gc_assert(!from_space_p(first));
-
-    return 1;
-}
-#endif
-
-\f
-/*
- * immediate, boxed, and unboxed objects
- */
-
-static int
-size_pointer(lispobj *where)
-{
-    return 1;
-}
-
-static int
-scav_immediate(lispobj *where, lispobj object)
-{
-    return 1;
-}
-
-static lispobj
-trans_immediate(lispobj object)
-{
-    lose("trying to transport an immediate");
-    return NIL; /* bogus return value to satisfy static type checking */
-}
-
-static int
-size_immediate(lispobj *where)
-{
-    return 1;
-}
-
-
-static int
-scav_boxed(lispobj *where, lispobj object)
-{
-    return 1;
-}
-
-static lispobj
-trans_boxed(lispobj object)
-{
-    lispobj header;
-    unsigned long length;
-
-    gc_assert(Pointerp(object));
-
-    header = *((lispobj *) PTR(object));
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return copy_object(object, length);
-}
-
-static lispobj
-trans_boxed_large(lispobj object)
-{
-    lispobj header;
-    unsigned long length;
-
-    gc_assert(Pointerp(object));
-
-    header = *((lispobj *) PTR(object));
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return copy_large_object(object, length);
-}
-
-static int
-size_boxed(lispobj *where)
-{
-    lispobj header;
-    unsigned long length;
-
-    header = *where;
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return length;
-}
-
-static int
-scav_fdefn(lispobj *where, lispobj object)
-{
-    struct fdefn *fdefn;
-
-    fdefn = (struct fdefn *)where;
-
-    /* FSHOW((stderr, "scav_fdefn, function = %p, raw_addr = %p\n", 
-       fdefn->function, fdefn->raw_addr)); */
-
-    if ((char *)(fdefn->function + RAW_ADDR_OFFSET) == fdefn->raw_addr) {
-       scavenge(where + 1, sizeof(struct fdefn)/sizeof(lispobj) - 1);
-
-       /* Don't write unnecessarily. */
-       if (fdefn->raw_addr != (char *)(fdefn->function + RAW_ADDR_OFFSET))
-           fdefn->raw_addr = (char *)(fdefn->function + RAW_ADDR_OFFSET);
-
-       return sizeof(struct fdefn) / sizeof(lispobj);
-    } else {
-       return 1;
+    /* Scavenge element 1, which should be some internal symbol that
+     * the hash table code reserves for marking empty slots. */
+    scavenge(where+3, 1);
+    if (!is_lisp_pointer(where[3])) {
+        lose("not empty-hash-table-slot symbol pointer: %x", where[3]);
+    }
+    empty_symbol = where[3];
+    /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
+    if (widetag_of(*(lispobj *)native_pointer(empty_symbol)) !=
+        SYMBOL_HEADER_WIDETAG) {
+        lose("not a symbol where empty-hash-table-slot symbol expected: %x",
+             *(lispobj *)native_pointer(empty_symbol));
     }
-}
-
-static int
-scav_unboxed(lispobj *where, lispobj object)
-{
-    unsigned long length;
 
-    length = HeaderValue(object) + 1;
-    length = CEILING(length, 2);
+    /* Scavenge hash table, which will fix the positions of the other
+     * needed objects. */
+    scavenge((lispobj *)hash_table,
+             sizeof(struct hash_table) / sizeof(lispobj));
 
-    return length;
-}
+    /* Cross-check the kv_vector. */
+    if (where != (lispobj *)native_pointer(hash_table->table)) {
+        lose("hash_table table!=this table %x", hash_table->table);
+    }
 
-static lispobj
-trans_unboxed(lispobj object)
-{
-    lispobj header;
-    unsigned long length;
+    /* WEAK-P */
+    weak_p_obj = hash_table->weak_p;
 
+    /* index vector */
+    {
+        lispobj index_vector_obj = hash_table->index_vector;
+
+        if (is_lisp_pointer(index_vector_obj) &&
+            (widetag_of(*(lispobj *)native_pointer(index_vector_obj)) ==
+                 SIMPLE_ARRAY_WORD_WIDETAG)) {
+            index_vector =
+                ((unsigned long *)native_pointer(index_vector_obj)) + 2;
+            /*FSHOW((stderr, "/index_vector = %x\n",index_vector));*/
+            length = fixnum_value(((lispobj *)native_pointer(index_vector_obj))[1]);
+            /*FSHOW((stderr, "/length = %d\n", length));*/
+        } else {
+            lose("invalid index_vector %x", index_vector_obj);
+        }
+    }
 
-    gc_assert(Pointerp(object));
-
-    header = *((lispobj *) PTR(object));
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return copy_unboxed_object(object, length);
-}
-
-static lispobj
-trans_unboxed_large(lispobj object)
-{
-    lispobj header;
-    unsigned long length;
-
-
-    gc_assert(Pointerp(object));
-
-    header = *((lispobj *) PTR(object));
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return copy_large_unboxed_object(object, length);
-}
-
-static int
-size_unboxed(lispobj *where)
-{
-    lispobj header;
-    unsigned long length;
-
-    header = *where;
-    length = HeaderValue(header) + 1;
-    length = CEILING(length, 2);
-
-    return length;
-}
-\f
-/*
- * vector-like objects
- */
-
-#define NWORDS(x,y) (CEILING((x),(y)) / (y))
-
-static int
-scav_string(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    /* NOTE: Strings contain one more byte of data than the length */
-    /* slot indicates. */
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length) + 1;
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_string(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    /* NOTE: A string contains one more byte of data (a terminating
-     * '\0' to help when interfacing with C functions) than indicated
-     * by the length slot. */
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length) + 1;
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_string(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    /* NOTE: A string contains one more byte of data (a terminating
-     * '\0' to help when interfacing with C functions) than indicated
-     * by the length slot. */
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length) + 1;
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return nwords;
-}
-
-/* FIXME: What does this mean? */
-int gencgc_hash = 1;
-
-static int
-scav_vector(lispobj *where, lispobj object)
-{
-    unsigned int kv_length;
-    lispobj *kv_vector;
-    unsigned int length = 0; /* (0 = dummy to stop GCC warning) */
-    lispobj *hash_table;
-    lispobj empty_symbol;
-    unsigned int *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    unsigned int *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    unsigned int *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    lispobj weak_p_obj;
-    unsigned next_vector_length = 0;
-
-    /* FIXME: A comment explaining this would be nice. It looks as
-     * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
-     * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
-    if (HeaderValue(object) != subtype_VectorValidHashing)
-       return 1;
-
-    if (!gencgc_hash) {
-       /* This is set for backward compatibility. FIXME: Do we need
-        * this any more? */
-       *where = (subtype_VectorMustRehash << type_Bits) | type_SimpleVector;
-       return 1;
-    }
-
-    kv_length = fixnum_value(where[1]);
-    kv_vector = where + 2;  /* Skip the header and length. */
-    /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
-
-    /* Scavenge element 0, which may be a hash-table structure. */
-    scavenge(where+2, 1);
-    if (!Pointerp(where[2])) {
-       lose("no pointer at %x in hash table", where[2]);
-    }
-    hash_table = (lispobj *)PTR(where[2]);
-    /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
-    if (TypeOf(hash_table[0]) != type_InstanceHeader) {
-       lose("hash table not instance (%x at %x)", hash_table[0], hash_table);
-    }
-
-    /* Scavenge element 1, which should be some internal symbol that
-     * the hash table code reserves for marking empty slots. */
-    scavenge(where+3, 1);
-    if (!Pointerp(where[3])) {
-       lose("not empty-hash-table-slot symbol pointer: %x", where[3]);
-    }
-    empty_symbol = where[3];
-    /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
-    if (TypeOf(*(lispobj *)PTR(empty_symbol)) != type_SymbolHeader) {
-       lose("not a symbol where empty-hash-table-slot symbol expected: %x",
-            *(lispobj *)PTR(empty_symbol));
-    }
-
-    /* Scavenge hash table, which will fix the positions of the other
-     * needed objects. */
-    scavenge(hash_table, 16);
-
-    /* Cross-check the kv_vector. */
-    if (where != (lispobj *)PTR(hash_table[9])) {
-       lose("hash_table table!=this table %x", hash_table[9]);
-    }
-
-    /* WEAK-P */
-    weak_p_obj = hash_table[10];
-
-    /* index vector */
-    {
-       lispobj index_vector_obj = hash_table[13];
-
-       if (Pointerp(index_vector_obj) &&
-           (TypeOf(*(lispobj *)PTR(index_vector_obj)) == type_SimpleArrayUnsignedByte32)) {
-           index_vector = ((unsigned int *)PTR(index_vector_obj)) + 2;
-           /*FSHOW((stderr, "/index_vector = %x\n",index_vector));*/
-           length = fixnum_value(((unsigned int *)PTR(index_vector_obj))[1]);
-           /*FSHOW((stderr, "/length = %d\n", length));*/
-       } else {
-           lose("invalid index_vector %x", index_vector_obj);
-       }
-    }
-
-    /* next vector */
-    {
-       lispobj next_vector_obj = hash_table[14];
-
-       if (Pointerp(next_vector_obj) &&
-           (TypeOf(*(lispobj *)PTR(next_vector_obj)) == type_SimpleArrayUnsignedByte32)) {
-           next_vector = ((unsigned int *)PTR(next_vector_obj)) + 2;
-           /*FSHOW((stderr, "/next_vector = %x\n", next_vector));*/
-           next_vector_length = fixnum_value(((unsigned int *)PTR(next_vector_obj))[1]);
-           /*FSHOW((stderr, "/next_vector_length = %d\n", next_vector_length));*/
-       } else {
-           lose("invalid next_vector %x", next_vector_obj);
-       }
-    }
+    /* next vector */
+    {
+        lispobj next_vector_obj = hash_table->next_vector;
+
+        if (is_lisp_pointer(next_vector_obj) &&
+            (widetag_of(*(lispobj *)native_pointer(next_vector_obj)) ==
+             SIMPLE_ARRAY_WORD_WIDETAG)) {
+            next_vector = ((unsigned long *)native_pointer(next_vector_obj)) + 2;
+            /*FSHOW((stderr, "/next_vector = %x\n", next_vector));*/
+            next_vector_length = fixnum_value(((lispobj *)native_pointer(next_vector_obj))[1]);
+            /*FSHOW((stderr, "/next_vector_length = %d\n", next_vector_length));*/
+        } else {
+            lose("invalid next_vector %x", next_vector_obj);
+        }
+    }
 
