Add :application-type parameter for save-lisp-and-die on Windows.
[sbcl.git] / src / runtime / gencgc.c
index e6ed1e2..5d218b1 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * GENerational Conservative Garbage Collector for SBCL x86
+ * GENerational Conservative Garbage Collector for SBCL
  */
 
 /*
  *   <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
  */
 
+#include <stdlib.h>
 #include <stdio.h>
-#include <signal.h>
 #include <errno.h>
 #include <string.h>
 #include "sbcl.h"
+#if defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD)
+#include "pthreads_win32.h"
+#else
+#include <signal.h>
+#endif
 #include "runtime.h"
 #include "os.h"
 #include "interr.h"
 #include "validate.h"
 #include "lispregs.h"
 #include "arch.h"
-#include "fixnump.h"
 #include "gc.h"
 #include "gc-internal.h"
 #include "thread.h"
+#include "pseudo-atomic.h"
+#include "alloc.h"
 #include "genesis/vector.h"
 #include "genesis/weak-pointer.h"
+#include "genesis/fdefn.h"
 #include "genesis/simple-fun.h"
+#include "save.h"
 #include "genesis/hash-table.h"
+#include "genesis/instance.h"
+#include "genesis/layout.h"
+#include "gencgc.h"
+#if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
+#include "genesis/cons.h"
+#endif
 
 /* forward declarations */
-long gc_find_freeish_pages(long *restart_page_ptr, long nbytes, int unboxed);
-static void  gencgc_pickup_dynamic(void);
+page_index_t  gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t nbytes,
+                                    int page_type_flag);
 
 \f
 /*
  * GC parameters
  */
 
-/* the number of actual generations. (The number of 'struct
- * generation' objects is one more than this, because one object
- * serves as scratch when GC'ing.) */
-#define NUM_GENERATIONS 6
+/* Generations 0-5 are normal collected generations, 6 is only used as
+ * scratch space by the collector, and should never get collected.
+ */
+enum {
+    SCRATCH_GENERATION = PSEUDO_STATIC_GENERATION+1,
+    NUM_GENERATIONS
+};
 
 /* Should we use page protection to help avoid the scavenging of pages
  * that don't have pointers to younger generations? */
 boolean enable_page_protection = 1;
 
-/* Should we unmap a page and re-mmap it to have it zero filled? */
-#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__)
-/* comment from cmucl-2.4.8: This can waste a lot of swap on FreeBSD
- * so don't unmap there.
- *
- * The CMU CL comment didn't specify a version, but was probably an
- * old version of FreeBSD (pre-4.0), so this might no longer be true.
- * OTOH, if it is true, this behavior might exist on OpenBSD too, so
- * for now we don't unmap there either. -- WHN 2001-04-07 */
-boolean gencgc_unmap_zero = 0;
+/* the minimum size (in bytes) for a large object*/
+#if (GENCGC_ALLOC_GRANULARITY >= PAGE_BYTES) && (GENCGC_ALLOC_GRANULARITY >= GENCGC_CARD_BYTES)
+os_vm_size_t large_object_size = 4 * GENCGC_ALLOC_GRANULARITY;
+#elif (GENCGC_CARD_BYTES >= PAGE_BYTES) && (GENCGC_CARD_BYTES >= GENCGC_ALLOC_GRANULARITY)
+os_vm_size_t large_object_size = 4 * GENCGC_CARD_BYTES;
 #else
-boolean gencgc_unmap_zero = 1;
+os_vm_size_t large_object_size = 4 * PAGE_BYTES;
 #endif
 
-/* the minimum size (in bytes) for a large object*/
-unsigned large_object_size = 4 * PAGE_BYTES;
+/* Largest allocation seen since last GC. */
+os_vm_size_t large_allocation = 0;
 
 \f
 /*
  * debugging
  */
 
-
-
 /* the verbosity level. All non-error messages are disabled at level 0;
  * and only a few rare messages are printed at level 1. */
-#ifdef QSHOW
-unsigned gencgc_verbose = 1;
+#if QSHOW == 2
+boolean gencgc_verbose = 1;
 #else
-unsigned gencgc_verbose = 0;
+boolean gencgc_verbose = 0;
 #endif
 
 /* FIXME: At some point enable the various error-checking things below
  * and see what they say. */
 
 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
- * Set verify_gens to NUM_GENERATIONS to disable this kind of check. */
-int verify_gens = NUM_GENERATIONS;
+ * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
+ * check. */
+generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
 
 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
 boolean pre_verify_gen_0 = 0;
@@ -114,8 +125,10 @@ boolean verify_after_free_heap = 0;
  * during a heap verify? */
 boolean verify_dynamic_code_check = 0;
 
+#ifdef LISP_FEATURE_X86
 /* Should we check code objects for fixup errors after they are transported? */
 boolean check_code_fixups = 0;
+#endif
 