     /* maybe hash vector */
-    {
-       /* FIXME: This bare "15" offset should become a symbolic
-        * expression of some sort. And all the other bare offsets
-        * too. And the bare "16" in scavenge(hash_table, 16). And
-        * probably other stuff too. Ugh.. */
-       lispobj hash_vector_obj = hash_table[15];
-
-       if (Pointerp(hash_vector_obj) &&
-           (TypeOf(*(lispobj *)PTR(hash_vector_obj))
-            == type_SimpleArrayUnsignedByte32)) {
-           hash_vector = ((unsigned int *)PTR(hash_vector_obj)) + 2;
-           /*FSHOW((stderr, "/hash_vector = %x\n", hash_vector));*/
-           gc_assert(fixnum_value(((unsigned int *)PTR(hash_vector_obj))[1])
-                     == next_vector_length);
-       } else {
-           hash_vector = NULL;
-           /*FSHOW((stderr, "/no hash_vector: %x\n", hash_vector_obj));*/
-       }
-    }
-
-    /* These lengths could be different as the index_vector can be a
-     * different length from the others, a larger index_vector could help
-     * reduce collisions. */
-    gc_assert(next_vector_length*2 == kv_length);
-
-    /* now all set up.. */
-
-    /* Work through the KV vector. */
-    {
-       int i;
-       for (i = 1; i < next_vector_length; i++) {
-           lispobj old_key = kv_vector[2*i];
-           unsigned int  old_index = (old_key & 0x1fffffff)%length;
-
-           /* Scavenge the key and value. */
-           scavenge(&kv_vector[2*i],2);
-
-           /* Check whether the key has moved and is EQ based. */
-           {
-               lispobj new_key = kv_vector[2*i];
-               unsigned int new_index = (new_key & 0x1fffffff)%length;
-
-               if ((old_index != new_index) &&
-                   ((!hash_vector) || (hash_vector[i] == 0x80000000)) &&
-                   ((new_key != empty_symbol) ||
-                    (kv_vector[2*i] != empty_symbol))) {
-
-                   /*FSHOW((stderr,
-                          "* EQ key %d moved from %x to %x; index %d to %d\n",
-                          i, old_key, new_key, old_index, new_index));*/
-
-                   if (index_vector[old_index] != 0) {
-                       /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
-
-                       /* Unlink the key from the old_index chain. */
-                       if (index_vector[old_index] == i) {
-                           /*FSHOW((stderr, "/P2a %d\n", next_vector[i]));*/
-                           index_vector[old_index] = next_vector[i];
-                           /* Link it into the needing rehash chain. */
-                           next_vector[i] = fixnum_value(hash_table[11]);
-                           hash_table[11] = make_fixnum(i);
-                           /*SHOW("P2");*/
-                       } else {
-                           unsigned prior = index_vector[old_index];
-                           unsigned next = next_vector[prior];
-
-                           /*FSHOW((stderr, "/P3a %d %d\n", prior, next));*/
-
-                           while (next != 0) {
-                               /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
-                               if (next == i) {
-                                   /* Unlink it. */
-                                   next_vector[prior] = next_vector[next];
-                                   /* Link it into the needing rehash
-                                    * chain. */
-                                   next_vector[next] =
-                                       fixnum_value(hash_table[11]);
-                                   hash_table[11] = make_fixnum(next);
-                                   /*SHOW("/P3");*/
-                                   break;
-                               }
-                               prior = next;
-                               next = next_vector[next];
-                           }
-                       }
-                   }
-               }
-           }
-       }
-    }
-    return (CEILING(kv_length + 2, 2));
-}
-
-static lispobj
-trans_vector(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return copy_large_object(object, nwords);
-}
-
-static int
-size_vector(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-
-static int
-scav_vector_bit(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 32) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_bit(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 32) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_bit(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 32) + 2, 2);
-
-    return nwords;
-}
-
-
-static int
-scav_vector_unsigned_byte_2(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 16) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_2(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 16) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_2(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 16) + 2, 2);
-
-    return nwords;
-}
-
-
-static int
-scav_vector_unsigned_byte_4(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 8) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_4(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 8) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_4(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 8) + 2, 2);
-
-    return nwords;
-}
-
-static int
-scav_vector_unsigned_byte_8(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_8(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_8(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 4) + 2, 2);
-
-    return nwords;
-}
-
-
-static int
-scav_vector_unsigned_byte_16(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 2) + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_16(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 2) + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_16(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(NWORDS(length, 2) + 2, 2);
-
-    return nwords;
-}
-
-static int
-scav_vector_unsigned_byte_32(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_unsigned_byte_32(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_unsigned_byte_32(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-static int
-scav_vector_single_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_single_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_single_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length + 2, 2);
-
-    return nwords;
-}
-
-static int
-scav_vector_double_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_double_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_double_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return nwords;
-}
-
-#ifdef type_SimpleArrayLongFloat
-static int
-scav_vector_long_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 3 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_long_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 3 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_long_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 3 + 2, 2);
-
-    return nwords;
-}
-#endif
-
-
-#ifdef type_SimpleArrayComplexSingleFloat
-static int
-scav_vector_complex_single_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_complex_single_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_complex_single_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 2 + 2, 2);
-
-    return nwords;
-}
-#endif
-
-#ifdef type_SimpleArrayComplexDoubleFloat
-static int
-scav_vector_complex_double_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 4 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_complex_double_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 4 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_complex_double_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 4 + 2, 2);
-
-    return nwords;
-}
-#endif
-
-
-#ifdef type_SimpleArrayComplexLongFloat
-static int
-scav_vector_complex_long_float(lispobj *where, lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 6 + 2, 2);
-
-    return nwords;
-}
-
-static lispobj
-trans_vector_complex_long_float(lispobj object)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    gc_assert(Pointerp(object));
-
-    vector = (struct vector *) PTR(object);
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 6 + 2, 2);
-
-    return copy_large_unboxed_object(object, nwords);
-}
-
-static int
-size_vector_complex_long_float(lispobj *where)
-{
-    struct vector *vector;
-    int length, nwords;
-
-    vector = (struct vector *) where;
-    length = fixnum_value(vector->length);
-    nwords = CEILING(length * 6 + 2, 2);
-
-    return nwords;
-}
-#endif
-
-\f
-/*
- * weak pointers
- */
-
-/* XX This is a hack adapted from cgc.c. These don't work too well with the
- * gencgc as a list of the weak pointers is maintained within the
- * objects which causes writes to the pages. A limited attempt is made
- * to avoid unnecessary writes, but this needs a re-think. */
-
-#define WEAK_POINTER_NWORDS \
-    CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
-
-static int
-scav_weak_pointer(lispobj *where, lispobj object)
-{
-    struct weak_pointer *wp = weak_pointers;
-    /* Push the weak pointer onto the list of weak pointers.
-     * Do I have to watch for duplicates? Originally this was
-     * part of trans_weak_pointer but that didn't work in the
-     * case where the WP was in a promoted region.
-     */
-
-    /* Check whether it's already in the list. */
-    while (wp != NULL) {
-       if (wp == (struct weak_pointer*)where) {
-           break;
-       }
-       wp = wp->next;
-    }
-    if (wp == NULL) {
-       /* Add it to the start of the list. */
-       wp = (struct weak_pointer*)where;
-       if (wp->next != weak_pointers) {
-           wp->next = weak_pointers;
-       } else {
-           /*SHOW("avoided write to weak pointer");*/
-       }
-       weak_pointers = wp;
-    }
-
-    /* Do not let GC scavenge the value slot of the weak pointer.
-     * (That is why it is a weak pointer.) */
-
-    return WEAK_POINTER_NWORDS;
-}
-
-static lispobj
-trans_weak_pointer(lispobj object)
-{
-    lispobj copy;
-    /* struct weak_pointer *wp; */
-
-    gc_assert(Pointerp(object));
-
-#if defined(DEBUG_WEAK)
-    FSHOW((stderr, "Transporting weak pointer from 0x%08x\n", object));
-#endif
-
-    /* Need to remember where all the weak pointers are that have */
-    /* been transported so they can be fixed up in a post-GC pass. */
-
-    copy = copy_object(object, WEAK_POINTER_NWORDS);
-    /*  wp = (struct weak_pointer *) PTR(copy);*/
-       
-
-    /* Push the weak pointer onto the list of weak pointers. */
-    /*  wp->next = weak_pointers;
-     * weak_pointers = wp;*/
-
-    return copy;
-}
-
-static int
-size_weak_pointer(lispobj *where)
-{
-    return WEAK_POINTER_NWORDS;
-}
-
-void scan_weak_pointers(void)
-{
-    struct weak_pointer *wp;
-    for (wp = weak_pointers; wp != NULL; wp = wp->next) {
-       lispobj value = wp->value;
-       lispobj *first_pointer;
-
-       first_pointer = (lispobj *)PTR(value);
-
-       /*
-       FSHOW((stderr, "/weak pointer at 0x%08x\n", (unsigned long) wp));
-       FSHOW((stderr, "/value: 0x%08x\n", (unsigned long) value));
-       */
-
-       if (Pointerp(value) && from_space_p(value)) {
-           /* Now, we need to check whether the object has been forwarded. If
-            * it has been, the weak pointer is still good and needs to be
-            * updated. Otherwise, the weak pointer needs to be nil'ed
-            * out. */
-           if (first_pointer[0] == 0x01) {
-               wp->value = first_pointer[1];
-           } else {
-               /* Break it. */
-               SHOW("broken");
-               wp->value = NIL;
-               wp->broken = T;
-           }
-       }
-    }
-}
-\f
-/*
- * initialization
- */
-
-static int
-scav_lose(lispobj *where, lispobj object)
-{
-    lose("no scavenge function for object 0x%08x", (unsigned long) object);
-    return 0; /* bogus return value to satisfy static type checking */
-}
-
-static lispobj
-trans_lose(lispobj object)
-{
-    lose("no transport function for object 0x%08x", (unsigned long) object);
-    return NIL; /* bogus return value to satisfy static type checking */
-}
-
-static int
-size_lose(lispobj *where)
-{
-    lose("no size function for object at 0x%08x", (unsigned long) where);
-    return 1; /* bogus return value to satisfy static type checking */
-}
-
-static void
-gc_init_tables(void)
-{
-    int i;
-
-    /* Set default value in all slots of scavenge table. */
-    for (i = 0; i < 256; i++) { /* FIXME: bare constant length, ick! */
-       scavtab[i] = scav_lose;
-    }
-
-    /* For each type which can be selected by the low 3 bits of the tag
-     * alone, set multiple entries in our 8-bit scavenge table (one for each
-     * possible value of the high 5 bits). */
-    for (i = 0; i < 32; i++) { /* FIXME: bare constant length, ick! */
-       scavtab[type_EvenFixnum|(i<<3)] = scav_immediate;
-       scavtab[type_FunctionPointer|(i<<3)] = scav_function_pointer;
-       /* OtherImmediate0 */
-       scavtab[type_ListPointer|(i<<3)] = scav_list_pointer;
-       scavtab[type_OddFixnum|(i<<3)] = scav_immediate;
-       scavtab[type_InstancePointer|(i<<3)] = scav_instance_pointer;
-       /* OtherImmediate1 */
-       scavtab[type_OtherPointer|(i<<3)] = scav_other_pointer;
-    }
-
-    /* Other-pointer types (those selected by all eight bits of the tag) get
-     * one entry each in the scavenge table. */
-    scavtab[type_Bignum] = scav_unboxed;
-    scavtab[type_Ratio] = scav_boxed;
-    scavtab[type_SingleFloat] = scav_unboxed;
-    scavtab[type_DoubleFloat] = scav_unboxed;
-#ifdef type_LongFloat
-    scavtab[type_LongFloat] = scav_unboxed;
-#endif
-    scavtab[type_Complex] = scav_boxed;
-#ifdef type_ComplexSingleFloat
-    scavtab[type_ComplexSingleFloat] = scav_unboxed;
-#endif
-#ifdef type_ComplexDoubleFloat
-    scavtab[type_ComplexDoubleFloat] = scav_unboxed;
-#endif
-#ifdef type_ComplexLongFloat
-    scavtab[type_ComplexLongFloat] = scav_unboxed;
-#endif
-    scavtab[type_SimpleArray] = scav_boxed;
-    scavtab[type_SimpleString] = scav_string;
-    scavtab[type_SimpleBitVector] = scav_vector_bit;
-    scavtab[type_SimpleVector] = scav_vector;
-    scavtab[type_SimpleArrayUnsignedByte2] = scav_vector_unsigned_byte_2;
-    scavtab[type_SimpleArrayUnsignedByte4] = scav_vector_unsigned_byte_4;
-    scavtab[type_SimpleArrayUnsignedByte8] = scav_vector_unsigned_byte_8;
-    scavtab[type_SimpleArrayUnsignedByte16] = scav_vector_unsigned_byte_16;
-    scavtab[type_SimpleArrayUnsignedByte32] = scav_vector_unsigned_byte_32;
-#ifdef type_SimpleArraySignedByte8
-    scavtab[type_SimpleArraySignedByte8] = scav_vector_unsigned_byte_8;
-#endif
-#ifdef type_SimpleArraySignedByte16
-    scavtab[type_SimpleArraySignedByte16] = scav_vector_unsigned_byte_16;
-#endif
-#ifdef type_SimpleArraySignedByte30
-    scavtab[type_SimpleArraySignedByte30] = scav_vector_unsigned_byte_32;
-#endif
-#ifdef type_SimpleArraySignedByte32
-    scavtab[type_SimpleArraySignedByte32] = scav_vector_unsigned_byte_32;
-#endif
-    scavtab[type_SimpleArraySingleFloat] = scav_vector_single_float;
-    scavtab[type_SimpleArrayDoubleFloat] = scav_vector_double_float;
-#ifdef type_SimpleArrayLongFloat
-    scavtab[type_SimpleArrayLongFloat] = scav_vector_long_float;
-#endif
-#ifdef type_SimpleArrayComplexSingleFloat
-    scavtab[type_SimpleArrayComplexSingleFloat] = scav_vector_complex_single_float;
-#endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-    scavtab[type_SimpleArrayComplexDoubleFloat] = scav_vector_complex_double_float;
-#endif
-#ifdef type_SimpleArrayComplexLongFloat
-    scavtab[type_SimpleArrayComplexLongFloat] = scav_vector_complex_long_float;
-#endif
-    scavtab[type_ComplexString] = scav_boxed;
-    scavtab[type_ComplexBitVector] = scav_boxed;
-    scavtab[type_ComplexVector] = scav_boxed;
-    scavtab[type_ComplexArray] = scav_boxed;
-    scavtab[type_CodeHeader] = scav_code_header;
-    /*scavtab[type_FunctionHeader] = scav_function_header;*/
-    /*scavtab[type_ClosureFunctionHeader] = scav_function_header;*/
-    /*scavtab[type_ReturnPcHeader] = scav_return_pc_header;*/
-#ifdef __i386__
-    scavtab[type_ClosureHeader] = scav_closure_header;
-    scavtab[type_FuncallableInstanceHeader] = scav_closure_header;
-    scavtab[type_ByteCodeFunction] = scav_closure_header;
-    scavtab[type_ByteCodeClosure] = scav_closure_header;
-#else
-    scavtab[type_ClosureHeader] = scav_boxed;
-    scavtab[type_FuncallableInstanceHeader] = scav_boxed;
-    scavtab[type_ByteCodeFunction] = scav_boxed;
-    scavtab[type_ByteCodeClosure] = scav_boxed;
-#endif
-    scavtab[type_ValueCellHeader] = scav_boxed;
-    scavtab[type_SymbolHeader] = scav_boxed;
-    scavtab[type_BaseChar] = scav_immediate;
-    scavtab[type_Sap] = scav_unboxed;
-    scavtab[type_UnboundMarker] = scav_immediate;
-    scavtab[type_WeakPointer] = scav_weak_pointer;
-    scavtab[type_InstanceHeader] = scav_boxed;
-    scavtab[type_Fdefn] = scav_fdefn;
-
-    /* transport other table, initialized same way as scavtab */
-    for (i = 0; i < 256; i++)
-       transother[i] = trans_lose;
-    transother[type_Bignum] = trans_unboxed;
-    transother[type_Ratio] = trans_boxed;
-    transother[type_SingleFloat] = trans_unboxed;
-    transother[type_DoubleFloat] = trans_unboxed;
-#ifdef type_LongFloat
-    transother[type_LongFloat] = trans_unboxed;
-#endif
-    transother[type_Complex] = trans_boxed;
-#ifdef type_ComplexSingleFloat
-    transother[type_ComplexSingleFloat] = trans_unboxed;
-#endif
-#ifdef type_ComplexDoubleFloat
-    transother[type_ComplexDoubleFloat] = trans_unboxed;
-#endif
-#ifdef type_ComplexLongFloat
-    transother[type_ComplexLongFloat] = trans_unboxed;
-#endif
-    transother[type_SimpleArray] = trans_boxed_large;
-    transother[type_SimpleString] = trans_string;
-    transother[type_SimpleBitVector] = trans_vector_bit;
-    transother[type_SimpleVector] = trans_vector;
-    transother[type_SimpleArrayUnsignedByte2] = trans_vector_unsigned_byte_2;
-    transother[type_SimpleArrayUnsignedByte4] = trans_vector_unsigned_byte_4;
-    transother[type_SimpleArrayUnsignedByte8] = trans_vector_unsigned_byte_8;
-    transother[type_SimpleArrayUnsignedByte16] = trans_vector_unsigned_byte_16;
-    transother[type_SimpleArrayUnsignedByte32] = trans_vector_unsigned_byte_32;
-#ifdef type_SimpleArraySignedByte8
-    transother[type_SimpleArraySignedByte8] = trans_vector_unsigned_byte_8;
-#endif
-#ifdef type_SimpleArraySignedByte16
-    transother[type_SimpleArraySignedByte16] = trans_vector_unsigned_byte_16;
-#endif
-#ifdef type_SimpleArraySignedByte30
-    transother[type_SimpleArraySignedByte30] = trans_vector_unsigned_byte_32;
-#endif
-#ifdef type_SimpleArraySignedByte32
-    transother[type_SimpleArraySignedByte32] = trans_vector_unsigned_byte_32;
-#endif
-    transother[type_SimpleArraySingleFloat] = trans_vector_single_float;
-    transother[type_SimpleArrayDoubleFloat] = trans_vector_double_float;
-#ifdef type_SimpleArrayLongFloat
-    transother[type_SimpleArrayLongFloat] = trans_vector_long_float;
-#endif
-#ifdef type_SimpleArrayComplexSingleFloat
-    transother[type_SimpleArrayComplexSingleFloat] = trans_vector_complex_single_float;
-#endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-    transother[type_SimpleArrayComplexDoubleFloat] = trans_vector_complex_double_float;
-#endif
-#ifdef type_SimpleArrayComplexLongFloat
-    transother[type_SimpleArrayComplexLongFloat] = trans_vector_complex_long_float;
-#endif
-    transother[type_ComplexString] = trans_boxed;
-    transother[type_ComplexBitVector] = trans_boxed;
-    transother[type_ComplexVector] = trans_boxed;
-    transother[type_ComplexArray] = trans_boxed;
-    transother[type_CodeHeader] = trans_code_header;
-    transother[type_FunctionHeader] = trans_function_header;
-    transother[type_ClosureFunctionHeader] = trans_function_header;
-    transother[type_ReturnPcHeader] = trans_return_pc_header;
-    transother[type_ClosureHeader] = trans_boxed;
-    transother[type_FuncallableInstanceHeader] = trans_boxed;
-    transother[type_ByteCodeFunction] = trans_boxed;
-    transother[type_ByteCodeClosure] = trans_boxed;
-    transother[type_ValueCellHeader] = trans_boxed;
-    transother[type_SymbolHeader] = trans_boxed;
-    transother[type_BaseChar] = trans_immediate;
-    transother[type_Sap] = trans_unboxed;
-    transother[type_UnboundMarker] = trans_immediate;
-    transother[type_WeakPointer] = trans_weak_pointer;
-    transother[type_InstanceHeader] = trans_boxed;
-    transother[type_Fdefn] = trans_boxed;
-
-    /* size table, initialized the same way as scavtab */
-    for (i = 0; i < 256; i++)
-       sizetab[i] = size_lose;
-    for (i = 0; i < 32; i++) {
-       sizetab[type_EvenFixnum|(i<<3)] = size_immediate;
-       sizetab[type_FunctionPointer|(i<<3)] = size_pointer;
-       /* OtherImmediate0 */
-       sizetab[type_ListPointer|(i<<3)] = size_pointer;
-       sizetab[type_OddFixnum|(i<<3)] = size_immediate;
-       sizetab[type_InstancePointer|(i<<3)] = size_pointer;
-       /* OtherImmediate1 */
-       sizetab[type_OtherPointer|(i<<3)] = size_pointer;
+    {
+        lispobj hash_vector_obj = hash_table->hash_vector;
+
+        if (is_lisp_pointer(hash_vector_obj) &&
+            (widetag_of(*(lispobj *)native_pointer(hash_vector_obj)) ==
+             SIMPLE_ARRAY_WORD_WIDETAG)){
+            hash_vector =
+                ((unsigned long *)native_pointer(hash_vector_obj)) + 2;
+            /*FSHOW((stderr, "/hash_vector = %x\n", hash_vector));*/
+            gc_assert(fixnum_value(((lispobj *)native_pointer(hash_vector_obj))[1])
+                      == next_vector_length);
+        } else {
+            hash_vector = NULL;
+            /*FSHOW((stderr, "/no hash_vector: %x\n", hash_vector_obj));*/
+        }
     }
-    sizetab[type_Bignum] = size_unboxed;
-    sizetab[type_Ratio] = size_boxed;
-    sizetab[type_SingleFloat] = size_unboxed;
-    sizetab[type_DoubleFloat] = size_unboxed;
-#ifdef type_LongFloat
-    sizetab[type_LongFloat] = size_unboxed;
-#endif
-    sizetab[type_Complex] = size_boxed;
-#ifdef type_ComplexSingleFloat
-    sizetab[type_ComplexSingleFloat] = size_unboxed;
-#endif
-#ifdef type_ComplexDoubleFloat
-    sizetab[type_ComplexDoubleFloat] = size_unboxed;
-#endif
-#ifdef type_ComplexLongFloat
-    sizetab[type_ComplexLongFloat] = size_unboxed;
-#endif
-    sizetab[type_SimpleArray] = size_boxed;
-    sizetab[type_SimpleString] = size_string;
-    sizetab[type_SimpleBitVector] = size_vector_bit;
-    sizetab[type_SimpleVector] = size_vector;
-    sizetab[type_SimpleArrayUnsignedByte2] = size_vector_unsigned_byte_2;
-    sizetab[type_SimpleArrayUnsignedByte4] = size_vector_unsigned_byte_4;
-    sizetab[type_SimpleArrayUnsignedByte8] = size_vector_unsigned_byte_8;
-    sizetab[type_SimpleArrayUnsignedByte16] = size_vector_unsigned_byte_16;
-    sizetab[type_SimpleArrayUnsignedByte32] = size_vector_unsigned_byte_32;
-#ifdef type_SimpleArraySignedByte8
-    sizetab[type_SimpleArraySignedByte8] = size_vector_unsigned_byte_8;
-#endif
-#ifdef type_SimpleArraySignedByte16
-    sizetab[type_SimpleArraySignedByte16] = size_vector_unsigned_byte_16;
-#endif
-#ifdef type_SimpleArraySignedByte30
-    sizetab[type_SimpleArraySignedByte30] = size_vector_unsigned_byte_32;
-#endif
-#ifdef type_SimpleArraySignedByte32
-    sizetab[type_SimpleArraySignedByte32] = size_vector_unsigned_byte_32;
-#endif
-    sizetab[type_SimpleArraySingleFloat] = size_vector_single_float;
-    sizetab[type_SimpleArrayDoubleFloat] = size_vector_double_float;
-#ifdef type_SimpleArrayLongFloat
-    sizetab[type_SimpleArrayLongFloat] = size_vector_long_float;
-#endif
-#ifdef type_SimpleArrayComplexSingleFloat
-    sizetab[type_SimpleArrayComplexSingleFloat] = size_vector_complex_single_float;
-#endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-    sizetab[type_SimpleArrayComplexDoubleFloat] = size_vector_complex_double_float;
-#endif
-#ifdef type_SimpleArrayComplexLongFloat
-    sizetab[type_SimpleArrayComplexLongFloat] = size_vector_complex_long_float;
+
+    /* These lengths could be different as the index_vector can be a
+     * different length from the others, a larger index_vector could help
+     * reduce collisions. */
+    gc_assert(next_vector_length*2 == kv_length);
+
+    /* now all set up.. */
+
+    /* Work through the KV vector. */
+    {
+        long i;
+        for (i = 1; i < next_vector_length; i++) {
+            lispobj old_key = kv_vector[2*i];
+
+#if N_WORD_BITS == 32
+            unsigned long old_index = (old_key & 0x1fffffff)%length;
+#elif N_WORD_BITS == 64
+            unsigned long old_index = (old_key & 0x1fffffffffffffff)%length;
 #endif
-    sizetab[type_ComplexString] = size_boxed;
-    sizetab[type_ComplexBitVector] = size_boxed;
-    sizetab[type_ComplexVector] = size_boxed;
-    sizetab[type_ComplexArray] = size_boxed;
-    sizetab[type_CodeHeader] = size_code_header;
-#if 0
-    /* We shouldn't see these, so just lose if it happens. */
-    sizetab[type_FunctionHeader] = size_function_header;
-    sizetab[type_ClosureFunctionHeader] = size_function_header;
-    sizetab[type_ReturnPcHeader] = size_return_pc_header;
+
+            /* Scavenge the key and value. */
+            scavenge(&kv_vector[2*i],2);
+
+            /* Check whether the key has moved and is EQ based. */
+            {
+                lispobj new_key = kv_vector[2*i];
+#if N_WORD_BITS == 32
+                unsigned long new_index = (new_key & 0x1fffffff)%length;
+#elif N_WORD_BITS == 64
+                unsigned long new_index = (new_key & 0x1fffffffffffffff)%length;
 #endif
-    sizetab[type_ClosureHeader] = size_boxed;
-    sizetab[type_FuncallableInstanceHeader] = size_boxed;
-    sizetab[type_ValueCellHeader] = size_boxed;
-    sizetab[type_SymbolHeader] = size_boxed;
-    sizetab[type_BaseChar] = size_immediate;
-    sizetab[type_Sap] = size_unboxed;
-    sizetab[type_UnboundMarker] = size_immediate;
-    sizetab[type_WeakPointer] = size_weak_pointer;
-    sizetab[type_InstanceHeader] = size_boxed;
-    sizetab[type_Fdefn] = size_boxed;
+
+                if ((old_index != new_index) &&
+                    ((!hash_vector) ||
+                     (hash_vector[i] == MAGIC_HASH_VECTOR_VALUE)) &&
+                    ((new_key != empty_symbol) ||
+                     (kv_vector[2*i] != empty_symbol))) {
+
+                     /*FSHOW((stderr,
+                            "* EQ key %d moved from %x to %x; index %d to %d\n",
+                            i, old_key, new_key, old_index, new_index));*/
+
+                    if (index_vector[old_index] != 0) {
+                         /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
+
+                        /* Unlink the key from the old_index chain. */
+                        if (index_vector[old_index] == i) {
+                            /*FSHOW((stderr, "/P2a %d\n", next_vector[i]));*/
+                            index_vector[old_index] = next_vector[i];
+                            /* Link it into the needing rehash chain. */
+                            next_vector[i] = fixnum_value(hash_table->needing_rehash);
+                            hash_table->needing_rehash = make_fixnum(i);
+                            /*SHOW("P2");*/
+                        } else {
+                            unsigned prior = index_vector[old_index];
+                            unsigned next = next_vector[prior];
+
+                            /*FSHOW((stderr, "/P3a %d %d\n", prior, next));*/
+
+                            while (next != 0) {
+                                 /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
+                                if (next == i) {
+                                    /* Unlink it. */
+                                    next_vector[prior] = next_vector[next];
+                                    /* Link it into the needing rehash
+                                     * chain. */
+                                    next_vector[next] =
+                                        fixnum_value(hash_table->needing_rehash);
+                                    hash_table->needing_rehash = make_fixnum(next);
+                                    /*SHOW("/P3");*/
+                                    break;
+                                }
+                                prior = next;
+                                next = next_vector[next];
+                            }
+                        }
+                    }
+                }
+            }
+        }
+    }
+    return (CEILING(kv_length + 2, 2));
 }
+
+
 \f
-/* Scan an area looking for an object which encloses the given pointer.
- * Return the object start on success or NULL on failure. */
-static lispobj *
-search_space(lispobj *start, size_t words, lispobj *pointer)
+/*
+ * weak pointers
+ */
+
+/* XX This is a hack adapted from cgc.c. These don't work too
+ * efficiently with the gencgc as a list of the weak pointers is
+ * maintained within the objects which causes writes to the pages. A
+ * limited attempt is made to avoid unnecessary writes, but this needs
+ * a re-think. */
+#define WEAK_POINTER_NWORDS \
+    CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
+
+static long
+scav_weak_pointer(lispobj *where, lispobj object)
 {
-    while (words > 0) {
-       size_t count = 1;
-       lispobj thing = *start;
-
-       /* If thing is an immediate then this is a cons */
-       if (Pointerp(thing)
-           || ((thing & 3) == 0) /* fixnum */
-           || (TypeOf(thing) == type_BaseChar)
-           || (TypeOf(thing) == type_UnboundMarker))
-           count = 2;
-       else
-           count = (sizetab[TypeOf(thing)])(start);
-
-       /* Check whether the pointer is within this object? */
-       if ((pointer >= start) && (pointer < (start+count))) {
-           /* found it! */
-           /*FSHOW((stderr,"/found %x in %x %x\n", pointer, start, thing));*/
-           return(start);
-       }
-
-       /* Round up the count */
-       count = CEILING(count,2);
-
-       start += count;
-       words -= count;
+    struct weak_pointer *wp = weak_pointers;
+    /* Push the weak pointer onto the list of weak pointers.
+     * Do I have to watch for duplicates? Originally this was
+     * part of trans_weak_pointer but that didn't work in the
+     * case where the WP was in a promoted region.
+     */
+
+    /* Check whether it's already in the list. */
+    while (wp != NULL) {
+        if (wp == (struct weak_pointer*)where) {
+            break;
+        }
+        wp = wp->next;
     }
-    return (NULL);
+    if (wp == NULL) {
+        /* Add it to the start of the list. */
+        wp = (struct weak_pointer*)where;
+        if (wp->next != weak_pointers) {
+            wp->next = weak_pointers;
+        } else {
+            /*SHOW("avoided write to weak pointer");*/
+        }
+        weak_pointers = wp;
+    }
+
+    /* Do not let GC scavenge the value slot of the weak pointer.
+     * (That is why it is a weak pointer.) */
+
+    return WEAK_POINTER_NWORDS;
 }
 
-static lispobj*
-search_read_only_space(lispobj *pointer)
+\f
+lispobj *
+search_read_only_space(void *pointer)
 {
-    lispobj* start = (lispobj*)READ_ONLY_SPACE_START;
-    lispobj* end = (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER);
-    if ((pointer < start) || (pointer >= end))
-       return NULL;
-    return (search_space(start, (pointer+2)-start, pointer));
+    lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
+    lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
+    if ((pointer < (void *)start) || (pointer >= (void *)end))
+        return NULL;
+    return (gc_search_space(start,
+                            (((lispobj *)pointer)+2)-start,
+                            (lispobj *) pointer));
 }
 
-static lispobj *
-search_static_space(lispobj *pointer)
+lispobj *
+search_static_space(void *pointer)
 {
-    lispobj* start = (lispobj*)STATIC_SPACE_START;
-    lispobj* end = (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER);
-    if ((pointer < start) || (pointer >= end))
-       return NULL;
-    return (search_space(start, (pointer+2)-start, pointer));
+    lispobj *start = (lispobj *)STATIC_SPACE_START;
+    lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
+    if ((pointer < (void *)start) || (pointer >= (void *)end))
+        return NULL;
+    return (gc_search_space(start,
+                            (((lispobj *)pointer)+2)-start,
+                            (lispobj *) pointer));
 }
 
 /* a faster version for searching the dynamic space. This will work even
  * if the object is in a current allocation region. */
 lispobj *
-search_dynamic_space(lispobj *pointer)
+search_dynamic_space(void *pointer)
 {
-    int  page_index = find_page_index(pointer);
+    long page_index = find_page_index(pointer);
     lispobj *start;
 
-    /* Address may be invalid - do some checks. */
-    if ((page_index == -1) || (page_table[page_index].allocated == FREE_PAGE))
-       return NULL;
+    /* The address may be invalid, so do some checks. */
+    if ((page_index == -1) ||
+        (page_table[page_index].allocated == FREE_PAGE_FLAG))
+        return NULL;
     start = (lispobj *)((void *)page_address(page_index)
-                       + page_table[page_index].first_object_offset);
-    return (search_space(start, (pointer+2)-start, pointer));
+                        + page_table[page_index].first_object_offset);
+    return (gc_search_space(start,
+                            (((lispobj *)pointer)+2)-start,
+                            (lispobj *)pointer));
 }
 
-/* FIXME: There is a strong family resemblance between this function
- * and the function of the same name in purify.c. Would it be possible
- * to implement them as exactly the same function? */
+/* Is there any possibility that pointer is a valid Lisp object
+ * reference, and/or something else (e.g. subroutine call return
+ * address) which should prevent us from moving the referred-to thing?
+ * This is called from preserve_pointers() */
 static int
-valid_dynamic_space_pointer(lispobj *pointer)
+possibly_valid_dynamic_space_pointer(lispobj *pointer)
 {
     lispobj *start_addr;
 
-    /* Find the object start address */
+    /* Find the object start address. */
     if ((start_addr = search_dynamic_space(pointer)) == NULL) {
-       return 0;
+        return 0;
     }
 
     /* We need to allow raw pointers into Code objects for return
-     * addresses. This will also pickup pointers to functions in code
+     * addresses. This will also pick up pointers to functions in code
      * objects. */
-    if (TypeOf(*start_addr) == type_CodeHeader) {
-       /* X Could do some further checks here. */
-       return 1;
+    if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
+        /* XXX could do some further checks here */
+        return 1;
     }
 
     /* If it's not a return address then it needs to be a valid Lisp
      * pointer. */
-    if (!Pointerp((lispobj)pointer)) {
-       return 0;
+    if (!is_lisp_pointer((lispobj)pointer)) {
+        return 0;
     }
 
     /* Check that the object pointed to is consistent with the pointer
-     * low tag. */
-    switch (LowtagOf((lispobj)pointer)) {
-    case type_FunctionPointer:
-       /* Start_addr should be the enclosing code object, or a closure
-          header. */
-       switch (TypeOf(*start_addr)) {
-       case type_CodeHeader:
-           /* This case is probably caught above. */
-           break;
-       case type_ClosureHeader:
-       case type_FuncallableInstanceHeader:
-       case type_ByteCodeFunction:
-       case type_ByteCodeClosure:
-           if ((unsigned)pointer !=
-               ((unsigned)start_addr+type_FunctionPointer)) {
-               if (gencgc_verbose)
-                   FSHOW((stderr,
-                          "/Wf2: %x %x %x\n",
-                          pointer, start_addr, *start_addr));
-               return 0;
-           }
-           break;
-       default:
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "/Wf3: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-       }
-       break;
-    case type_ListPointer:
-       if ((unsigned)pointer !=
-           ((unsigned)start_addr+type_ListPointer)) {
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "/Wl1: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-       }
-       /* Is it plausible cons? */
-       if ((Pointerp(start_addr[0])
-           || ((start_addr[0] & 3) == 0) /* fixnum */
-           || (TypeOf(start_addr[0]) == type_BaseChar)
-           || (TypeOf(start_addr[0]) == type_UnboundMarker))
-          && (Pointerp(start_addr[1])
-              || ((start_addr[1] & 3) == 0) /* fixnum */
-              || (TypeOf(start_addr[1]) == type_BaseChar)
-              || (TypeOf(start_addr[1]) == type_UnboundMarker)))
-           break;
-       else {
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "/Wl2: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-       }
-    case type_InstancePointer:
-       if ((unsigned)pointer !=
-           ((unsigned)start_addr+type_InstancePointer)) {
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "/Wi1: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-       }
-       if (TypeOf(start_addr[0]) != type_InstanceHeader) {
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "/Wi2: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-       }
-       break;
-    case type_OtherPointer:
-       if ((unsigned)pointer !=
-           ((int)start_addr+type_OtherPointer)) {
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "/Wo1: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-       }
-       /* Is it plausible?  Not a cons. X should check the headers. */
-       if (Pointerp(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "/Wo2: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-       }
-       switch (TypeOf(start_addr[0])) {
-       case type_UnboundMarker:
-       case type_BaseChar:
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "*Wo3: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-
-           /* only pointed to by function pointers? */
-       case type_ClosureHeader:
-       case type_FuncallableInstanceHeader:
-       case type_ByteCodeFunction:
-       case type_ByteCodeClosure:
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "*Wo4: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-
-       case type_InstanceHeader:
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "*Wo5: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-
-           /* the valid other immediate pointer objects */
-       case type_SimpleVector:
-       case type_Ratio:
-       case type_Complex:
-#ifdef type_ComplexSingleFloat
-       case type_ComplexSingleFloat:
+     * low tag.
+     */
+    switch (lowtag_of((lispobj)pointer)) {
+    case FUN_POINTER_LOWTAG:
+        /* Start_addr should be the enclosing code object, or a closure
+         * header. */
+        switch (widetag_of(*start_addr)) {
+        case CODE_HEADER_WIDETAG:
+            /* This case is probably caught above. */
+            break;
+        case CLOSURE_HEADER_WIDETAG:
+        case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
+            if ((unsigned)pointer !=
+                ((unsigned)start_addr+FUN_POINTER_LOWTAG)) {
+                if (gencgc_verbose)
+                    FSHOW((stderr,
+                           "/Wf2: %x %x %x\n",
+                           pointer, start_addr, *start_addr));
+                return 0;
+            }
+            break;
+        default:
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "/Wf3: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+        }
+        break;
+    case LIST_POINTER_LOWTAG:
+        if ((unsigned)pointer !=
+            ((unsigned)start_addr+LIST_POINTER_LOWTAG)) {
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "/Wl1: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+        }
+        /* Is it plausible cons? */
+        if ((is_lisp_pointer(start_addr[0])
+            || (fixnump(start_addr[0]))
+            || (widetag_of(start_addr[0]) == CHARACTER_WIDETAG)
+#if N_WORD_BITS == 64
+            || (widetag_of(start_addr[0]) == SINGLE_FLOAT_WIDETAG)
+#endif
+            || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
+           && (is_lisp_pointer(start_addr[1])
+               || (fixnump(start_addr[1]))
+               || (widetag_of(start_addr[1]) == CHARACTER_WIDETAG)
+#if N_WORD_BITS == 64
+               || (widetag_of(start_addr[1]) == SINGLE_FLOAT_WIDETAG)
+#endif
+               || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
+            break;
+        else {
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "/Wl2: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+        }
+    case INSTANCE_POINTER_LOWTAG:
+        if ((unsigned)pointer !=
+            ((unsigned)start_addr+INSTANCE_POINTER_LOWTAG)) {
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "/Wi1: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+        }
+        if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "/Wi2: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+        }
+        break;
+    case OTHER_POINTER_LOWTAG:
+        if ((unsigned)pointer !=
+            ((int)start_addr+OTHER_POINTER_LOWTAG)) {
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "/Wo1: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+        }
+        /* Is it plausible?  Not a cons. XXX should check the headers. */
+        if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "/Wo2: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+        }
+        switch (widetag_of(start_addr[0])) {
+        case UNBOUND_MARKER_WIDETAG:
+        case NO_TLS_VALUE_MARKER_WIDETAG:
+        case CHARACTER_WIDETAG:
+#if N_WORD_BITS == 64
+        case SINGLE_FLOAT_WIDETAG:
+#endif
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "*Wo3: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+
+            /* only pointed to by function pointers? */
+        case CLOSURE_HEADER_WIDETAG:
+        case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "*Wo4: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+
+        case INSTANCE_HEADER_WIDETAG:
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "*Wo5: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+
+            /* the valid other immediate pointer objects */
+        case SIMPLE_VECTOR_WIDETAG:
+        case RATIO_WIDETAG:
+        case COMPLEX_WIDETAG:
+#ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
+        case COMPLEX_SINGLE_FLOAT_WIDETAG:
+#endif
+#ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
+        case COMPLEX_DOUBLE_FLOAT_WIDETAG:
+#endif
+#ifdef COMPLEX_LONG_FLOAT_WIDETAG
+        case COMPLEX_LONG_FLOAT_WIDETAG:
 #endif
-#ifdef type_ComplexDoubleFloat
-       case type_ComplexDoubleFloat:
+        case SIMPLE_ARRAY_WIDETAG:
+        case COMPLEX_BASE_STRING_WIDETAG:
+#ifdef COMPLEX_CHARACTER_STRING_WIDETAG
+        case COMPLEX_CHARACTER_STRING_WIDETAG:
 #endif
-#ifdef type_ComplexLongFloat
-       case type_ComplexLongFloat:
+        case COMPLEX_VECTOR_NIL_WIDETAG:
+        case COMPLEX_BIT_VECTOR_WIDETAG:
+        case COMPLEX_VECTOR_WIDETAG:
+        case COMPLEX_ARRAY_WIDETAG:
+        case VALUE_CELL_HEADER_WIDETAG:
+        case SYMBOL_HEADER_WIDETAG:
+        case FDEFN_WIDETAG:
+        case CODE_HEADER_WIDETAG:
+        case BIGNUM_WIDETAG:
+#if N_WORD_BITS != 64
+        case SINGLE_FLOAT_WIDETAG:
 #endif
-       case type_SimpleArray:
-       case type_ComplexString:
-       case type_ComplexBitVector:
-       case type_ComplexVector:
-       case type_ComplexArray:
-       case type_ValueCellHeader:
-       case type_SymbolHeader:
-       case type_Fdefn:
-       case type_CodeHeader:
-       case type_Bignum:
-       case type_SingleFloat:
-       case type_DoubleFloat:
-#ifdef type_LongFloat
-       case type_LongFloat:
+        case DOUBLE_FLOAT_WIDETAG:
+#ifdef LONG_FLOAT_WIDETAG
+        case LONG_FLOAT_WIDETAG:
 #endif
-       case type_SimpleString:
-       case type_SimpleBitVector:
-       case type_SimpleArrayUnsignedByte2:
-       case type_SimpleArrayUnsignedByte4:
-       case type_SimpleArrayUnsignedByte8:
-       case type_SimpleArrayUnsignedByte16:
-       case type_SimpleArrayUnsignedByte32:
-#ifdef type_SimpleArraySignedByte8
-       case type_SimpleArraySignedByte8:
+        case SIMPLE_BASE_STRING_WIDETAG:
+#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
+        case SIMPLE_CHARACTER_STRING_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte16
-       case type_SimpleArraySignedByte16:
+        case SIMPLE_BIT_VECTOR_WIDETAG:
+        case SIMPLE_ARRAY_NIL_WIDETAG:
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte30
-       case type_SimpleArraySignedByte30:
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte32
-       case type_SimpleArraySignedByte32:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
 #endif
-       case type_SimpleArraySingleFloat:
-       case type_SimpleArrayDoubleFloat:
-#ifdef type_SimpleArrayLongFloat
-       case type_SimpleArrayLongFloat:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
+        case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexSingleFloat
-       case type_SimpleArrayComplexSingleFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
+        case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-       case type_SimpleArrayComplexDoubleFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
+        case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexLongFloat
-       case type_SimpleArrayComplexLongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
+        case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
 #endif
-       case type_Sap:
-       case type_WeakPointer:
-           break;
-
-       default:
-           if (gencgc_verbose)
-               FSHOW((stderr,
-                      "/Wo6: %x %x %x\n",
-                      pointer, start_addr, *start_addr));
-           return 0;
-       }
-       break;
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
+        case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
+        case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
+        case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
+#endif
+        case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
+        case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
+#ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
+        case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
+        case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
+        case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
+        case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
+#endif
+        case SAP_WIDETAG:
+        case WEAK_POINTER_WIDETAG:
+            break;
+
+        default:
+            if (gencgc_verbose)
+                FSHOW((stderr,
+                       "/Wo6: %x %x %x\n",
+                       pointer, start_addr, *start_addr));
+            return 0;
+        }
+        break;
     default:
-       if (gencgc_verbose)
-           FSHOW((stderr,
-                  "*W?: %x %x %x\n",
-                  pointer, start_addr, *start_addr));
-       return 0;
+        if (gencgc_verbose)
+            FSHOW((stderr,
+                   "*W?: %x %x %x\n",
+                   pointer, start_addr, *start_addr));
+        return 0;
     }
 
     /* looks good */
     return 1;
 }
 
-/* Adjust large bignum and vector objects. This will adjust the allocated
- * region if the size has shrunk, and move unboxed objects into unboxed
- * pages. The pages are not promoted here, and the promoted region is not
- * added to the new_regions; this is really only designed to be called from
- * preserve_pointer. Shouldn't fail if this is missed, just may delay the
- * moving of objects to unboxed pages, and the freeing of pages. */
+/* Adjust large bignum and vector objects. This will adjust the
+ * allocated region if the size has shrunk, and move unboxed objects
+ * into unboxed pages. The pages are not promoted here, and the
+ * promoted region is not added to the new_regions; this is really
+ * only designed to be called from preserve_pointer(). Shouldn't fail
+ * if this is missed, just may delay the moving of objects to unboxed
+ * pages, and the freeing of pages. */
 static void
 maybe_adjust_large_object(lispobj *where)
 {
-    int first_page;
-    int nwords;
+    long first_page;
+    long nwords;
 
-    int remaining_bytes;
-    int next_page;
-    int bytes_freed;
-    int old_bytes_used;
+    long remaining_bytes;
+    long next_page;
+    long bytes_freed;
+    long old_bytes_used;
 
     int boxed;
 
     /* Check whether it's a vector or bignum object. */
-    switch (TypeOf(where[0])) {
-    case type_SimpleVector:
-       boxed = BOXED_PAGE;
-       break;
-    case type_Bignum:
-    case type_SimpleString:
-    case type_SimpleBitVector:
-    case type_SimpleArrayUnsignedByte2:
-    case type_SimpleArrayUnsignedByte4:
-    case type_SimpleArrayUnsignedByte8:
-    case type_SimpleArrayUnsignedByte16:
-    case type_SimpleArrayUnsignedByte32:
-#ifdef type_SimpleArraySignedByte8
-    case type_SimpleArraySignedByte8:
+    switch (widetag_of(where[0])) {
+    case SIMPLE_VECTOR_WIDETAG:
+        boxed = BOXED_PAGE_FLAG;
+        break;
+    case BIGNUM_WIDETAG:
+    case SIMPLE_BASE_STRING_WIDETAG:
+#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
+    case SIMPLE_CHARACTER_STRING_WIDETAG:
+#endif
+    case SIMPLE_BIT_VECTOR_WIDETAG:
+    case SIMPLE_ARRAY_NIL_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
+#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte16
-    case type_SimpleArraySignedByte16:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte30
-    case type_SimpleArraySignedByte30:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte32
-    case type_SimpleArraySignedByte32:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
+    case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
 #endif
-    case type_SimpleArraySingleFloat:
-    case type_SimpleArrayDoubleFloat:
-#ifdef type_SimpleArrayLongFloat
-    case type_SimpleArrayLongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexSingleFloat
-    case type_SimpleArrayComplexSingleFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-    case type_SimpleArrayComplexDoubleFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexLongFloat
-    case type_SimpleArrayComplexLongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
 #endif
-       boxed = UNBOXED_PAGE;
-       break;
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
+    case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
+#endif
+    case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
+    case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
+#ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
+    case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
+    case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
+    case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
+    case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
+#endif
+        boxed = UNBOXED_PAGE_FLAG;
+        break;
     default:
-       return;
+        return;
     }
 
     /* Find its current size. */
-    nwords = (sizetab[TypeOf(where[0])])(where);
+    nwords = (sizetab[widetag_of(where[0])])(where);
 
     first_page = find_page_index((void *)where);
     gc_assert(first_page >= 0);
@@ -4392,23 +2383,23 @@ maybe_adjust_large_object(lispobj *where)
     gc_assert(page_table[first_page].first_object_offset == 0);
 
     next_page = first_page;
-    remaining_bytes = nwords*4;
-    while (remaining_bytes > 4096) {
-       gc_assert(page_table[next_page].gen == from_space);
-       gc_assert((page_table[next_page].allocated == BOXED_PAGE)
-                 || (page_table[next_page].allocated == UNBOXED_PAGE));
-       gc_assert(page_table[next_page].large_object);
-       gc_assert(page_table[next_page].first_object_offset ==
-                 -4096*(next_page-first_page));
-       gc_assert(page_table[next_page].bytes_used == 4096);
-
-       page_table[next_page].allocated = boxed;
-
-       /* Shouldn't be write-protected at this stage. Essential that the
-        * pages aren't. */
-       gc_assert(!page_table[next_page].write_protected);
-       remaining_bytes -= 4096;
-       next_page++;
+    remaining_bytes = nwords*N_WORD_BYTES;
+    while (remaining_bytes > PAGE_BYTES) {
+        gc_assert(page_table[next_page].gen == from_space);
+        gc_assert((page_table[next_page].allocated == BOXED_PAGE_FLAG)
+                  || (page_table[next_page].allocated == UNBOXED_PAGE_FLAG));
+        gc_assert(page_table[next_page].large_object);
+        gc_assert(page_table[next_page].first_object_offset ==
+                  -PAGE_BYTES*(next_page-first_page));
+        gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
+
+        page_table[next_page].allocated = boxed;
+
+        /* Shouldn't be write-protected at this stage. Essential that the
+         * pages aren't. */
+        gc_assert(!page_table[next_page].write_protected);
+        remaining_bytes -= PAGE_BYTES;
+        next_page++;
     }
 
     /* Now only one page remains, but the object may have shrunk so
@@ -4419,7 +2410,7 @@ maybe_adjust_large_object(lispobj *where)
 
     page_table[next_page].allocated = boxed;
     gc_assert(page_table[next_page].allocated ==
-             page_table[first_page].allocated);
+              page_table[first_page].allocated);
 
     /* Adjust the bytes_used. */
     old_bytes_used = page_table[next_page].bytes_used;
@@ -4429,28 +2420,31 @@ maybe_adjust_large_object(lispobj *where)
 
     /* Free any remaining pages; needs care. */
     next_page++;
-    while ((old_bytes_used == 4096) &&
-          (page_table[next_page].gen == from_space) &&
-          ((page_table[next_page].allocated == UNBOXED_PAGE)
-           || (page_table[next_page].allocated == BOXED_PAGE)) &&
-          page_table[next_page].large_object &&
-          (page_table[next_page].first_object_offset ==
-           -(next_page - first_page)*4096)) {
-       /* It checks out OK, free the page. We don't need to both zeroing
-        * pages as this should have been done before shrinking the
-        * object. These pages shouldn't be write protected as they
-        * should be zero filled. */
-       gc_assert(page_table[next_page].write_protected == 0);
-
-       old_bytes_used = page_table[next_page].bytes_used;
-       page_table[next_page].allocated = FREE_PAGE;
-       page_table[next_page].bytes_used = 0;
-       bytes_freed += old_bytes_used;
-       next_page++;
+    while ((old_bytes_used == PAGE_BYTES) &&
+           (page_table[next_page].gen == from_space) &&
+           ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
+            || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
+           page_table[next_page].large_object &&
+           (page_table[next_page].first_object_offset ==
+            -(next_page - first_page)*PAGE_BYTES)) {
+        /* It checks out OK, free the page. We don't need to both zeroing
+         * pages as this should have been done before shrinking the
+         * object. These pages shouldn't be write protected as they
+         * should be zero filled. */
+        gc_assert(page_table[next_page].write_protected == 0);
+
+        old_bytes_used = page_table[next_page].bytes_used;
+        page_table[next_page].allocated = FREE_PAGE_FLAG;
+        page_table[next_page].bytes_used = 0;
+        bytes_freed += old_bytes_used;
+        next_page++;
     }
 
-    if ((bytes_freed > 0) && gencgc_verbose)
-       FSHOW((stderr, "/adjust_large_object freed %d\n", bytes_freed));
+    if ((bytes_freed > 0) && gencgc_verbose) {
+        FSHOW((stderr,
+               "/maybe_adjust_large_object() freed %d\n",
+               bytes_freed));
+    }
 
     generations[from_space].bytes_allocated -= bytes_freed;
     bytes_allocated -= bytes_freed;
@@ -4458,255 +2452,201 @@ maybe_adjust_large_object(lispobj *where)
     return;
 }
 