 /* Should we check that newly allocated regions are zero filled? */
 boolean gencgc_zero_check = 0;
@@ -126,120 +139,223 @@ boolean gencgc_enable_verify_zero_fill = 0;
 /* Should we check that free pages are zero filled during gc_free_heap
  * called after Lisp PURIFY? */
 boolean gencgc_zero_check_during_free_heap = 0;
+
+/* When loading a core, don't do a full scan of the memory for the
+ * memory region boundaries. (Set to true by coreparse.c if the core
+ * contained a pagetable entry).
+ */
+boolean gencgc_partial_pickup = 0;
+
+/* If defined, free pages are read-protected to ensure that nothing
+ * accesses them.
+ */
+
+/* #define READ_PROTECT_FREE_PAGES */
+
 \f
 /*
  * GC structures and variables
  */
 
 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
-unsigned long bytes_allocated = 0;
-extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
-unsigned long auto_gc_trigger = 0;
+os_vm_size_t bytes_allocated = 0;
+os_vm_size_t auto_gc_trigger = 0;
 
 /* the source and destination generations. These are set before a GC starts
  * scavenging. */
-long from_space;
-long new_space;
+generation_index_t from_space;
+generation_index_t new_space;
 
+/* Set to 1 when in GC */
+boolean gc_active_p = 0;
 
-/* An array of page structures is statically allocated.
- * This helps quickly map between an address its page structure.
- * NUM_PAGES is set from the size of the dynamic space. */
-struct page page_table[NUM_PAGES];
+/* should the GC be conservative on stack. If false (only right before
+ * saving a core), don't scan the stack / mark pages dont_move. */
+static boolean conservative_stack = 1;
+
+/* An array of page structures is allocated on gc initialization.
+ * This helps to quickly map between an address and its page structure.
+ * page_table_pages is set from the size of the dynamic space. */
+page_index_t page_table_pages;
+struct page *page_table;
+
+static inline boolean page_allocated_p(page_index_t page) {
+    return (page_table[page].allocated != FREE_PAGE_FLAG);
+}
+
+static inline boolean page_no_region_p(page_index_t page) {
+    return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
+}
+
+static inline boolean page_allocated_no_region_p(page_index_t page) {
+    return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
+            && page_no_region_p(page));
+}
+
+static inline boolean page_free_p(page_index_t page) {
+    return (page_table[page].allocated == FREE_PAGE_FLAG);
+}
+
+static inline boolean page_boxed_p(page_index_t page) {
+    return (page_table[page].allocated & BOXED_PAGE_FLAG);
+}
+
+static inline boolean code_page_p(page_index_t page) {
+    return (page_table[page].allocated & CODE_PAGE_FLAG);
+}
+
+static inline boolean page_boxed_no_region_p(page_index_t page) {
+    return page_boxed_p(page) && page_no_region_p(page);
+}
+
+static inline boolean page_unboxed_p(page_index_t page) {
+    /* Both flags set == boxed code page */
+    return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
+            && !page_boxed_p(page));
+}
+
+static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
+    return (page_boxed_no_region_p(page)
+            && (page_table[page].bytes_used != 0)
+            && !page_table[page].dont_move
+            && (page_table[page].gen == generation));
+}
 
 /* To map addresses to page structures the address of the first page
  * is needed. */
-static void *heap_base = NULL;
-
-#if N_WORD_BITS == 32
- #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG
-#elif N_WORD_BITS == 64
- #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
-#endif
+void *heap_base = NULL;
 
 /* Calculate the start address for the given page number. */
 inline void *
-page_address(long page_num)
+page_address(page_index_t page_num)
 {
-    return (heap_base + (page_num * PAGE_BYTES));
+    return (heap_base + (page_num * GENCGC_CARD_BYTES));
+}
+
+/* Calculate the address where the allocation region associated with
+ * the page starts. */
+static inline void *
+page_scan_start(page_index_t page_index)
+{
+    return page_address(page_index)-page_table[page_index].scan_start_offset;
+}
+
+/* True if the page starts a contiguous block. */
+static inline boolean
+page_starts_contiguous_block_p(page_index_t page_index)
+{
+    return page_table[page_index].scan_start_offset == 0;
+}
+
+/* True if the page is the last page in a contiguous block. */
+static inline boolean
+page_ends_contiguous_block_p(page_index_t page_index, generation_index_t gen)
+{
+    return (/* page doesn't fill block */
+            (page_table[page_index].bytes_used < GENCGC_CARD_BYTES)
+            /* page is last allocated page */
+            || ((page_index + 1) >= last_free_page)
+            /* next page free */
+            || page_free_p(page_index + 1)
+            /* next page contains no data */
+            || (page_table[page_index + 1].bytes_used == 0)
+            /* next page is in different generation */
+            || (page_table[page_index + 1].gen != gen)
+            /* next page starts its own contiguous block */
+            || (page_starts_contiguous_block_p(page_index + 1)));
 }
 
 /* Find the page index within the page_table for the given
  * address. Return -1 on failure. */
-inline long
+inline page_index_t
 find_page_index(void *addr)
 {
-    long index = addr-heap_base;
-
-    if (index >= 0) {
-        index = ((unsigned long)index)/PAGE_BYTES;
-        if (index < NUM_PAGES)
+    if (addr >= heap_base) {
+        page_index_t index = ((pointer_sized_uint_t)addr -
+                              (pointer_sized_uint_t)heap_base) / GENCGC_CARD_BYTES;
+        if (index < page_table_pages)
             return (index);
     }
-
     return (-1);
 }
 