-/* Take a possible pointer to a list object and mark the page_table
- * so that it will not need changing during a GC.
+/* Take a possible pointer to a Lisp object and mark its page in the
+ * page_table so that it will not be relocated during a GC.
  *
  * This involves locating the page it points to, then backing up to
- * the first page that has its first object start at offset 0, and
- * then marking all pages dont_move from the first until a page that ends
- * by being full, or having free gen.
- *
- * This ensures that objects spanning pages are not broken.
+ * the start of its region, then marking all pages dont_move from there
+ * up to the first page that's not full or has a different generation
  *
  * It is assumed that all the page static flags have been cleared at
  * the start of a GC.
  *
- * It is also assumed that the current gc_alloc region has been flushed and
- * the tables updated. */
+ * It is also assumed that the current gc_alloc() region has been
+ * flushed and the tables updated. */
 static void
 preserve_pointer(void *addr)
 {
-    int addr_page_index = find_page_index(addr);
-    int first_page;
-    int i;
+    long addr_page_index = find_page_index(addr);
+    long first_page;
+    long i;
     unsigned region_allocation;
 
-    /* Address is quite likely to have been invalid - do some checks. */
+    /* quick check 1: Address is quite likely to have been invalid. */
     if ((addr_page_index == -1)
-       || (page_table[addr_page_index].allocated == FREE_PAGE)
-       || (page_table[addr_page_index].bytes_used == 0)
-       || (page_table[addr_page_index].gen != from_space)
-       /* Skip if already marked dont_move */
-       || (page_table[addr_page_index].dont_move != 0))
-       return;
-
+        || (page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
+        || (page_table[addr_page_index].bytes_used == 0)
+        || (page_table[addr_page_index].gen != from_space)
+        /* Skip if already marked dont_move. */
+        || (page_table[addr_page_index].dont_move != 0))
+        return;
+    gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
+    /* (Now that we know that addr_page_index is in range, it's
+     * safe to index into page_table[] with it.) */
     region_allocation = page_table[addr_page_index].allocated;
 
-    /* Check the offset within the page.
+    /* quick check 2: Check the offset within the page.
      *
-     * FIXME: The mask should have a symbolic name, and ideally should
-     * be derived from page size instead of hardwired to 0xfff.
-     * (Also fix other uses of 0xfff, elsewhere.) */
-    if (((unsigned)addr & 0xfff) > page_table[addr_page_index].bytes_used)
-       return;
-
-    if (enable_pointer_filter && !valid_dynamic_space_pointer(addr))
-       return;
-
-    /* Work backwards to find a page with a first_object_offset of 0.
-     * The pages should be contiguous with all bytes used in the same
-     * gen. Assumes the first_object_offset is negative or zero. */
+     */
+    if (((unsigned)addr & (PAGE_BYTES - 1)) > page_table[addr_page_index].bytes_used)
+        return;
+
+    /* Filter out anything which can't be a pointer to a Lisp object
+     * (or, as a special case which also requires dont_move, a return
+     * address referring to something in a CodeObject). This is
+     * expensive but important, since it vastly reduces the
+     * probability that random garbage will be bogusly interpreted as
+     * a pointer which prevents a page from moving. */
+    if (!(possibly_valid_dynamic_space_pointer(addr)))
+        return;
+
+    /* Find the beginning of the region.  Note that there may be
+     * objects in the region preceding the one that we were passed a
+     * pointer to: if this is the case, we will write-protect all the
+     * previous objects' pages too.     */
+
+#if 0
+    /* I think this'd work just as well, but without the assertions.
+     * -dan 2004.01.01 */
+    first_page=
+        find_page_index(page_address(addr_page_index)+
+                        page_table[addr_page_index].first_object_offset);
+#else
     first_page = addr_page_index;
     while (page_table[first_page].first_object_offset != 0) {
-       first_page--;
-       /* Do some checks. */
-       gc_assert(page_table[first_page].bytes_used == 4096);
-       gc_assert(page_table[first_page].gen == from_space);
-       gc_assert(page_table[first_page].allocated == region_allocation);
+        --first_page;
+        /* Do some checks. */
+        gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
+        gc_assert(page_table[first_page].gen == from_space);
+        gc_assert(page_table[first_page].allocated == region_allocation);
     }
+#endif
 
-    /* Adjust any large objects before promotion as they won't be copied
-     * after promotion. */
+    /* Adjust any large objects before promotion as they won't be
+     * copied after promotion. */
     if (page_table[first_page].large_object) {
-       maybe_adjust_large_object(page_address(first_page));
-       /* If a large object has shrunk then addr may now point to a free
-        * area in which case it's ignored here. Note it gets through the
-        * valid pointer test above because the tail looks like conses. */
-       if ((page_table[addr_page_index].allocated == FREE_PAGE)
-           || (page_table[addr_page_index].bytes_used == 0)
-           /* Check the offset within the page. */
-           || (((unsigned)addr & 0xfff)
-               > page_table[addr_page_index].bytes_used)) {
-           FSHOW((stderr,
-                  "weird? ignore ptr 0x%x to freed area of large object\n",
-                  addr));
-           return;
-       }
-       /* It may have moved to unboxed pages. */
-       region_allocation = page_table[first_page].allocated;
+        maybe_adjust_large_object(page_address(first_page));
+        /* If a large object has shrunk then addr may now point to a
+         * free area in which case it's ignored here. Note it gets
+         * through the valid pointer test above because the tail looks
+         * like conses. */
+        if ((page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
+            || (page_table[addr_page_index].bytes_used == 0)
+            /* Check the offset within the page. */
+            || (((unsigned)addr & (PAGE_BYTES - 1))
+                > page_table[addr_page_index].bytes_used)) {
+            FSHOW((stderr,
+                   "weird? ignore ptr 0x%x to freed area of large object\n",
+                   addr));
+            return;
+        }
+        /* It may have moved to unboxed pages. */
+        region_allocation = page_table[first_page].allocated;
     }
 
     /* Now work forward until the end of this contiguous area is found,
      * marking all pages as dont_move. */
     for (i = first_page; ;i++) {
-       gc_assert(page_table[i].allocated == region_allocation);
-
-       /* Mark the page static. */
-       page_table[i].dont_move = 1;
-
-       /* Move the page to the new_space. XX I'd rather not do this but
-        * the GC logic is not quite able to copy with the static pages
-        * remaining in the from space. This also requires the generation
-        * bytes_allocated counters be updated. */
-       page_table[i].gen = new_space;
-       generations[new_space].bytes_allocated += page_table[i].bytes_used;
-       generations[from_space].bytes_allocated -= page_table[i].bytes_used;
-
-       /* It is essential that the pages are not write protected as they
-        * may have pointers into the old-space which need scavenging. They
-        * shouldn't be write protected at this stage. */
-       gc_assert(!page_table[i].write_protected);
-
-       /* Check whether this is the last page in this contiguous block.. */
-       if ((page_table[i].bytes_used < 4096)
-           /* ..or it is 4096 and is the last in the block */
-           || (page_table[i+1].allocated == FREE_PAGE)
-           || (page_table[i+1].bytes_used == 0) /* next page free */
-           || (page_table[i+1].gen != from_space) /* diff. gen */
-           || (page_table[i+1].first_object_offset == 0))
-           break;
+        gc_assert(page_table[i].allocated == region_allocation);
+
+        /* Mark the page static. */
+        page_table[i].dont_move = 1;
+
+        /* Move the page to the new_space. XX I'd rather not do this
+         * but the GC logic is not quite able to copy with the static
+         * pages remaining in the from space. This also requires the
+         * generation bytes_allocated counters be updated. */
+        page_table[i].gen = new_space;
+        generations[new_space].bytes_allocated += page_table[i].bytes_used;
+        generations[from_space].bytes_allocated -= page_table[i].bytes_used;
+
+        /* It is essential that the pages are not write protected as
+         * they may have pointers into the old-space which need
+         * scavenging. They shouldn't be write protected at this
+         * stage. */
+        gc_assert(!page_table[i].write_protected);
+
+        /* Check whether this is the last page in this contiguous block.. */
+        if ((page_table[i].bytes_used < PAGE_BYTES)
+            /* ..or it is PAGE_BYTES and is the last in the block */
+            || (page_table[i+1].allocated == FREE_PAGE_FLAG)
+            || (page_table[i+1].bytes_used == 0) /* next page free */
+            || (page_table[i+1].gen != from_space) /* diff. gen */
+            || (page_table[i+1].first_object_offset == 0))
+            break;
     }
 
     /* Check that the page is now static. */
     gc_assert(page_table[addr_page_index].dont_move != 0);
-
-    return;
-}
-
-#ifdef CONTROL_STACKS
-/* Scavenge the thread stack conservative roots. */
-static void
-scavenge_thread_stacks(void)
-{
-    lispobj thread_stacks = SymbolValue(CONTROL_STACKS);
-    int type = TypeOf(thread_stacks);
-
-    if (LowtagOf(thread_stacks) == type_OtherPointer) {
-       struct vector *vector = (struct vector *) PTR(thread_stacks);
-       int length, i;
-       if (TypeOf(vector->header) != type_SimpleVector)
-           return;
-       length = fixnum_value(vector->length);
-       for (i = 0; i < length; i++) {
-           lispobj stack_obj = vector->data[i];
-           if (LowtagOf(stack_obj) == type_OtherPointer) {
-               struct vector *stack = (struct vector *) PTR(stack_obj);
-               int vector_length;
-               if (TypeOf(stack->header) !=
-                   type_SimpleArrayUnsignedByte32) {
-                   return;
-               }
-               vector_length = fixnum_value(stack->length);
-               if ((gencgc_verbose > 1) && (vector_length <= 0))
-                   FSHOW((stderr,
-                          "/weird? control stack vector length %d\n",
-                          vector_length));
-               if (vector_length > 0) {
-                   lispobj *stack_pointer = (lispobj*)stack->data[0];
-                   if ((stack_pointer < (lispobj *)CONTROL_STACK_START) ||
-                       (stack_pointer > (lispobj *)CONTROL_STACK_END))
-                       lose("invalid stack pointer %x",
-                            (unsigned)stack_pointer);
-                   if ((stack_pointer > (lispobj *)CONTROL_STACK_START) &&
-                       (stack_pointer < (lispobj *)CONTROL_STACK_END)) {
-                       /* FIXME: Ick!
-                        *   (1) hardwired word length = 4; and as usual,
-                        *       when fixing this, check for other places
-                        *       with the same problem
-                        *   (2) calling it 'length' suggests bytes;
-                        *       perhaps 'size' instead? */
-                       unsigned int length = ((unsigned)CONTROL_STACK_END -
-                                              (unsigned)stack_pointer) / 4;
-                       int j;
-                       if (length >= vector_length) {
-                           lose("invalid stack size %d >= vector length %d",
-                                length,
-                                vector_length);
-                       }
-                       if (gencgc_verbose > 1) {
-                           FSHOW((stderr,
-                                  "scavenging %d words of control stack %d of length %d words.\n",
-                                   length, i, vector_length));
-                       }
-                       for (j = 0; j < length; j++) {
-                           preserve_pointer((void *)stack->data[1+j]);
-                       }
-                   }
-               }
-           }
-       }
-    }
 }
-#endif
-
 \f
 /* If the given page is not write-protected, then scan it for pointers
  * to younger generations or the top temp. generation, if no
  * suspicious pointers are found then the page is write-protected.
  *
- * Care is taken to check for pointers to the current gc_alloc region
- * if it is a younger generation or the temp. generation. This frees
- * the caller from doing a gc_alloc_update_page_tables. Actually the
- * gc_alloc_generation does not need to be checked as this is only
- * called from scavenge_generation when the gc_alloc generation is
+ * Care is taken to check for pointers to the current gc_alloc()
+ * region if it is a younger generation or the temp. generation. This
+ * frees the caller from doing a gc_alloc_update_page_tables(). Actually
+ * the gc_alloc_generation does not need to be checked as this is only
+ * called from scavenge_generation() when the gc_alloc generation is
  * younger, so it just checks if there is a pointer to the current
  * region.
  *
- * We return 1 if the page was write-protected, else 0.
- */
+ * We return 1 if the page was write-protected, else 0. */
 static int
-update_page_write_prot(int page)
+update_page_write_prot(long page)
 {
     int gen = page_table[page].gen;
-    int j;
+    long j;
     int wp_it = 1;
     void **page_addr = (void **)page_address(page);
-    int num_words = page_table[page].bytes_used / 4;
+    long num_words = page_table[page].bytes_used / N_WORD_BYTES;
 
     /* Shouldn't be a free page. */
-    gc_assert(page_table[page].allocated != FREE_PAGE);
+    gc_assert(page_table[page].allocated != FREE_PAGE_FLAG);
     gc_assert(page_table[page].bytes_used != 0);
 
-    /* Skip if it's already write-protected or an unboxed page. */
+    /* Skip if it's already write-protected, pinned, or unboxed */
     if (page_table[page].write_protected
-       || (page_table[page].allocated == UNBOXED_PAGE))
-       return (0);
+        || page_table[page].dont_move
+        || (page_table[page].allocated & UNBOXED_PAGE_FLAG))
+        return (0);
 
     /* Scan the page for pointers to younger generations or the
      * top temp. generation. */
 
     for (j = 0; j < num_words; j++) {
-       void *ptr = *(page_addr+j);
-       int index = find_page_index(ptr);
-
-       /* Check that it's in the dynamic space */
-       if (index != -1)
-           if (/* Does it point to a younger or the temp. generation? */
-               ((page_table[index].allocated != FREE_PAGE)
-                && (page_table[index].bytes_used != 0)
-                && ((page_table[index].gen < gen)
-                    || (page_table[index].gen == NUM_GENERATIONS)))
-
-               /* Or does it point within a current gc_alloc region? */
-               || ((boxed_region.start_addr <= ptr)
-                   && (ptr <= boxed_region.free_pointer))
-               || ((unboxed_region.start_addr <= ptr)
-                   && (ptr <= unboxed_region.free_pointer))) {
-               wp_it = 0;
-               break;
-           }
+        void *ptr = *(page_addr+j);
+        long index = find_page_index(ptr);
+
+        /* Check that it's in the dynamic space */
+        if (index != -1)
+            if (/* Does it point to a younger or the temp. generation? */
+                ((page_table[index].allocated != FREE_PAGE_FLAG)
+                 && (page_table[index].bytes_used != 0)
+                 && ((page_table[index].gen < gen)
+                     || (page_table[index].gen == NUM_GENERATIONS)))
+
+                /* Or does it point within a current gc_alloc() region? */
+                || ((boxed_region.start_addr <= ptr)
+                    && (ptr <= boxed_region.free_pointer))
+                || ((unboxed_region.start_addr <= ptr)
+                    && (ptr <= unboxed_region.free_pointer))) {
+                wp_it = 0;
+                break;
+            }
     }
 
     if (wp_it == 1) {
-       /* Write-protect the page. */
-       /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
+        /* Write-protect the page. */
+        /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
 
-       os_protect((void *)page_addr,
-                  4096,
-                  OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
+        os_protect((void *)page_addr,
+                   PAGE_BYTES,
+                   OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
 
-       /* Note the page as protected in the page tables. */
-       page_table[page].write_protected = 1;
+        /* Note the page as protected in the page tables. */
+        page_table[page].write_protected = 1;
     }
 
     return (wp_it);
@@ -4715,7 +2655,7 @@ update_page_write_prot(int page)
 /* Scavenge a generation.
  *
  * This will not resolve all pointers when generation is the new
- * space, as new objects may be added which are not check here - use
+ * space, as new objects may be added which are not checked here - use
  * scavenge_newspace generation.
  *
  * Write-protected pages should not have any pointers to the
@@ -4746,95 +2686,76 @@ update_page_write_prot(int page)
 static void
 scavenge_generation(int generation)
 {
-    int i;
+    long i;
     int num_wp = 0;
 
 #define SC_GEN_CK 0
 #if SC_GEN_CK
     /* Clear the write_protected_cleared flags on all pages. */
     for (i = 0; i < NUM_PAGES; i++)
-       page_table[i].write_protected_cleared = 0;
+        page_table[i].write_protected_cleared = 0;
 #endif
 
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated == BOXED_PAGE)
-           && (page_table[i].bytes_used != 0)
-           && (page_table[i].gen == generation)) {
-           int last_page;
-
-           /* This should be the start of a contiguous block. */
-           gc_assert(page_table[i].first_object_offset == 0);
-
-           /* We need to find the full extent of this contiguous
-            * block in case objects span pages. */
-
-           /* Now work forward until the end of this contiguous area
-            * is found. A small area is preferred as there is a
-            * better chance of its pages being write-protected. */
-           for (last_page = i; ;last_page++)
-               /* Check whether this is the last page in this contiguous
-                * block. */
-               if ((page_table[last_page].bytes_used < 4096)
-                   /* Or it is 4096 and is the last in the block */
-                   || (page_table[last_page+1].allocated != BOXED_PAGE)
-                   || (page_table[last_page+1].bytes_used == 0)
-                   || (page_table[last_page+1].gen != generation)
-                   || (page_table[last_page+1].first_object_offset == 0))
-                   break;
-
-           /* Do a limited check for write_protected pages. If all pages
-            * are write_protected then there is no need to scavenge. */
-           {
-               int j, all_wp = 1;
-               for (j = i; j <= last_page; j++)
-                   if (page_table[j].write_protected == 0) {
-                       all_wp = 0;
-                       break;
-                   }
-#if !SC_GEN_CK
-               if (all_wp == 0)
-#endif
-                   {
-                       scavenge(page_address(i), (page_table[last_page].bytes_used
-                                                  + (last_page-i)*4096)/4);
-
-                       /* Now scan the pages and write protect those
-                        * that don't have pointers to younger
-                        * generations. */
-                       if (enable_page_protection) {
-                           for (j = i; j <= last_page; j++) {
-                               num_wp += update_page_write_prot(j);
-                           }
-                       }
-                   }
-           }
-           i = last_page;
-       }
+        if ((page_table[i].allocated & BOXED_PAGE_FLAG)
+            && (page_table[i].bytes_used != 0)
+            && (page_table[i].gen == generation)) {
+            long last_page,j;
+            int write_protected=1;
+
+            /* This should be the start of a region */
+            gc_assert(page_table[i].first_object_offset == 0);
+
+            /* Now work forward until the end of the region */
+            for (last_page = i; ; last_page++) {
+                write_protected =
+                    write_protected && page_table[last_page].write_protected;
+                if ((page_table[last_page].bytes_used < PAGE_BYTES)
+                    /* Or it is PAGE_BYTES and is the last in the block */
+                    || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
+                    || (page_table[last_page+1].bytes_used == 0)
+                    || (page_table[last_page+1].gen != generation)
+                    || (page_table[last_page+1].first_object_offset == 0))
+                    break;
+            }
+            if (!write_protected) {
+                scavenge(page_address(i),
+                         (page_table[last_page].bytes_used +
+                          (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
+
+                /* Now scan the pages and write protect those that
+                 * don't have pointers to younger generations. */
+                if (enable_page_protection) {
+                    for (j = i; j <= last_page; j++) {
+                        num_wp += update_page_write_prot(j);
+                    }
+                }
+            }
+            i = last_page;
+        }
     }
-
     if ((gencgc_verbose > 1) && (num_wp != 0)) {
-       FSHOW((stderr,
-              "/write protected %d pages within generation %d\n",
-              num_wp, generation));
+        FSHOW((stderr,
+               "/write protected %d pages within generation %d\n",
+               num_wp, generation));
     }
 
 #if SC_GEN_CK
     /* Check that none of the write_protected pages in this generation
      * have been written to. */
     for (i = 0; i < NUM_PAGES; i++) {
-       if ((page_table[i].allocation ! =FREE_PAGE)
-           && (page_table[i].bytes_used != 0)
-           && (page_table[i].gen == generation)
-           && (page_table[i].write_protected_cleared != 0)) {
-           FSHOW((stderr, "/scavenge_generation %d\n", generation));
-           FSHOW((stderr,
-                  "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
-                   page_table[i].bytes_used,
-                   page_table[i].first_object_offset,
-                   page_table[i].dont_move));
-           lose("write-protected page %d written to in scavenge_generation",
-                i);
-       }
+        if ((page_table[i].allocation != FREE_PAGE_FLAG)
+            && (page_table[i].bytes_used != 0)
+            && (page_table[i].gen == generation)
+            && (page_table[i].write_protected_cleared != 0)) {
+            FSHOW((stderr, "/scavenge_generation() %d\n", generation));
+            FSHOW((stderr,
+                   "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
+                    page_table[i].bytes_used,
+                    page_table[i].first_object_offset,
+                    page_table[i].dont_move));
+            lose("write to protected page %d in scavenge_generation()", i);
+        }
     }
 #endif
 }
@@ -4846,7 +2767,7 @@ scavenge_generation(int generation)
  * newspace generation.
  *
  * To help improve the efficiency, areas written are recorded by
- * gc_alloc and only these scavenged. Sometimes a little more will be
+ * gc_alloc() and only these scavenged. Sometimes a little more will be
  * scavenged, but this causes no harm. An easy check is done that the
  * scavenged bytes equals the number allocated in the previous
  * scavenge.
@@ -4857,7 +2778,7 @@ scavenge_generation(int generation)
  *
  * Write-protected pages could potentially be written by alloc however
  * to avoid having to handle re-scavenging of write-protected pages
- * gc_alloc does not write to write-protected pages.
+ * gc_alloc() does not write to write-protected pages.
  *
  * New areas of objects allocated are recorded alternatively in the two
  * new_areas arrays below. */
@@ -4870,135 +2791,88 @@ static struct new_area new_areas_2[NUM_NEW_AREAS];
 static void
 scavenge_newspace_generation_one_scan(int generation)
 {
-    int i;
+    long i;
 
     FSHOW((stderr,
-          "/starting one full scan of newspace generation %d\n",
-          generation));
-
+           "/starting one full scan of newspace generation %d\n",
+           generation));
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated == BOXED_PAGE)
-           && (page_table[i].bytes_used != 0)
-           && (page_table[i].gen == generation)
-           && ((page_table[i].write_protected == 0)
-               /* (This may be redundant as write_protected is now
-                * cleared before promotion.) */
-               || (page_table[i].dont_move == 1))) {
-           int last_page;
-
-           /* The scavenge will start at the first_object_offset of page i.
-            *
-            * We need to find the full extent of this contiguous block in case
-            * objects span pages.
-            *
-            * Now work forward until the end of this contiguous area is
-            * found. A small area is preferred as there is a better chance
-            * of its pages being write-protected. */
-           for (last_page = i; ;last_page++) {
-               /* Check whether this is the last page in this contiguous
-                * block */
-               if ((page_table[last_page].bytes_used < 4096)
-                   /* Or it is 4096 and is the last in the block */
-                   || (page_table[last_page+1].allocated != BOXED_PAGE)
-                   || (page_table[last_page+1].bytes_used == 0)
-                   || (page_table[last_page+1].gen != generation)
-                   || (page_table[last_page+1].first_object_offset == 0))
-                   break;
-           }
-
-           /* Do a limited check for write_protected pages. If all pages
-            * are write_protected then no need to scavenge. Except if the
-            * pages are marked dont_move. */
-           {
-               int j, all_wp = 1;
-               for (j = i; j <= last_page; j++)
-                   if ((page_table[j].write_protected == 0)
-                       || (page_table[j].dont_move != 0)) {
-                       all_wp = 0;
-                       break;
-                   }
-#if !SC_NS_GEN_CK
-               if (all_wp == 0)
-#endif
-                   {
-                       int size;
-
-                       /* Calculate the size. */
-                       if (last_page == i)
-                           size = (page_table[last_page].bytes_used
-                                   - page_table[i].first_object_offset)/4;
-                       else
-                           size = (page_table[last_page].bytes_used
-                                   + (last_page-i)*4096
-                                   - page_table[i].first_object_offset)/4;
-
-                       {
-#if SC_NS_GEN_CK
-                           int a1 = bytes_allocated;
-#endif
-                           /* FSHOW((stderr,
-                                  "/scavenge(%x,%d)\n",
-                                  page_address(i)
-                                  + page_table[i].first_object_offset,
-                                  size)); */
-
-                           new_areas_ignore_page = last_page;
-
-                           scavenge(page_address(i)+page_table[i].first_object_offset,size);
-
-#if SC_NS_GEN_CK
-                           /* Flush the alloc regions updating the tables. */
-                           gc_alloc_update_page_tables(0, &boxed_region);
-                           gc_alloc_update_page_tables(1, &unboxed_region);
-
-                           if ((all_wp != 0)  && (a1 != bytes_allocated)) {
-                               FSHOW((stderr,
-                                      "alloc'ed over %d to %d\n",
-                                      i, last_page));
-                               FSHOW((stderr,
-                                      "/page: bytes_used=%d first_object_offset=%d dont_move=%d wp=%d wpc=%d\n",
-                                       page_table[i].bytes_used,
-                                       page_table[i].first_object_offset,
-                                       page_table[i].dont_move,
-                                       page_table[i].write_protected,
-                                       page_table[i].write_protected_cleared));
-                           }
-#endif
-                       }
-                   }
-           }
-
-           i = last_page;
-       }
+        /* Note that this skips over open regions when it encounters them. */
+        if ((page_table[i].allocated & BOXED_PAGE_FLAG)
+            && (page_table[i].bytes_used != 0)
+            && (page_table[i].gen == generation)
+            && ((page_table[i].write_protected == 0)
+                /* (This may be redundant as write_protected is now
+                 * cleared before promotion.) */
+                || (page_table[i].dont_move == 1))) {
+            long last_page;
+            int all_wp=1;
+
+            /* The scavenge will start at the first_object_offset of page i.
+             *
+             * We need to find the full extent of this contiguous
+             * block in case objects span pages.
+             *
+             * Now work forward until the end of this contiguous area
+             * is found. A small area is preferred as there is a
+             * better chance of its pages being write-protected. */
+            for (last_page = i; ;last_page++) {
+                /* If all pages are write-protected and movable,
+                 * then no need to scavenge */
+                all_wp=all_wp && page_table[last_page].write_protected &&
+                    !page_table[last_page].dont_move;
+
+                /* Check whether this is the last page in this
+                 * contiguous block */
+                if ((page_table[last_page].bytes_used < PAGE_BYTES)
+                    /* Or it is PAGE_BYTES and is the last in the block */
+                    || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
+                    || (page_table[last_page+1].bytes_used == 0)
+                    || (page_table[last_page+1].gen != generation)
+                    || (page_table[last_page+1].first_object_offset == 0))
+                    break;
+            }
+
+            /* Do a limited check for write-protected pages.  */
+            if (!all_wp) {
+                long size;
+
+                size = (page_table[last_page].bytes_used
+                        + (last_page-i)*PAGE_BYTES
+                        - page_table[i].first_object_offset)/N_WORD_BYTES;
+                new_areas_ignore_page = last_page;
+
+                scavenge(page_address(i) +
+                         page_table[i].first_object_offset,
+                         size);
+
+            }
+            i = last_page;
+        }
     }
+    FSHOW((stderr,
+           "/done with one full scan of newspace generation %d\n",
+           generation));
 }
 
 /* Do a complete scavenge of the newspace generation. */
 static void
 scavenge_newspace_generation(int generation)
 {
-    int i;
-
-    /* the new_areas array currently being written to by gc_alloc */
-    struct new_area  (*current_new_areas)[] = &new_areas_1;
-    int current_new_areas_index;
+    long i;
 
-    /* the new_areas created but the previous scavenge cycle */
-    struct new_area  (*previous_new_areas)[] = NULL;
-    int previous_new_areas_index;
+    /* the new_areas array currently being written to by gc_alloc() */
+    struct new_area (*current_new_areas)[] = &new_areas_1;
+    long current_new_areas_index;
 
-#define SC_NS_GEN_CK 0
-#if SC_NS_GEN_CK
-    /* Clear the write_protected_cleared flags on all pages. */
-    for (i = 0; i < NUM_PAGES; i++)
-       page_table[i].write_protected_cleared = 0;
-#endif
+    /* the new_areas created by the previous scavenge cycle */
+    struct new_area (*previous_new_areas)[] = NULL;
+    long previous_new_areas_index;
 
     /* Flush the current regions updating the tables. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
 
-    /* Turn on the recording of new areas by gc_alloc. */
+    /* Turn on the recording of new areas by gc_alloc(). */
     new_areas = current_new_areas;
     new_areas_index = 0;
 
@@ -5013,99 +2887,92 @@ scavenge_newspace_generation(int generation)
     record_new_objects = 2;
 
     /* Flush the current regions updating the tables. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
 
     /* Grab new_areas_index. */
     current_new_areas_index = new_areas_index;
 
     /*FSHOW((stderr,
-            "The first scan is finished; current_new_areas_index=%d.\n",
-            current_new_areas_index));*/
+             "The first scan is finished; current_new_areas_index=%d.\n",
+             current_new_areas_index));*/
 
     while (current_new_areas_index > 0) {
-       /* Move the current to the previous new areas */
-       previous_new_areas = current_new_areas;
-       previous_new_areas_index = current_new_areas_index;
-
-       /* Scavenge all the areas in previous new areas. Any new areas
-        * allocated are saved in current_new_areas. */
-
-       /* Allocate an array for current_new_areas; alternating between
-        * new_areas_1 and 2 */
-       if (previous_new_areas == &new_areas_1)
-           current_new_areas = &new_areas_2;
-       else
-           current_new_areas = &new_areas_1;
-
-       /* Set up for gc_alloc. */
-       new_areas = current_new_areas;
-       new_areas_index = 0;
-
-       /* Check whether previous_new_areas had overflowed. */
-       if (previous_new_areas_index >= NUM_NEW_AREAS) {
-           /* New areas of objects allocated have been lost so need to do a
-            * full scan to be sure! If this becomes a problem try
-            * increasing NUM_NEW_AREAS. */
-           if (gencgc_verbose)
-               SHOW("new_areas overflow, doing full scavenge");
-
-           /* Don't need to record new areas that get scavenge anyway
-            * during scavenge_newspace_generation_one_scan. */
-           record_new_objects = 1;
-
-           scavenge_newspace_generation_one_scan(generation);
-
-           /* Record all new areas now. */
-           record_new_objects = 2;
-
-           /* Flush the current regions updating the tables. */
-           gc_alloc_update_page_tables(0, &boxed_region);
-           gc_alloc_update_page_tables(1, &unboxed_region);
-       } else {
-           /* Work through previous_new_areas. */
-           for (i = 0; i < previous_new_areas_index; i++) {
-               int page = (*previous_new_areas)[i].page;
-               int offset = (*previous_new_areas)[i].offset;
-               int size = (*previous_new_areas)[i].size / 4;
-               gc_assert((*previous_new_areas)[i].size % 4 == 0);
-       
-               /* FIXME: All these bare *4 and /4 should be something
-                * like BYTES_PER_WORD or WBYTES. */
-
-               /*FSHOW((stderr,
-                        "/S page %d offset %d size %d\n",
-                        page, offset, size*4));*/
-               scavenge(page_address(page)+offset, size);
-           }
-
-           /* Flush the current regions updating the tables. */
-           gc_alloc_update_page_tables(0, &boxed_region);
-           gc_alloc_update_page_tables(1, &unboxed_region);
-       }
-
-       current_new_areas_index = new_areas_index;
-
-       /*FSHOW((stderr,
-                "The re-scan has finished; current_new_areas_index=%d.\n",
-                current_new_areas_index));*/
+        /* Move the current to the previous new areas */
+        previous_new_areas = current_new_areas;
+        previous_new_areas_index = current_new_areas_index;
+
+        /* Scavenge all the areas in previous new areas. Any new areas
+         * allocated are saved in current_new_areas. */
+
+        /* Allocate an array for current_new_areas; alternating between
+         * new_areas_1 and 2 */
+        if (previous_new_areas == &new_areas_1)
+            current_new_areas = &new_areas_2;
+        else
+            current_new_areas = &new_areas_1;
+
+        /* Set up for gc_alloc(). */
+        new_areas = current_new_areas;
+        new_areas_index = 0;
+
+        /* Check whether previous_new_areas had overflowed. */
+        if (previous_new_areas_index >= NUM_NEW_AREAS) {
+
+            /* New areas of objects allocated have been lost so need to do a
+             * full scan to be sure! If this becomes a problem try
+             * increasing NUM_NEW_AREAS. */
+            if (gencgc_verbose)
+                SHOW("new_areas overflow, doing full scavenge");
+
+            /* Don't need to record new areas that get scavenge anyway
+             * during scavenge_newspace_generation_one_scan. */
+            record_new_objects = 1;
+
+            scavenge_newspace_generation_one_scan(generation);
+
+            /* Record all new areas now. */
+            record_new_objects = 2;
+
+            /* Flush the current regions updating the tables. */
+            gc_alloc_update_all_page_tables();
+
+        } else {
+
+            /* Work through previous_new_areas. */
+            for (i = 0; i < previous_new_areas_index; i++) {
+                long page = (*previous_new_areas)[i].page;
+                long offset = (*previous_new_areas)[i].offset;
+                long size = (*previous_new_areas)[i].size / N_WORD_BYTES;
+                gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
+                scavenge(page_address(page)+offset, size);
+            }
+
+            /* Flush the current regions updating the tables. */
+            gc_alloc_update_all_page_tables();
+        }
+
+        current_new_areas_index = new_areas_index;
+
+        /*FSHOW((stderr,
+                 "The re-scan has finished; current_new_areas_index=%d.\n",
+                 current_new_areas_index));*/
     }
 
-    /* Turn off recording of areas allocated by gc_alloc. */
+    /* Turn off recording of areas allocated by gc_alloc(). */
     record_new_objects = 0;
 
 #if SC_NS_GEN_CK
     /* Check that none of the write_protected pages in this generation
      * have been written to. */
     for (i = 0; i < NUM_PAGES; i++) {
-       if ((page_table[i].allocation != FREE_PAGE)
-           && (page_table[i].bytes_used != 0)
-           && (page_table[i].gen == generation)
-           && (page_table[i].write_protected_cleared != 0)
-           && (page_table[i].dont_move == 0)) {
-           lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d",
-                i, generation, page_table[i].dont_move);
-       }
+        if ((page_table[i].allocation != FREE_PAGE_FLAG)
+            && (page_table[i].bytes_used != 0)
+            && (page_table[i].gen == generation)
+            && (page_table[i].write_protected_cleared != 0)
+            && (page_table[i].dont_move == 0)) {
+            lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d",
+                 i, generation, page_table[i].dont_move);
+        }
     }
 #endif
 }
@@ -5118,23 +2985,23 @@ scavenge_newspace_generation(int generation)
 static void
 unprotect_oldspace(void)
 {
-    int i;
+    long i;
 
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated != FREE_PAGE)
-           && (page_table[i].bytes_used != 0)
-           && (page_table[i].gen == from_space)) {
-           void *page_start;
-
-           page_start = (void *)page_address(i);
-
-           /* Remove any write-protection. We should be able to rely
-            * on the write-protect flag to avoid redundant calls. */
-           if (page_table[i].write_protected) {
-               os_protect(page_start, 4096, OS_VM_PROT_ALL);
-               page_table[i].write_protected = 0;
-           }
-       }
+        if ((page_table[i].allocated != FREE_PAGE_FLAG)
+            && (page_table[i].bytes_used != 0)
+            && (page_table[i].gen == from_space)) {
+            void *page_start;
+
+            page_start = (void *)page_address(i);
+
+            /* Remove any write-protection. We should be able to rely
+             * on the write-protect flag to avoid redundant calls. */
+            if (page_table[i].write_protected) {
+                os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
+                page_table[i].write_protected = 0;
+            }
+        }
     }
 }
 
@@ -5142,87 +3009,77 @@ unprotect_oldspace(void)
  * assumes that all objects have been copied or promoted to an older
  * generation. Bytes_allocated and the generation bytes_allocated
  * counter are updated. The number of bytes freed is returned. */
-extern void i586_bzero(void *addr, int nbytes);
-static int
+static long
 free_oldspace(void)
 {
-    int bytes_freed = 0;
-    int first_page, last_page;
+    long bytes_freed = 0;
+    long first_page, last_page;
 
     first_page = 0;
 
     do {
-       /* Find a first page for the next region of pages. */
-       while ((first_page < last_free_page)
-              && ((page_table[first_page].allocated == FREE_PAGE)
-                  || (page_table[first_page].bytes_used == 0)
-                  || (page_table[first_page].gen != from_space)))
-           first_page++;
-
-       if (first_page >= last_free_page)
-           break;
-
-       /* Find the last page of this region. */
-       last_page = first_page;
-
-       do {
-           /* Free the page. */
-           bytes_freed += page_table[last_page].bytes_used;
-           generations[page_table[last_page].gen].bytes_allocated -=
-               page_table[last_page].bytes_used;
-           page_table[last_page].allocated = FREE_PAGE;
-           page_table[last_page].bytes_used = 0;
-
-           /* Remove any write-protection. We should be able to rely
-            * on the write-protect flag to avoid redundant calls. */
-           {
-               void  *page_start = (void *)page_address(last_page);
-       
-               if (page_table[last_page].write_protected) {
-                   os_protect(page_start, 4096, OS_VM_PROT_ALL);
-                   page_table[last_page].write_protected = 0;
-               }
-           }
-           last_page++;
-       }
-       while ((last_page < last_free_page)
-              && (page_table[last_page].allocated != FREE_PAGE)
-              && (page_table[last_page].bytes_used != 0)
-              && (page_table[last_page].gen == from_space));
-
-       /* Zero pages from first_page to (last_page-1).
-        *
-        * FIXME: Why not use os_zero(..) function instead of
-        * hand-coding this again? (Check other gencgc_unmap_zero
-        * stuff too. */
-       if (gencgc_unmap_zero) {
-           void *page_start, *addr;
-
-           page_start = (void *)page_address(first_page);
-
-           os_invalidate(page_start, 4096*(last_page-first_page));
-           addr = os_validate(page_start, 4096*(last_page-first_page));
-           if (addr == NULL || addr != page_start) {
-               /* Is this an error condition? I couldn't really tell from
-                * the old CMU CL code, which fprintf'ed a message with
-                * an exclamation point at the end. But I've never seen the
-                * message, so it must at least be unusual..
-                *
-                * (The same condition is also tested for in gc_free_heap.)
-                *
-                * -- WHN 19991129 */
-               lose("i586_bzero: page moved, 0x%08x ==> 0x%08x",
-                    page_start,
-                    addr);
-           }
-       } else {
-           int *page_start;
-
-           page_start = (int *)page_address(first_page);
-           i586_bzero(page_start, 4096*(last_page-first_page));
-       }
-
-       first_page = last_page;
+        /* Find a first page for the next region of pages. */
+        while ((first_page < last_free_page)
+               && ((page_table[first_page].allocated == FREE_PAGE_FLAG)
+                   || (page_table[first_page].bytes_used == 0)
+                   || (page_table[first_page].gen != from_space)))
+            first_page++;
+
+        if (first_page >= last_free_page)
+            break;
+
+        /* Find the last page of this region. */
+        last_page = first_page;
+
+        do {
+            /* Free the page. */
+            bytes_freed += page_table[last_page].bytes_used;
+            generations[page_table[last_page].gen].bytes_allocated -=
+                page_table[last_page].bytes_used;
+            page_table[last_page].allocated = FREE_PAGE_FLAG;
+            page_table[last_page].bytes_used = 0;
+
+            /* Remove any write-protection. We should be able to rely
+             * on the write-protect flag to avoid redundant calls. */
+            {
+                void  *page_start = (void *)page_address(last_page);
+
+                if (page_table[last_page].write_protected) {
+                    os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
+                    page_table[last_page].write_protected = 0;
+                }
+            }
+            last_page++;
+        }
+        while ((last_page < last_free_page)
+               && (page_table[last_page].allocated != FREE_PAGE_FLAG)
+               && (page_table[last_page].bytes_used != 0)
+               && (page_table[last_page].gen == from_space));
+
+        /* Zero pages from first_page to (last_page-1).
+         *
+         * FIXME: Why not use os_zero(..) function instead of
+         * hand-coding this again? (Check other gencgc_unmap_zero
+         * stuff too. */
+        if (gencgc_unmap_zero) {
+            void *page_start, *addr;
+
+            page_start = (void *)page_address(first_page);
+
+            os_invalidate(page_start, PAGE_BYTES*(last_page-first_page));
+            addr = os_validate(page_start, PAGE_BYTES*(last_page-first_page));
+            if (addr == NULL || addr != page_start) {
+                lose("free_oldspace: page moved, 0x%08x ==> 0x%08x",page_start,
+                     addr);
+            }
+        } else {
+            long *page_start;
+
+            page_start = (long *)page_address(first_page);
+            memset(page_start, 0,PAGE_BYTES*(last_page-first_page));
+        }
+
+        first_page = last_page;
 
     } while (first_page < last_free_page);
 
@@ -5230,223 +3087,271 @@ free_oldspace(void)
     return bytes_freed;
 }
 \f
+#if 0
 /* Print some information about a pointer at the given address. */
 static void
 print_ptr(lispobj *addr)
 {
     /* If addr is in the dynamic space then out the page information. */
-    int pi1 = find_page_index((void*)addr);
+    long pi1 = find_page_index((void*)addr);
 
     if (pi1 != -1)
-       fprintf(stderr,"  %x: page %d  alloc %d  gen %d  bytes_used %d  offset %d  dont_move %d\n",
-               (unsigned int) addr,
-               pi1,
-               page_table[pi1].allocated,
-               page_table[pi1].gen,
-               page_table[pi1].bytes_used,
-               page_table[pi1].first_object_offset,
-               page_table[pi1].dont_move);
+        fprintf(stderr,"  %x: page %d  alloc %d  gen %d  bytes_used %d  offset %d  dont_move %d\n",
+                (unsigned long) addr,
+                pi1,
+                page_table[pi1].allocated,
+                page_table[pi1].gen,
+                page_table[pi1].bytes_used,
+                page_table[pi1].first_object_offset,
+                page_table[pi1].dont_move);
     fprintf(stderr,"  %x %x %x %x (%x) %x %x %x %x\n",
-           *(addr-4),
-           *(addr-3),
-           *(addr-2),
-           *(addr-1),
-           *(addr-0),
-           *(addr+1),
-           *(addr+2),
-           *(addr+3),
-           *(addr+4));
+            *(addr-4),
+            *(addr-3),
+            *(addr-2),
+            *(addr-1),
+            *(addr-0),
+            *(addr+1),
+            *(addr+2),
+            *(addr+3),
+            *(addr+4));
 }
+#endif
 
-extern int undefined_tramp;
+extern long undefined_tramp;
 
 static void
 verify_space(lispobj *start, size_t words)
 {
     int is_in_dynamic_space = (find_page_index((void*)start) != -1);
     int is_in_readonly_space =
-       (READ_ONLY_SPACE_START <= (unsigned)start &&
-        (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER));
+        (READ_ONLY_SPACE_START <= (unsigned)start &&
+         (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
 
     while (words > 0) {
-       size_t count = 1;
-       lispobj thing = *(lispobj*)start;
-
-       if (Pointerp(thing)) {
-           int page_index = find_page_index((void*)thing);
-           int to_readonly_space =
-               (READ_ONLY_SPACE_START <= thing &&
-                thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER));
-           int to_static_space =
-               (STATIC_SPACE_START <= thing &&
-                thing < SymbolValue(STATIC_SPACE_FREE_POINTER));
-
-           /* Does it point to the dynamic space? */
-           if (page_index != -1) {
-               /* If it's within the dynamic space it should point to a used
-                * page. XX Could check the offset too. */
-               if ((page_table[page_index].allocated != FREE_PAGE)
-                   && (page_table[page_index].bytes_used == 0))
-                   lose ("Ptr %x @ %x sees free page.", thing, start);
-               /* Check that it doesn't point to a forwarding pointer! */
-               if (*((lispobj *)PTR(thing)) == 0x01) {
-                   lose("Ptr %x @ %x sees forwarding ptr.", thing, start);
-               }
-               /* Check that its not in the RO space as it would then be a
-                * pointer from the RO to the dynamic space. */
-               if (is_in_readonly_space) {
-                   lose("ptr to dynamic space %x from RO space %x",
-                        thing, start);
-               }
-               /* Does it point to a plausible object? This check slows
-                * it down a lot (so it's commented out).
-                *
-                * FIXME: Add a variable to enable this dynamically. */
-               /* if (!valid_dynamic_space_pointer((lispobj *)thing)) {
-                *     lose("ptr %x to invalid object %x", thing, start); */
-           } else {
-               /* Verify that it points to another valid space. */
-               if (!to_readonly_space && !to_static_space
-                   && (thing != (unsigned)&undefined_tramp)) {
-                   lose("Ptr %x @ %x sees junk.", thing, start);
-               }
-           }
-       } else {
-           if (thing & 0x3) { /* Skip fixnums. FIXME: There should be an
-                               * is_fixnum for this. */
-
-               switch(TypeOf(*start)) {
-
-                   /* boxed objects */
-               case type_SimpleVector:
-               case type_Ratio:
-               case type_Complex:
-               case type_SimpleArray:
-               case type_ComplexString:
-               case type_ComplexBitVector:
-               case type_ComplexVector:
-               case type_ComplexArray:
-               case type_ClosureHeader:
-               case type_FuncallableInstanceHeader:
-               case type_ByteCodeFunction:
-               case type_ByteCodeClosure:
-               case type_ValueCellHeader:
-               case type_SymbolHeader:
-               case type_BaseChar:
-               case type_UnboundMarker:
-               case type_InstanceHeader:
-               case type_Fdefn:
-                   count = 1;
-                   break;
-
-               case type_CodeHeader:
-                   {
-                       lispobj object = *start;
-                       struct code *code;
-                       int nheader_words, ncode_words, nwords;
-                       lispobj fheaderl;
-                       struct function *fheaderp;
-
-                       code = (struct code *) start;
-
-                       /* Check that it's not in the dynamic space.
-                        * FIXME: Isn't is supposed to be OK for code
-                        * objects to be in the dynamic space these days? */
-                       if (is_in_dynamic_space
-                           /* It's ok if it's byte compiled code. The trace
-                            * table offset will be a fixnum if it's x86
-                            * compiled code - check. */
-                           && !(code->trace_table_offset & 0x3)
-                           /* Only when enabled */
-                           && verify_dynamic_code_check) {
-                           FSHOW((stderr,
-                                  "/code object at %x in the dynamic space\n",
-                                  start));
-                       }
-
-                       ncode_words = fixnum_value(code->code_size);
-                       nheader_words = HeaderValue(object);
-                       nwords = ncode_words + nheader_words;
-                       nwords = CEILING(nwords, 2);
-                       /* Scavenge the boxed section of the code data block */
-                       verify_space(start + 1, nheader_words - 1);
-
-                       /* Scavenge the boxed section of each function object in
-                        * the code data block. */
-                       fheaderl = code->entry_points;
-                       while (fheaderl != NIL) {
-                           fheaderp = (struct function *) PTR(fheaderl);
-                           gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
-                           verify_space(&fheaderp->name, 1);
-                           verify_space(&fheaderp->arglist, 1);
-                           verify_space(&fheaderp->type, 1);
-                           fheaderl = fheaderp->next;
-                       }
-                       count = nwords;
-                       break;
-                   }
-       
-                   /* unboxed objects */
-               case type_Bignum:
-               case type_SingleFloat:
-               case type_DoubleFloat:
-#ifdef type_ComplexLongFloat
-               case type_LongFloat:
+        size_t count = 1;
+        lispobj thing = *(lispobj*)start;
+
+        if (is_lisp_pointer(thing)) {
+            long page_index = find_page_index((void*)thing);
+            long to_readonly_space =
+                (READ_ONLY_SPACE_START <= thing &&
+                 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
+            long to_static_space =
+                (STATIC_SPACE_START <= thing &&
+                 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
+
+            /* Does it point to the dynamic space? */
+            if (page_index != -1) {
+                /* If it's within the dynamic space it should point to a used
+                 * page. XX Could check the offset too. */
+                if ((page_table[page_index].allocated != FREE_PAGE_FLAG)
+                    && (page_table[page_index].bytes_used == 0))
+                    lose ("Ptr %x @ %x sees free page.", thing, start);
+                /* Check that it doesn't point to a forwarding pointer! */
+                if (*((lispobj *)native_pointer(thing)) == 0x01) {
+                    lose("Ptr %x @ %x sees forwarding ptr.", thing, start);
+                }
+                /* Check that its not in the RO space as it would then be a
+                 * pointer from the RO to the dynamic space. */
+                if (is_in_readonly_space) {
+                    lose("ptr to dynamic space %x from RO space %x",
+                         thing, start);
+                }
+                /* Does it point to a plausible object? This check slows
+                 * it down a lot (so it's commented out).
+                 *
+                 * "a lot" is serious: it ate 50 minutes cpu time on
+                 * my duron 950 before I came back from lunch and
+                 * killed it.
+                 *
+                 *   FIXME: Add a variable to enable this
+                 * dynamically. */
+                /*
+                if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
+                    lose("ptr %x to invalid object %x", thing, start);
+                }
+                */
+            } else {
+                /* Verify that it points to another valid space. */
+                if (!to_readonly_space && !to_static_space
+                    && (thing != (unsigned)&undefined_tramp)) {
+                    lose("Ptr %x @ %x sees junk.", thing, start);
+                }
+            }
+        } else {
+            if (!(fixnump(thing))) {
+                /* skip fixnums */
+                switch(widetag_of(*start)) {
+
+                    /* boxed objects */
+                case SIMPLE_VECTOR_WIDETAG:
+                case RATIO_WIDETAG:
+                case COMPLEX_WIDETAG:
+                case SIMPLE_ARRAY_WIDETAG:
+                case COMPLEX_BASE_STRING_WIDETAG:
+#ifdef COMPLEX_CHARACTER_STRING_WIDETAG
+                case COMPLEX_CHARACTER_STRING_WIDETAG:
+#endif
+                case COMPLEX_VECTOR_NIL_WIDETAG:
+                case COMPLEX_BIT_VECTOR_WIDETAG:
+                case COMPLEX_VECTOR_WIDETAG:
+                case COMPLEX_ARRAY_WIDETAG:
+                case CLOSURE_HEADER_WIDETAG:
+                case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
+                case VALUE_CELL_HEADER_WIDETAG:
+                case SYMBOL_HEADER_WIDETAG:
+                case CHARACTER_WIDETAG:
+#if N_WORD_BITS == 64
+                case SINGLE_FLOAT_WIDETAG:
+#endif
+                case UNBOUND_MARKER_WIDETAG:
+                case INSTANCE_HEADER_WIDETAG:
+                case FDEFN_WIDETAG:
+                    count = 1;
+                    break;
+
+                case CODE_HEADER_WIDETAG:
+                    {
+                        lispobj object = *start;
+                        struct code *code;
+                        long nheader_words, ncode_words, nwords;
+                        lispobj fheaderl;
+                        struct simple_fun *fheaderp;
+
+                        code = (struct code *) start;
+
+                        /* Check that it's not in the dynamic space.
+                         * FIXME: Isn't is supposed to be OK for code
+                         * objects to be in the dynamic space these days? */
+                        if (is_in_dynamic_space
+                            /* It's ok if it's byte compiled code. The trace
+                             * table offset will be a fixnum if it's x86
+                             * compiled code - check.
+                             *
+                             * FIXME: #^#@@! lack of abstraction here..
+                             * This line can probably go away now that
+                             * there's no byte compiler, but I've got
+                             * too much to worry about right now to try
+                             * to make sure. -- WHN 2001-10-06 */
+                            && fixnump(code->trace_table_offset)
+                            /* Only when enabled */
+                            && verify_dynamic_code_check) {
+                            FSHOW((stderr,
+                                   "/code object at %x in the dynamic space\n",
+                                   start));
+                        }
+
+                        ncode_words = fixnum_value(code->code_size);
+                        nheader_words = HeaderValue(object);
+                        nwords = ncode_words + nheader_words;
+                        nwords = CEILING(nwords, 2);
+                        /* Scavenge the boxed section of the code data block */
+                        verify_space(start + 1, nheader_words - 1);
+
+                        /* Scavenge the boxed section of each function
+                         * object in the code data block. */
+                        fheaderl = code->entry_points;
+                        while (fheaderl != NIL) {
+                            fheaderp =
+                                (struct simple_fun *) native_pointer(fheaderl);
+                            gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
+                            verify_space(&fheaderp->name, 1);
+                            verify_space(&fheaderp->arglist, 1);
+                            verify_space(&fheaderp->type, 1);
+                            fheaderl = fheaderp->next;
+                        }
+                        count = nwords;
+                        break;
+                    }
+
+                    /* unboxed objects */
+                case BIGNUM_WIDETAG:
+#if N_WORD_BITS != 64
+                case SINGLE_FLOAT_WIDETAG:
+#endif
+                case DOUBLE_FLOAT_WIDETAG:
+#ifdef COMPLEX_LONG_FLOAT_WIDETAG
+                case LONG_FLOAT_WIDETAG:
+#endif
+#ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
+                case COMPLEX_SINGLE_FLOAT_WIDETAG:
 #endif
-#ifdef type_ComplexSingleFloat
-               case type_ComplexSingleFloat:
+#ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
+                case COMPLEX_DOUBLE_FLOAT_WIDETAG:
 #endif
-#ifdef type_ComplexDoubleFloat
-               case type_ComplexDoubleFloat:
+#ifdef COMPLEX_LONG_FLOAT_WIDETAG
+                case COMPLEX_LONG_FLOAT_WIDETAG:
 #endif
-#ifdef type_ComplexLongFloat
-               case type_ComplexLongFloat:
+                case SIMPLE_BASE_STRING_WIDETAG:
+#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
+                case SIMPLE_CHARACTER_STRING_WIDETAG:
 #endif
-               case type_SimpleString:
-               case type_SimpleBitVector:
-               case type_SimpleArrayUnsignedByte2:
-               case type_SimpleArrayUnsignedByte4:
-               case type_SimpleArrayUnsignedByte8:
-               case type_SimpleArrayUnsignedByte16:
-               case type_SimpleArrayUnsignedByte32:
-#ifdef type_SimpleArraySignedByte8
-               case type_SimpleArraySignedByte8:
+                case SIMPLE_BIT_VECTOR_WIDETAG:
+                case SIMPLE_ARRAY_NIL_WIDETAG:
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte16
-               case type_SimpleArraySignedByte16:
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte30
-               case type_SimpleArraySignedByte30:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
 #endif
-#ifdef type_SimpleArraySignedByte32
-               case type_SimpleArraySignedByte32:
+#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
+                case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
 #endif
-               case type_SimpleArraySingleFloat:
-               case type_SimpleArrayDoubleFloat:
-#ifdef type_SimpleArrayComplexLongFloat
-               case type_SimpleArrayLongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
+                case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexSingleFloat
-               case type_SimpleArrayComplexSingleFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
+                case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexDoubleFloat
-               case type_SimpleArrayComplexDoubleFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
+                case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
 #endif
-#ifdef type_SimpleArrayComplexLongFloat
-               case type_SimpleArrayComplexLongFloat:
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
+                case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
 #endif
-               case type_Sap:
-               case type_WeakPointer:
-                   count = (sizetab[TypeOf(*start)])(start);
-                   break;
-
-               default:
-                   gc_abort();
-               }
-           }
-       }
-       start += count;
-       words -= count;
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
+                case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
+                case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
+#endif
+                case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
+                case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
+#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
+                case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
+                case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
+                case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
+#endif
+#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
+                case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
+#endif
+                case SAP_WIDETAG:
+                case WEAK_POINTER_WIDETAG:
+                    count = (sizetab[widetag_of(*start)])(start);
+                    break;
+
+                default:
+                    gc_abort();
+                }
+            }
+        }
+        start += count;
+        words -= count;
     }
 }
 
@@ -5459,19 +3364,21 @@ verify_gc(void)
      * Some counts of lispobjs are called foo_count; it might be good
      * to grep for all foo_size and rename the appropriate ones to
      * foo_count. */
-    int read_only_space_size =
-       (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER)
-       - (lispobj*)READ_ONLY_SPACE_START;
-    int static_space_size =
-       (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER)
-       - (lispobj*)STATIC_SPACE_START;
-    int binding_stack_size =
-       (lispobj*)SymbolValue(BINDING_STACK_POINTER)
-       - (lispobj*)BINDING_STACK_START;
-
+    long read_only_space_size =
+        (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
+        - (lispobj*)READ_ONLY_SPACE_START;
+    long static_space_size =
+        (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
+        - (lispobj*)STATIC_SPACE_START;
+    struct thread *th;
+    for_each_thread(th) {
+    long binding_stack_size =
+            (lispobj*)SymbolValue(BINDING_STACK_POINTER,th)
+            - (lispobj*)th->binding_stack_start;
+        verify_space(th->binding_stack_start, binding_stack_size);
+    }
     verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
     verify_space((lispobj*)STATIC_SPACE_START   , static_space_size);
-    verify_space((lispobj*)BINDING_STACK_START  , binding_stack_size);
 }
 
 static void
@@ -5480,69 +3387,69 @@ verify_generation(int  generation)
     int i;
 
     for (i = 0; i < last_free_page; i++) {
-       if ((page_table[i].allocated != FREE_PAGE)
-           && (page_table[i].bytes_used != 0)
-           && (page_table[i].gen == generation)) {
-           int last_page;
-           int region_allocation = page_table[i].allocated;
-
-           /* This should be the start of a contiguous block */
-           gc_assert(page_table[i].first_object_offset == 0);
-
-           /* Need to find the full extent of this contiguous block in case
-              objects span pages. */
-
-           /* Now work forward until the end of this contiguous area is
-              found. */
-           for (last_page = i; ;last_page++)
-               /* Check whether this is the last page in this contiguous
-                * block. */
-               if ((page_table[last_page].bytes_used < 4096)
-                   /* Or it is 4096 and is the last in the block */
-                   || (page_table[last_page+1].allocated != region_allocation)
-                   || (page_table[last_page+1].bytes_used == 0)
-                   || (page_table[last_page+1].gen != generation)
-                   || (page_table[last_page+1].first_object_offset == 0))
-                   break;
-
-           verify_space(page_address(i), (page_table[last_page].bytes_used
-                                          + (last_page-i)*4096)/4);
-           i = last_page;
-       }
+        if ((page_table[i].allocated != FREE_PAGE_FLAG)
+            && (page_table[i].bytes_used != 0)
+            && (page_table[i].gen == generation)) {
+            long last_page;
+            int region_allocation = page_table[i].allocated;
+
+            /* This should be the start of a contiguous block */
+            gc_assert(page_table[i].first_object_offset == 0);
+
+            /* Need to find the full extent of this contiguous block in case
+               objects span pages. */
+
+            /* Now work forward until the end of this contiguous area is
+               found. */
+            for (last_page = i; ;last_page++)
+                /* Check whether this is the last page in this contiguous
+                 * block. */
+                if ((page_table[last_page].bytes_used < PAGE_BYTES)
+                    /* Or it is PAGE_BYTES and is the last in the block */
+                    || (page_table[last_page+1].allocated != region_allocation)
+                    || (page_table[last_page+1].bytes_used == 0)
+                    || (page_table[last_page+1].gen != generation)
+                    || (page_table[last_page+1].first_object_offset == 0))
+                    break;
+
+            verify_space(page_address(i), (page_table[last_page].bytes_used
+                                           + (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
+            i = last_page;
+        }
     }
 }
 
-/* Check the all the free space is zero filled. */
+/* Check that all the free space is zero filled. */
 static void
 verify_zero_fill(void)
 {
-    int page;
+    long page;
 
     for (page = 0; page < last_free_page; page++) {
-       if (page_table[page].allocated == FREE_PAGE) {
-           /* The whole page should be zero filled. */
-           int *start_addr = (int *)page_address(page);
-           int size = 1024;
-           int i;
-           for (i = 0; i < size; i++) {
-               if (start_addr[i] != 0) {
-                   lose("free page not zero at %x", start_addr + i);
-               }
-           }
-       } else {
-           int free_bytes = 4096 - page_table[page].bytes_used;
-           if (free_bytes > 0) {
-               int *start_addr = (int *)((unsigned)page_address(page)
-                                         + page_table[page].bytes_used);
-               int size = free_bytes / 4;
-               int i;
-               for (i = 0; i < size; i++) {
-                   if (start_addr[i] != 0) {
-                       lose("free region not zero at %x", start_addr + i);
-                   }
-               }
-           }
-       }
+        if (page_table[page].allocated == FREE_PAGE_FLAG) {
+            /* The whole page should be zero filled. */
+            long *start_addr = (long *)page_address(page);
+            long size = 1024;
+            long i;
+            for (i = 0; i < size; i++) {
+                if (start_addr[i] != 0) {
+                    lose("free page not zero at %x", start_addr + i);
+                }
+            }
+        } else {
+            long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
+            if (free_bytes > 0) {
+                long *start_addr = (long *)((unsigned)page_address(page)
+                                          + page_table[page].bytes_used);
+                long size = free_bytes / N_WORD_BYTES;
+                long i;
+                for (i = 0; i < size; i++) {
+                    if (start_addr[i] != 0) {
+                        lose("free region not zero at %x", start_addr + i);
+                    }
+                }
+            }
+        }
     }
 }
 
@@ -5551,69 +3458,66 @@ void
 gencgc_verify_zero_fill(void)
 {
     /* Flush the alloc regions updating the tables. */
-    boxed_region.free_pointer = current_region_free_pointer;
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
     SHOW("verifying zero fill");
     verify_zero_fill();
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
 }
 
 static void
 verify_dynamic_space(void)
 {
-    int i;
+    long i;
 
     for (i = 0; i < NUM_GENERATIONS; i++)
-       verify_generation(i);
+        verify_generation(i);
 
     if (gencgc_enable_verify_zero_fill)
-       verify_zero_fill();
+        verify_zero_fill();
 }
 \f
 /* Write-protect all the dynamic boxed pages in the given generation. */
 static void
 write_protect_generation_pages(int generation)
 {
-    int i;
+    long i;
 
     gc_assert(generation < NUM_GENERATIONS);
 
     for (i = 0; i < last_free_page; i++)
-       if ((page_table[i].allocated == BOXED_PAGE)
-           && (page_table[i].bytes_used != 0)
-           && (page_table[i].gen == generation))  {
-           void *page_start;
+        if ((page_table[i].allocated == BOXED_PAGE_FLAG)
+            && (page_table[i].bytes_used != 0)
+            && !page_table[i].dont_move
+            && (page_table[i].gen == generation))  {
+            void *page_start;
 
-           page_start = (void *)page_address(i);
+            page_start = (void *)page_address(i);
 
-           os_protect(page_start,
-                      4096,
-                      OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
+            os_protect(page_start,
+                       PAGE_BYTES,
+                       OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
 
-           /* Note the page as protected in the page tables. */
-           page_table[i].write_protected = 1;
-       }
+            /* Note the page as protected in the page tables. */
+            page_table[i].write_protected = 1;
+        }
 
     if (gencgc_verbose > 1) {
-       FSHOW((stderr,
-              "/write protected %d of %d pages in generation %d\n",
-              count_write_protect_generation_pages(generation),
-              count_generation_pages(generation),
-              generation));
+        FSHOW((stderr,
+               "/write protected %d of %d pages in generation %d\n",
+               count_write_protect_generation_pages(generation),
+               count_generation_pages(generation),
+               generation));
     }
 }
 
-/* Garbage collect a generation. If raise is 0 the remains of the
+/* Garbage collect a generation. If raise is 0 then the remains of the
  * generation are not raised to the next generation. */
 static void
 garbage_collect_generation(int generation, int raise)
 {
     unsigned long bytes_freed;
     unsigned long i;
-    unsigned long read_only_space_size, static_space_size;
-
+    unsigned long static_space_size;
+    struct thread *th;
     gc_assert(generation <= (NUM_GENERATIONS-1));
 
     /* The oldest generation can't be raised. */
@@ -5626,15 +3530,16 @@ garbage_collect_generation(int generation, int raise)
      * temporary generation (NUM_GENERATIONS), and lowered when
      * done. Set up this new generation. There should be no pages
      * allocated to it yet. */
-    if (!raise)
-       gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
+    if (!raise) {
+         gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
+    }
 
     /* Set the global src and dest. generations */
     from_space = generation;
     if (raise)
-       new_space = generation+1;
+        new_space = generation+1;
     else
-       new_space = NUM_GENERATIONS;
+        new_space = NUM_GENERATIONS;
 
     /* Change to a new space for allocation, resetting the alloc_start_page */
     gc_alloc_generation = new_space;
@@ -5646,114 +3551,183 @@ garbage_collect_generation(int generation, int raise)
     /* Before any pointers are preserved, the dont_move flags on the
      * pages need to be cleared. */
     for (i = 0; i < last_free_page; i++)
-       page_table[i].dont_move = 0;
+        if(page_table[i].gen==from_space)
+            page_table[i].dont_move = 0;
 
     /* Un-write-protect the old-space pages. This is essential for the
      * promoted pages as they may contain pointers into the old-space
      * which need to be scavenged. It also helps avoid unnecessary page
-     * faults as forwarding pointer are written into them. They need to
+     * faults as forwarding pointers are written into them. They need to
      * be un-protected anyway before unmapping later. */
     unprotect_oldspace();
 
-    /* Scavenge the stack's conservative roots. */
-    {
-       lispobj **ptr;
-       for (ptr = (lispobj **)CONTROL_STACK_END - 1;
-            ptr > (lispobj **)&raise;
-            ptr--) {
-           preserve_pointer(*ptr);
-       }
-    }
-#ifdef CONTROL_STACKS
-    scavenge_thread_stacks();
+    /* Scavenge the stacks' conservative roots. */
+
+    /* there are potentially two stacks for each thread: the main
+     * stack, which may contain Lisp pointers, and the alternate stack.
+     * We don't ever run Lisp code on the altstack, but it may
+     * host a sigcontext with lisp objects in it */
+
+    /* what we need to do: (1) find the stack pointer for the main
+     * stack; scavenge it (2) find the interrupt context on the
+     * alternate stack that might contain lisp values, and scavenge
+     * that */
+
+    /* we assume that none of the preceding applies to the thread that
+     * initiates GC.  If you ever call GC from inside an altstack
+     * handler, you will lose. */
+    for_each_thread(th) {
+        void **ptr;
+        void **esp=(void **)-1;
+#ifdef LISP_FEATURE_SB_THREAD
+        long i,free;
+        if(th==arch_os_get_current_thread()) {
+            /* Somebody is going to burn in hell for this, but casting
+             * it in two steps shuts gcc up about strict aliasing. */
+            esp = (void **)((void *)&raise);
+        } else {
+            void **esp1;
+            free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
+            for(i=free-1;i>=0;i--) {
+                os_context_t *c=th->interrupt_contexts[i];
+                esp1 = (void **) *os_context_register_addr(c,reg_SP);
+                if (esp1>=(void **)th->control_stack_start &&
+                    esp1<(void **)th->control_stack_end) {
+                    if(esp1<esp) esp=esp1;
+                    for(ptr = (void **)(c+1); ptr>=(void **)c; ptr--) {
+                        preserve_pointer(*ptr);
+                    }
+                }
+            }
+        }
+#else
+        esp = (void **)((void *)&raise);
 #endif
+        for (ptr = (void **)th->control_stack_end; ptr > esp;  ptr--) {
+            preserve_pointer(*ptr);
+        }
+    }
 
+#ifdef QSHOW
     if (gencgc_verbose > 1) {
-       int num_dont_move_pages = count_dont_move_pages();
-       FSHOW((stderr,
-              "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
-              num_dont_move_pages,
-              /* FIXME: 4096 should be symbolic constant here and
-               * prob'ly elsewhere too. */
-              num_dont_move_pages * 4096));
+        long num_dont_move_pages = count_dont_move_pages();
+        fprintf(stderr,
+                "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
+                num_dont_move_pages,
+                num_dont_move_pages * PAGE_BYTES);
     }
+#endif
 
     /* Scavenge all the rest of the roots. */
 
     /* Scavenge the Lisp functions of the interrupt handlers, taking
-     * care to avoid SIG_DFL, SIG_IGN. */
-    for (i = 0; i < NSIG; i++) {
-       union interrupt_handler handler = interrupt_handlers[i];
-       if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
-           !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
-           scavenge((lispobj *)(interrupt_handlers + i), 1);
-       }
+     * care to avoid SIG_DFL and SIG_IGN. */
+    for_each_thread(th) {
+        struct interrupt_data *data=th->interrupt_data;
+        for (i = 0; i < NSIG; i++) {
+            union interrupt_handler handler = data->interrupt_handlers[i];
+            if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
+                !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
+                scavenge((lispobj *)(data->interrupt_handlers + i), 1);
+            }
+        }
+    }
+    /* Scavenge the function list for INTERRUPT-THREAD. */
+    for_each_thread(th) {
+        scavenge(&th->interrupt_fun,1);
+    }
+    /* Scavenge the binding stacks. */
+    {
+        struct thread *th;
+        for_each_thread(th) {
+            long len= (lispobj *)SymbolValue(BINDING_STACK_POINTER,th) -
+                th->binding_stack_start;
+            scavenge((lispobj *) th->binding_stack_start,len);
+#ifdef LISP_FEATURE_SB_THREAD
+            /* do the tls as well */
+            len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
+                (sizeof (struct thread))/(sizeof (lispobj));
+            scavenge((lispobj *) (th+1),len);
+#endif
+        }
     }
 
-    /* Scavenge the binding stack. */
-    scavenge( (lispobj *) BINDING_STACK_START,
-            (lispobj *)SymbolValue(BINDING_STACK_POINTER) -
-            (lispobj *)BINDING_STACK_START);
-
+    /* The original CMU CL code had scavenge-read-only-space code
+     * controlled by the Lisp-level variable
+     * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
+     * wasn't documented under what circumstances it was useful or
+     * safe to turn it on, so it's been turned off in SBCL. If you
+     * want/need this functionality, and can test and document it,
+     * please submit a patch. */
+#if 0
     if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
-       read_only_space_size =
-           (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
-           (lispobj*)READ_ONLY_SPACE_START;
-       FSHOW((stderr,
-              "/scavenge read only space: %d bytes\n",
-              read_only_space_size * sizeof(lispobj)));
-       scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
+        unsigned long read_only_space_size =
+            (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
+            (lispobj*)READ_ONLY_SPACE_START;
+        FSHOW((stderr,
+               "/scavenge read only space: %d bytes\n",
+               read_only_space_size * sizeof(lispobj)));
+        scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
     }
+#endif
 
+    /* Scavenge static space. */
     static_space_size =
-       (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER) -
-       (lispobj *)STATIC_SPACE_START;
-    if (gencgc_verbose > 1)
-       FSHOW((stderr,
-              "/scavenge static space: %d bytes\n",
-              static_space_size * sizeof(lispobj)));
+        (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
+        (lispobj *)STATIC_SPACE_START;
+    if (gencgc_verbose > 1) {
+        FSHOW((stderr,
+               "/scavenge static space: %d bytes\n",
+               static_space_size * sizeof(lispobj)));
+    }
     scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
 
     /* All generations but the generation being GCed need to be
      * scavenged. The new_space generation needs special handling as
      * objects may be moved in - it is handled separately below. */
-    for (i = 0; i < NUM_GENERATIONS; i++)
-       if ((i != generation) && (i != new_space))
-           scavenge_generation(i);
+    for (i = 0; i < NUM_GENERATIONS; i++) {
+        if ((i != generation) && (i != new_space)) {
+            scavenge_generation(i);
+        }
+    }
 
     /* Finally scavenge the new_space generation. Keep going until no
      * more objects are moved into the new generation */
     scavenge_newspace_generation(new_space);
 
+    /* FIXME: I tried reenabling this check when debugging unrelated
+     * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
+     * Since the current GC code seems to work well, I'm guessing that
+     * this debugging code is just stale, but I haven't tried to
+     * figure it out. It should be figured out and then either made to
+     * work or just deleted. */
 #define RESCAN_CHECK 0
 #if RESCAN_CHECK
     /* As a check re-scavenge the newspace once; no new objects should
      * be found. */
     {
-       int old_bytes_allocated = bytes_allocated;
-       int bytes_allocated;
+        long old_bytes_allocated = bytes_allocated;
+        long bytes_allocated;
 
-       /* Start with a full scavenge. */
-       scavenge_newspace_generation_one_scan(new_space);
+        /* Start with a full scavenge. */
+        scavenge_newspace_generation_one_scan(new_space);
 
-       /* Flush the current regions, updating the tables. */
-       gc_alloc_update_page_tables(0, &boxed_region);
-       gc_alloc_update_page_tables(1, &unboxed_region);
+        /* Flush the current regions, updating the tables. */
+        gc_alloc_update_all_page_tables();
 
-       bytes_allocated = bytes_allocated - old_bytes_allocated;
+        bytes_allocated = bytes_allocated - old_bytes_allocated;
 
-       if (bytes_allocated != 0) {
-           lose("Rescan of new_space allocated %d more bytes.",
-                bytes_allocated);
-       }
+        if (bytes_allocated != 0) {
+            lose("Rescan of new_space allocated %d more bytes.",
+                 bytes_allocated);
+        }
     }
 #endif
 
     scan_weak_pointers();
 
     /* Flush the current regions, updating the tables. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
 
     /* Free the pages in oldspace, but not those marked dont_move. */
     bytes_freed = free_oldspace();
@@ -5761,14 +3735,14 @@ garbage_collect_generation(int generation, int raise)
     /* If the GC is not raising the age then lower the generation back
      * to its normal generation number */
     if (!raise) {
-       for (i = 0; i < last_free_page; i++)
-           if ((page_table[i].bytes_used != 0)
-               && (page_table[i].gen == NUM_GENERATIONS))
-               page_table[i].gen = generation;
-       gc_assert(generations[generation].bytes_allocated == 0);
-       generations[generation].bytes_allocated =
-           generations[NUM_GENERATIONS].bytes_allocated;
-       generations[NUM_GENERATIONS].bytes_allocated = 0;
+        for (i = 0; i < last_free_page; i++)
+            if ((page_table[i].bytes_used != 0)
+                && (page_table[i].gen == NUM_GENERATIONS))
+                page_table[i].gen = generation;
+        gc_assert(generations[generation].bytes_allocated == 0);
+        generations[generation].bytes_allocated =
+            generations[NUM_GENERATIONS].bytes_allocated;
+        generations[NUM_GENERATIONS].bytes_allocated = 0;
     }
 
     /* Reset the alloc_start_page for generation. */
@@ -5778,130 +3752,128 @@ garbage_collect_generation(int generation, int raise)
     generations[generation].alloc_large_unboxed_start_page = 0;
 
     if (generation >= verify_gens) {
-       if (gencgc_verbose)
-           SHOW("verifying");
-       verify_gc();
-       verify_dynamic_space();
+        if (gencgc_verbose)
+            SHOW("verifying");
+        verify_gc();
+        verify_dynamic_space();
     }
 
     /* Set the new gc trigger for the GCed generation. */
     generations[generation].gc_trigger =
-       generations[generation].bytes_allocated
-       + generations[generation].bytes_consed_between_gc;
+        generations[generation].bytes_allocated
+        + generations[generation].bytes_consed_between_gc;
 
     if (raise)
-       generations[generation].num_gc = 0;
+        generations[generation].num_gc = 0;
     else
-       ++generations[generation].num_gc;
+        ++generations[generation].num_gc;
 }
 
-/* Update last_free_page then ALLOCATION_POINTER */
-int
+/* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
+long
 update_x86_dynamic_space_free_pointer(void)
 {
-    int last_page = -1;
-    int i;
+    long last_page = -1;
+    long i;
 
-    for (i = 0; i < NUM_PAGES; i++)
-       if ((page_table[i].allocated != FREE_PAGE)
-           && (page_table[i].bytes_used != 0))
-           last_page = i;
+    for (i = 0; i < last_free_page; i++)
+        if ((page_table[i].allocated != FREE_PAGE_FLAG)
+            && (page_table[i].bytes_used != 0))
+            last_page = i;
 
     last_free_page = last_page+1;
 
     SetSymbolValue(ALLOCATION_POINTER,
-                  (lispobj)(((char *)heap_base) + last_free_page*4096));
+                   (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),0);
     return 0; /* dummy value: return something ... */
 }
 
-/* GC all generations below last_gen, raising their objects to the
- * next generation until all generations below last_gen are empty.
- * Then if last_gen is due for a GC then GC it. In the special case
- * that last_gen==NUM_GENERATIONS, the last generation is always
- * GC'ed. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
+/* GC all generations newer than last_gen, raising the objects in each
+ * to the next older generation - we finish when all generations below
+ * last_gen are empty.  Then if last_gen is due for a GC, or if
+ * last_gen==NUM_GENERATIONS (the scratch generation?  eh?) we GC that
+ * too.  The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
  *
- * The oldest generation to be GCed will always be
- * gencgc_oldest_gen_to_gc, partly ignoring last_gen if necessary. */
+ * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
+ * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
+
 void
 collect_garbage(unsigned last_gen)
 {
     int gen = 0;
     int raise;
     int gen_to_wp;
-    int i;
-
-    boxed_region.free_pointer = current_region_free_pointer;
+    long i;
 
     FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
 
     if (last_gen > NUM_GENERATIONS) {
-       FSHOW((stderr,
-              "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
-              last_gen));
-       last_gen = 0;
+        FSHOW((stderr,
+               "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
+               last_gen));
+        last_gen = 0;
     }
 
     /* Flush the alloc regions updating the tables. */
-    gc_alloc_update_page_tables(0, &boxed_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_all_page_tables();
 
     /* Verify the new objects created by Lisp code. */
     if (pre_verify_gen_0) {
-       SHOW((stderr, "pre-checking generation 0\n"));
-       verify_generation(0);
+        FSHOW((stderr, "pre-checking generation 0\n"));
+        verify_generation(0);
     }
 
     if (gencgc_verbose > 1)
-       print_generation_stats(0);
+        print_generation_stats(0);
 
     do {
-       /* Collect the generation. */
-
-       if (gen >= gencgc_oldest_gen_to_gc) {
-           /* Never raise the oldest generation. */
-           raise = 0;
-       } else {
-           raise =
-               (gen < last_gen)
-               || (generations[gen].num_gc >= generations[gen].trigger_age);
-       }
-
-       if (gencgc_verbose > 1) {
-           FSHOW((stderr,
-                  "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
-                  gen,
-                  raise,
-                  generations[gen].bytes_allocated,
-                  generations[gen].gc_trigger,
-                  generations[gen].num_gc));
-       }
-
-       /* If an older generation is being filled, then update its
-        * memory age. */
-       if (raise == 1) {
-           generations[gen+1].cum_sum_bytes_allocated +=
-               generations[gen+1].bytes_allocated;
-       }
-
-       garbage_collect_generation(gen, raise);
-
-       /* Reset the memory age cum_sum. */
-       generations[gen].cum_sum_bytes_allocated = 0;
-
-       if (gencgc_verbose > 1) {
-           FSHOW((stderr, "GC of generation %d finished:\n", gen));
-           print_generation_stats(0);
-       }
-
-       gen++;
+        /* Collect the generation. */
+
+        if (gen >= gencgc_oldest_gen_to_gc) {
+            /* Never raise the oldest generation. */
+            raise = 0;
+        } else {
+            raise =
+                (gen < last_gen)
+                || (generations[gen].num_gc >= generations[gen].trigger_age);
+        }
+
+        if (gencgc_verbose > 1) {
+            FSHOW((stderr,
+                   "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
+                   gen,
+                   raise,
+                   generations[gen].bytes_allocated,
+                   generations[gen].gc_trigger,
+                   generations[gen].num_gc));
+        }
+
+        /* If an older generation is being filled, then update its
+         * memory age. */
+        if (raise == 1) {
+            generations[gen+1].cum_sum_bytes_allocated +=
+                generations[gen+1].bytes_allocated;
+        }
+
+        garbage_collect_generation(gen, raise);
+
+        /* Reset the memory age cum_sum. */
+        generations[gen].cum_sum_bytes_allocated = 0;
+
+        if (gencgc_verbose > 1) {
+            FSHOW((stderr, "GC of generation %d finished:\n", gen));
+            print_generation_stats(0);
+        }
+
+        gen++;
     } while ((gen <= gencgc_oldest_gen_to_gc)
-            && ((gen < last_gen)
-                || ((gen <= gencgc_oldest_gen_to_gc)
-                    && raise
-                    && (generations[gen].bytes_allocated
-                        > generations[gen].gc_trigger)
-                    && (gen_av_mem_age(gen)
-                        > generations[gen].min_av_mem_age))));
+             && ((gen < last_gen)
+                 || ((gen <= gencgc_oldest_gen_to_gc)
+                     && raise
+                     && (generations[gen].bytes_allocated
+                         > generations[gen].gc_trigger)
+                     && (gen_av_mem_age(gen)
+                         > generations[gen].min_av_mem_age))));
 
     /* Now if gen-1 was raised all generations before gen are empty.
      * If it wasn't raised then all generations before gen-1 are empty.
@@ -5912,232 +3884,214 @@ collect_garbage(unsigned last_gen)
      * generations are GCed only the pages which have been written
      * need scanning. */
     if (raise)
-       gen_to_wp = gen;
+        gen_to_wp = gen;
     else
-       gen_to_wp = gen - 1;
+        gen_to_wp = gen - 1;
 
     /* There's not much point in WPing pages in generation 0 as it is
      * never scavenged (except promoted pages). */
     if ((gen_to_wp > 0) && enable_page_protection) {
-       /* Check that they are all empty. */
-       for (i = 0; i < gen_to_wp; i++) {
-           if (generations[i].bytes_allocated)
-               lose("trying to write-protect gen. %d when gen. %d nonempty",
-                    gen_to_wp, i);
-       }
-       write_protect_generation_pages(gen_to_wp);
+        /* Check that they are all empty. */
+        for (i = 0; i < gen_to_wp; i++) {
+            if (generations[i].bytes_allocated)
+                lose("trying to write-protect gen. %d when gen. %d nonempty",
+                     gen_to_wp, i);
+        }
+        write_protect_generation_pages(gen_to_wp);
     }
 
-    /* Set gc_alloc back to generation 0. The current regions should
-     * be flushed after the above GCs */
+    /* Set gc_alloc() back to generation 0. The current regions should
+     * be flushed after the above GCs. */
     gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
     gc_alloc_generation = 0;
 
     update_x86_dynamic_space_free_pointer();
-
-    /* This is now done by Lisp SCRUB-CONTROL-STACK in Lisp SUB-GC, so we
-     * needn't do it here: */
-    /*  zero_stack();*/
-
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
-
+    auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
+    if(gencgc_verbose)
+        fprintf(stderr,"Next gc when %ld bytes have been consed\n",
+                auto_gc_trigger);
     SHOW("returning from collect_garbage");
 }
 
 /* This is called by Lisp PURIFY when it is finished. All live objects
  * will have been moved to the RO and Static heaps. The dynamic space
  * will need a full re-initialization. We don't bother having Lisp
- * PURIFY flush the current gc_alloc region, as the page_tables are
+ * PURIFY flush the current gc_alloc() region, as the page_tables are
  * re-initialized, and every page is zeroed to be sure. */
 void
 gc_free_heap(void)
 {
-    int page;
+    long page;
 
     if (gencgc_verbose > 1)
-       SHOW("entering gc_free_heap");
+        SHOW("entering gc_free_heap");
 
     for (page = 0; page < NUM_PAGES; page++) {
-       /* Skip free pages which should already be zero filled. */
-       if (page_table[page].allocated != FREE_PAGE) {
-           void *page_start, *addr;
-
-           /* Mark the page free. The other slots are assumed invalid
-            * when it is a FREE_PAGE and bytes_used is 0 and it
-            * should not be write-protected -- except that the
-            * generation is used for the current region but it sets
-            * that up. */
-           page_table[page].allocated = FREE_PAGE;
-           page_table[page].bytes_used = 0;
-
-           /* Zero the page. */
-           page_start = (void *)page_address(page);
-
-           /* First, remove any write-protection. */
-           os_protect(page_start, 4096, OS_VM_PROT_ALL);
-           page_table[page].write_protected = 0;
-
-           os_invalidate(page_start,4096);
-           addr = os_validate(page_start,4096);
-           if (addr == NULL || addr != page_start) {
-               lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x",
-                    page_start,
-                    addr);
-           }
-       } else if (gencgc_zero_check_during_free_heap) {
-           /* Double-check that the page is zero filled. */
-           int *page_start, i;
-           gc_assert(page_table[page].allocated == FREE_PAGE);
-           gc_assert(page_table[page].bytes_used == 0);
-           page_start = (int *)page_address(page);
-           for (i=0; i<1024; i++) {
-               if (page_start[i] != 0) {
-                   lose("free region not zero at %x", page_start + i);
-               }
-           }
-       }
+        /* Skip free pages which should already be zero filled. */
+        if (page_table[page].allocated != FREE_PAGE_FLAG) {
+            void *page_start, *addr;
+
+            /* Mark the page free. The other slots are assumed invalid
+             * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
+             * should not be write-protected -- except that the
+             * generation is used for the current region but it sets
+             * that up. */
+            page_table[page].allocated = FREE_PAGE_FLAG;
+            page_table[page].bytes_used = 0;
+
+            /* Zero the page. */
+            page_start = (void *)page_address(page);
+
+            /* First, remove any write-protection. */
+            os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
+            page_table[page].write_protected = 0;
+
+            os_invalidate(page_start,PAGE_BYTES);
+            addr = os_validate(page_start,PAGE_BYTES);
+            if (addr == NULL || addr != page_start) {
+                lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x",
+                     page_start,
+                     addr);
+            }
+        } else if (gencgc_zero_check_during_free_heap) {
+            /* Double-check that the page is zero filled. */
+            long *page_start, i;
+            gc_assert(page_table[page].allocated == FREE_PAGE_FLAG);
+            gc_assert(page_table[page].bytes_used == 0);
+            page_start = (long *)page_address(page);
+            for (i=0; i<1024; i++) {
+                if (page_start[i] != 0) {
+                    lose("free region not zero at %x", page_start + i);
+                }
+            }
+        }
     }
 
     bytes_allocated = 0;
 
     /* Initialize the generations. */
     for (page = 0; page < NUM_GENERATIONS; page++) {
-       generations[page].alloc_start_page = 0;
-       generations[page].alloc_unboxed_start_page = 0;
-       generations[page].alloc_large_start_page = 0;
-       generations[page].alloc_large_unboxed_start_page = 0;
-       generations[page].bytes_allocated = 0;
-       generations[page].gc_trigger = 2000000;
-       generations[page].num_gc = 0;
-       generations[page].cum_sum_bytes_allocated = 0;
+        generations[page].alloc_start_page = 0;
+        generations[page].alloc_unboxed_start_page = 0;
+        generations[page].alloc_large_start_page = 0;
+        generations[page].alloc_large_unboxed_start_page = 0;
+        generations[page].bytes_allocated = 0;
+        generations[page].gc_trigger = 2000000;
+        generations[page].num_gc = 0;
+        generations[page].cum_sum_bytes_allocated = 0;
     }
 
     if (gencgc_verbose > 1)
-       print_generation_stats(0);
+        print_generation_stats(0);
 
-    /* Initialize gc_alloc */
+    /* Initialize gc_alloc(). */
     gc_alloc_generation = 0;
-    boxed_region.first_page = 0;
-    boxed_region.last_page = -1;
-    boxed_region.start_addr = page_address(0);
-    boxed_region.free_pointer = page_address(0);
-    boxed_region.end_addr = page_address(0);
-
-    unboxed_region.first_page = 0;
-    unboxed_region.last_page = -1;
-    unboxed_region.start_addr = page_address(0);
-    unboxed_region.free_pointer = page_address(0);
-    unboxed_region.end_addr = page_address(0);
-
-#if 0 /* Lisp PURIFY is currently running on the C stack so don't do this. */
-    zero_stack();
-#endif
 
-    last_free_page = 0;
-    SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base));
+    gc_set_region_empty(&boxed_region);
+    gc_set_region_empty(&unboxed_region);
 
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
+    last_free_page = 0;
+    SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base),0);
 
     if (verify_after_free_heap) {
-       /* Check whether purify has left any bad pointers. */
-       if (gencgc_verbose)
-           SHOW("checking after free_heap\n");
-       verify_gc();
+        /* Check whether purify has left any bad pointers. */
+        if (gencgc_verbose)
+            SHOW("checking after free_heap\n");
+        verify_gc();
     }
 }
 \f
 void
 gc_init(void)
 {
-    int i;
+    long i;
 
     gc_init_tables();
+    scavtab[SIMPLE_VECTOR_WIDETAG] = scav_vector;
+    scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
+    transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
 
     heap_base = (void*)DYNAMIC_SPACE_START;
 
     /* Initialize each page structure. */
     for (i = 0; i < NUM_PAGES; i++) {
-       /* Initialize all pages as free. */
-       page_table[i].allocated = FREE_PAGE;
-       page_table[i].bytes_used = 0;
+        /* Initialize all pages as free. */
+        page_table[i].allocated = FREE_PAGE_FLAG;
+        page_table[i].bytes_used = 0;
 
-       /* Pages are not write-protected at startup. */
-       page_table[i].write_protected = 0;
+        /* Pages are not write-protected at startup. */
+        page_table[i].write_protected = 0;
     }
 
     bytes_allocated = 0;
 
-    /* Initialize the generations. */
+    /* Initialize the generations.
+     *
+     * FIXME: very similar to code in gc_free_heap(), should be shared */
     for (i = 0; i < NUM_GENERATIONS; i++) {
-       generations[i].alloc_start_page = 0;
-       generations[i].alloc_unboxed_start_page = 0;
-       generations[i].alloc_large_start_page = 0;
-       generations[i].alloc_large_unboxed_start_page = 0;
-       generations[i].bytes_allocated = 0;
-       generations[i].gc_trigger = 2000000;
-       generations[i].num_gc = 0;
-       generations[i].cum_sum_bytes_allocated = 0;
-       /* the tune-able parameters */
-       generations[i].bytes_consed_between_gc = 2000000;
-       generations[i].trigger_age = 1;
-       generations[i].min_av_mem_age = 0.75;
+        generations[i].alloc_start_page = 0;
+        generations[i].alloc_unboxed_start_page = 0;
+        generations[i].alloc_large_start_page = 0;
+        generations[i].alloc_large_unboxed_start_page = 0;
+        generations[i].bytes_allocated = 0;
+        generations[i].gc_trigger = 2000000;
+        generations[i].num_gc = 0;
+        generations[i].cum_sum_bytes_allocated = 0;
+        /* the tune-able parameters */
+        generations[i].bytes_consed_between_gc = 2000000;
+        generations[i].trigger_age = 1;
+        generations[i].min_av_mem_age = 0.75;
     }
 
     /* Initialize gc_alloc. */
     gc_alloc_generation = 0;
-    boxed_region.first_page = 0;
-    boxed_region.last_page = -1;
-    boxed_region.start_addr = page_address(0);
-    boxed_region.free_pointer = page_address(0);
-    boxed_region.end_addr = page_address(0);
-
-    unboxed_region.first_page = 0;
-    unboxed_region.last_page = -1;
-    unboxed_region.start_addr = page_address(0);
-    unboxed_region.free_pointer = page_address(0);
-    unboxed_region.end_addr = page_address(0);
+    gc_set_region_empty(&boxed_region);
+    gc_set_region_empty(&unboxed_region);
 
     last_free_page = 0;
 
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
 }
 
 /*  Pick up the dynamic space from after a core load.
  *
  *  The ALLOCATION_POINTER points to the end of the dynamic space.
- *
- *  XX A scan is needed to identify the closest first objects for pages. */
-void
+ */
+
+static void
 gencgc_pickup_dynamic(void)
 {
-    int page = 0;
-    int addr = DYNAMIC_SPACE_START;
-    int alloc_ptr = SymbolValue(ALLOCATION_POINTER);
+    long page = 0;
+    long alloc_ptr = SymbolValue(ALLOCATION_POINTER,0);
+    lispobj *prev=(lispobj *)page_address(page);
 
-    /* Initialize the first region. */
     do {
-       page_table[page].allocated = BOXED_PAGE;
-       page_table[page].gen = 0;
-       page_table[page].bytes_used = 4096;
-       page_table[page].large_object = 0;
-       page_table[page].first_object_offset =
-           (void *)DYNAMIC_SPACE_START - page_address(page);
-       addr += 4096;
-       page++;
-    } while (addr < alloc_ptr);
-
-    generations[0].bytes_allocated = 4096*page;
-    bytes_allocated = 4096*page;
-
-    current_region_free_pointer = boxed_region.free_pointer;
-    current_region_end_addr = boxed_region.end_addr;
+        lispobj *first,*ptr= (lispobj *)page_address(page);
+        page_table[page].allocated = BOXED_PAGE_FLAG;
+        page_table[page].gen = 0;
+        page_table[page].bytes_used = PAGE_BYTES;
+        page_table[page].large_object = 0;
+
+        first=gc_search_space(prev,(ptr+2)-prev,ptr);
+        if(ptr == first)  prev=ptr;
+        page_table[page].first_object_offset =
+            (void *)prev - page_address(page);
+        page++;
+    } while ((long)page_address(page) < alloc_ptr);
+
+    generations[0].bytes_allocated = PAGE_BYTES*page;
+    bytes_allocated = PAGE_BYTES*page;
+
+}
+
+
+void
+gc_initialize_pointers(void)
+{
+    gencgc_pickup_dynamic();
 }
+
+
 \f
-/* a counter for how deep we are in alloc(..) calls */
-int alloc_entered = 0;
 
 /* alloc(..) is the external interface for memory allocation. It
  * allocates to generation 0. It is not called from within the garbage
@@ -6149,189 +4103,70 @@ int alloc_entered = 0;
  * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
  *
  * The check for a GC trigger is only performed when the current
- * region is full, so in most cases it's not needed. Further MAYBE-GC
- * is only called once because Lisp will remember "need to collect
- * garbage" and get around to it when it can. */
+ * region is full, so in most cases it's not needed. */
+
 char *
-alloc(int nbytes)
+alloc(long nbytes)
 {
+    struct thread *thread=arch_os_get_current_thread();
+    struct alloc_region *region=
+#ifdef LISP_FEATURE_SB_THREAD
+        thread ? &(thread->alloc_region) : &boxed_region;
+#else
+        &boxed_region;
+#endif
+    void *new_obj;
+    void *new_free_pointer;
+    gc_assert(nbytes>0);
     /* Check for alignment allocation problems. */
-    gc_assert((((unsigned)current_region_free_pointer & 0x7) == 0)
-             && ((nbytes & 0x7) == 0));
-
-    if (SymbolValue(PSEUDO_ATOMIC_ATOMIC)) {/* if already in a pseudo atomic */
-       
-       void *new_free_pointer;
-
-    retry1:
-       if (alloc_entered) {
-           SHOW("alloc re-entered in already-pseudo-atomic case");
-       }
-       ++alloc_entered;
-
-       /* Check whether there is room in the current region. */
-       new_free_pointer = current_region_free_pointer + nbytes;
-
-       /* FIXME: Shouldn't we be doing some sort of lock here, to
-        * keep from getting screwed if an interrupt service routine
-        * allocates memory between the time we calculate new_free_pointer
-        * and the time we write it back to current_region_free_pointer?
-        * Perhaps I just don't understand pseudo-atomics..
-        *
-        * Perhaps I don't. It looks as though what happens is if we
-        * were interrupted any time during the pseudo-atomic
-        * interval (which includes now) we discard the allocated
-        * memory and try again. So, at least we don't return
-        * a memory area that was allocated out from underneath us
-        * by code in an ISR.
-        * Still, that doesn't seem to prevent
-        * current_region_free_pointer from getting corrupted:
-        *   We read current_region_free_pointer.
-        *   They read current_region_free_pointer.
-        *   They write current_region_free_pointer.
-        *   We write current_region_free_pointer, scribbling over
-        *     whatever they wrote. */
-
-       if (new_free_pointer <= boxed_region.end_addr) {
-           /* If so then allocate from the current region. */
-           void  *new_obj = current_region_free_pointer;
-           current_region_free_pointer = new_free_pointer;
-           alloc_entered--;
-           return((void *)new_obj);
-       }
-
-       if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
-           /* Double the trigger. */
-           auto_gc_trigger *= 2;
-           alloc_entered--;
-           /* Exit the pseudo-atomic. */
-           SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
-           if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
-               /* Handle any interrupts that occurred during
-                * gc_alloc(..). */
-               do_pending_interrupt();
-           }
-           funcall0(SymbolFunction(MAYBE_GC));
-           /* Re-enter the pseudo-atomic. */
-           SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(0));
-           SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(1));
-           goto retry1;
-       }
-       /* Call gc_alloc. */
-       boxed_region.free_pointer = current_region_free_pointer;
-       {
-           void *new_obj = gc_alloc(nbytes);
-           current_region_free_pointer = boxed_region.free_pointer;
-           current_region_end_addr = boxed_region.end_addr;
-           alloc_entered--;
-           return (new_obj);
-       }
-    } else {
-       void *result;
-       void *new_free_pointer;
-
-    retry2:
-       /* At least wrap this allocation in a pseudo atomic to prevent
-        * gc_alloc from being re-entered. */
-       SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(0));
-       SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(1));
-
-       if (alloc_entered)
-           SHOW("alloc re-entered in not-already-pseudo-atomic case");
-       ++alloc_entered;
-
-       /* Check whether there is room in the current region. */
-       new_free_pointer = current_region_free_pointer + nbytes;
-
-       if (new_free_pointer <= boxed_region.end_addr) {
-           /* If so then allocate from the current region. */
-           void *new_obj = current_region_free_pointer;
-           current_region_free_pointer = new_free_pointer;
-           alloc_entered--;
-           SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
-           if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED)) {
-               /* Handle any interrupts that occurred during
-                * gc_alloc(..). */
-               do_pending_interrupt();
-               goto retry2;
-           }
-
-           return((void *)new_obj);
-       }
-
-       /* KLUDGE: There's lots of code around here shared with the
-        * the other branch. Is there some way to factor out the
-        * duplicate code? -- WHN 19991129 */
-       if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
-           /* Double the trigger. */
-           auto_gc_trigger *= 2;
-           alloc_entered--;
-           /* Exit the pseudo atomic. */
-           SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
-           if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
-               /* Handle any interrupts that occurred during
-                * gc_alloc(..); */
-               do_pending_interrupt();
-           }
-           funcall0(SymbolFunction(MAYBE_GC));
-           goto retry2;
-       }
-
-       /* Else call gc_alloc. */
-       boxed_region.free_pointer = current_region_free_pointer;
-       result = gc_alloc(nbytes);
-       current_region_free_pointer = boxed_region.free_pointer;
-       current_region_end_addr = boxed_region.end_addr;
-
-       alloc_entered--;
-       SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
-       if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
-           /* Handle any interrupts that occurred during
-            * gc_alloc(..). */
-           do_pending_interrupt();
-           goto retry2;
-       }
-
-       return result;
-    }
-}
-\f
-/*
- * noise to manipulate the gc trigger stuff
- */
-
-void
-set_auto_gc_trigger(os_vm_size_t dynamic_usage)
-{
-    auto_gc_trigger += dynamic_usage;
-}
-
-void
-clear_auto_gc_trigger(void)
-{
-    auto_gc_trigger = 0;
-}
-\f
-/* Find the code object for the given pc, or return NULL on failure.
- *
- * FIXME: PC shouldn't be lispobj*, should it? Maybe void*? */
-lispobj *
-component_ptr_from_pc(lispobj *pc)
-{
-    lispobj *object = NULL;
-
-    if ( (object = search_read_only_space(pc)) )
-       ;
-    else if ( (object = search_static_space(pc)) )
-       ;
-    else
-       object = search_dynamic_space(pc);
+    gc_assert((((unsigned)region->free_pointer & LOWTAG_MASK) == 0)
+              && ((nbytes & LOWTAG_MASK) == 0));
+#if 0
+    if(all_threads)
+        /* there are a few places in the C code that allocate data in the
+         * heap before Lisp starts.  This is before interrupts are enabled,
+         * so we don't need to check for pseudo-atomic */
+#ifdef LISP_FEATURE_SB_THREAD
+        if(!SymbolValue(PSEUDO_ATOMIC_ATOMIC,th)) {
+            register u32 fs;
+            fprintf(stderr, "fatal error in thread 0x%x, tid=%ld\n",
+                    th,th->os_thread);
+            __asm__("movl %fs,%0" : "=r" (fs)  : );
+            fprintf(stderr, "fs is %x, th->tls_cookie=%x \n",
+                    debug_get_fs(),th->tls_cookie);
+            lose("If you see this message before 2004.01.31, mail details to sbcl-devel\n");
+        }
+#else
+    gc_assert(SymbolValue(PSEUDO_ATOMIC_ATOMIC,th));
+#endif
+#endif
 
-    if (object) /* if we found something */
-       if (TypeOf(*object) == type_CodeHeader) /* if it's a code object */
-           return(object);
+    /* maybe we can do this quickly ... */
+    new_free_pointer = region->free_pointer + nbytes;
+    if (new_free_pointer <= region->end_addr) {
+        new_obj = (void*)(region->free_pointer);
+        region->free_pointer = new_free_pointer;
+        return(new_obj);        /* yup */
+    }
 
-    return (NULL);
+    /* we have to go the long way around, it seems.  Check whether
+     * we should GC in the near future
+     */
+    if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
+        gc_assert(fixnum_value(SymbolValue(PSEUDO_ATOMIC_ATOMIC,thread)));
+        /* Don't flood the system with interrupts if the need to gc is
+         * already noted. This can happen for example when SUB-GC
+         * allocates or after a gc triggered in a WITHOUT-GCING. */
+        if (SymbolValue(GC_PENDING,thread) == NIL) {
+            /* set things up so that GC happens when we finish the PA
+             * section */
+            SetSymbolValue(GC_PENDING,T,thread);
+            if (SymbolValue(GC_INHIBIT,thread) == NIL)
+                arch_set_pseudo_atomic_interrupted(0);
+        }
+    }
+    new_obj = gc_alloc_with_region(nbytes,0,region,0);
+    return (new_obj);
 }
 \f
 /*
@@ -6339,6 +4174,8 @@ component_ptr_from_pc(lispobj *pc)
  * catch GENCGC-related write-protect violations
  */
 
+void unhandled_sigmemoryfault(void);
+
 /* Depending on which OS we're running under, different signals might
  * be raised for a violation of write protection in the heap. This
  * function factors out the common generational GC magic which needs
@@ -6348,44 +4185,47 @@ component_ptr_from_pc(lispobj *pc)
  * Return true if this signal is a normal generational GC thing that
  * we were able to handle, or false if it was abnormal and control
  * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
+
 int
 gencgc_handle_wp_violation(void* fault_addr)
 {
-    int  page_index = find_page_index(fault_addr);
+    long  page_index = find_page_index(fault_addr);
 
-#if defined QSHOW_SIGNALS
+#ifdef QSHOW_SIGNALS
     FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
-          fault_addr, page_index));
+           fault_addr, page_index));
 #endif
 
     /* Check whether the fault is within the dynamic space. */
     if (page_index == (-1)) {
 
-       /* It can be helpful to be able to put a breakpoint on this
-        * case to help diagnose low-level problems. */
-       unhandled_sigmemoryfault();
+        /* It can be helpful to be able to put a breakpoint on this
+         * case to help diagnose low-level problems. */
+        unhandled_sigmemoryfault();
 
-       /* not within the dynamic space -- not our responsibility */
-       return 0;
+        /* not within the dynamic space -- not our responsibility */
+        return 0;
 
     } else {
-
-       /* The only acceptable reason for an signal like this from the
-        * heap is that the generational GC write-protected the page. */
-       if (page_table[page_index].write_protected != 1) {
-           lose("access failure in heap page not marked as write-protected");
-       }
-       
-       /* Unprotect the page. */
-       os_protect(page_address(page_index), 4096, OS_VM_PROT_ALL);
-       page_table[page_index].write_protected = 0;
-       page_table[page_index].write_protected_cleared = 1;
-
-       /* Don't worry, we can handle it. */
-       return 1;
+        if (page_table[page_index].write_protected) {
+            /* Unprotect the page. */
+            os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
+            page_table[page_index].write_protected_cleared = 1;
+            page_table[page_index].write_protected = 0;
+        } else {
+            /* The only acceptable reason for this signal on a heap
+             * access is that GENCGC write-protected the page.
+             * However, if two CPUs hit a wp page near-simultaneously,
+             * we had better not have the second one lose here if it
+             * does this test after the first one has already set wp=0
+             */
+            if(page_table[page_index].write_protected_cleared != 1)
+                lose("fault in heap page not marked as write-protected");
+        }
+        /* Don't worry, we can handle it. */
+        return 1;
     }
 }
-
 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
  * it's not just a case of the program hitting the write barrier, and
  * are about to let Lisp deal with it. It's basically just a
@@ -6393,3 +4233,22 @@ gencgc_handle_wp_violation(void* fault_addr)
 void
 unhandled_sigmemoryfault()
 {}
+
+void gc_alloc_update_all_page_tables(void)
+{
+    /* Flush the alloc regions updating the tables. */
+    struct thread *th;
+    for_each_thread(th)
+        gc_alloc_update_page_tables(0, &th->alloc_region);
+    gc_alloc_update_page_tables(1, &unboxed_region);
+    gc_alloc_update_page_tables(0, &boxed_region);
+}
+void
+gc_set_region_empty(struct alloc_region *region)
+{
+    region->first_page = 0;
+    region->last_page = -1;
+    region->start_addr = page_address(0);
+    region->free_pointer = page_address(0);
+    region->end_addr = page_address(0);
+}