-/* a structure to hold the state of a generation */
+static os_vm_size_t
+npage_bytes(page_index_t npages)
+{
+    gc_assert(npages>=0);
+    return ((os_vm_size_t)npages)*GENCGC_CARD_BYTES;
+}
+
+/* Check that X is a higher address than Y and return offset from Y to
+ * X in bytes. */
+static inline os_vm_size_t
+void_diff(void *x, void *y)
+{
+    gc_assert(x >= y);
+    return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
+}
+
+/* a structure to hold the state of a generation
+ *
+ * CAUTION: If you modify this, make sure to touch up the alien
+ * definition in src/code/gc.lisp accordingly. ...or better yes,
+ * deal with the FIXME there...
+ */
 struct generation {
 
     /* the first page that gc_alloc() checks on its next call */
-    long alloc_start_page;
+    page_index_t alloc_start_page;
 
     /* the first page that gc_alloc_unboxed() checks on its next call */
-    long alloc_unboxed_start_page;
+    page_index_t alloc_unboxed_start_page;
 
     /* the first page that gc_alloc_large (boxed) considers on its next
      * call. (Although it always allocates after the boxed_region.) */
-    long alloc_large_start_page;
+    page_index_t alloc_large_start_page;
 
     /* the first page that gc_alloc_large (unboxed) considers on its
      * next call. (Although it always allocates after the
      * current_unboxed_region.) */
-    long alloc_large_unboxed_start_page;
+    page_index_t alloc_large_unboxed_start_page;
 
     /* the bytes allocated to this generation */
-    long bytes_allocated;
+    os_vm_size_t bytes_allocated;
 
     /* the number of bytes at which to trigger a GC */
-    long gc_trigger;
+    os_vm_size_t gc_trigger;
 
     /* to calculate a new level for gc_trigger */
-    long bytes_consed_between_gc;
+    os_vm_size_t bytes_consed_between_gc;
 
     /* the number of GCs since the last raise */
     int num_gc;
 
-    /* the average age after which a GC will raise objects to the
+    /* the number of GCs to run on the generations before raising objects to the
      * next generation */
-    int trigger_age;
+    int number_of_gcs_before_promotion;
 
     /* the cumulative sum of the bytes allocated to this generation. It is
      * cleared after a GC on this generations, and update before new
      * objects are added from a GC of a younger generation. Dividing by
      * the bytes_allocated will give the average age of the memory in
      * this generation since its last GC. */
-    long cum_sum_bytes_allocated;
+    os_vm_size_t cum_sum_bytes_allocated;
 
     /* a minimum average memory age before a GC will occur helps
      * prevent a GC when a large number of new live objects have been
      * added, in which case a GC could be a waste of time */
-    double min_av_mem_age;
+    double minimum_age_before_gc;
 };
-/* the number of actual generations. (The number of 'struct
- * generation' objects is one more than this, because one object
- * serves as scratch when GC'ing.) */
-#define NUM_GENERATIONS 6
 
 /* an array of generation structures. There needs to be one more
  * generation structure than actual generations as the oldest
  * generation is temporarily raised then lowered. */
-struct generation generations[NUM_GENERATIONS+1];
+struct generation generations[NUM_GENERATIONS];
 
 /* the oldest generation that is will currently be GCed by default.
- * Valid values are: 0, 1, ... (NUM_GENERATIONS-1)
+ * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
  *
- * The default of (NUM_GENERATIONS-1) enables GC on all generations.
+ * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
  *
  * Setting this to 0 effectively disables the generational nature of
  * the GC. In some applications generational GC may not be useful
@@ -248,22 +364,31 @@ struct generation generations[NUM_GENERATIONS+1];
  * An intermediate value could be handy after moving long-lived data
  * into an older generation so an unnecessary GC of this long-lived
  * data can be avoided. */
-unsigned int  gencgc_oldest_gen_to_gc = NUM_GENERATIONS-1;
+generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
 
 /* The maximum free page in the heap is maintained and used to update
  * ALLOCATION_POINTER which is used by the room function to limit its
  * search of the heap. XX Gencgc obviously needs to be better
  * integrated with the Lisp code. */
-static long  last_free_page;
+page_index_t last_free_page;
 \f
+#ifdef LISP_FEATURE_SB_THREAD
 /* This lock is to prevent multiple threads from simultaneously
  * allocating new regions which overlap each other.  Note that the
  * majority of GC is single-threaded, but alloc() may be called from
  * >1 thread at a time and must be thread-safe.  This lock must be
  * seized before all accesses to generations[] or to parts of
  * page_table[] that other threads may want to see */
+static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
+/* This lock is used to protect non-thread-local allocation. */
+static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
+#endif
+
+extern os_vm_size_t gencgc_release_granularity;
+os_vm_size_t gencgc_release_granularity = GENCGC_RELEASE_GRANULARITY;
 
-static lispobj free_pages_lock=0;
+extern os_vm_size_t gencgc_alloc_granularity;
+os_vm_size_t gencgc_alloc_granularity = GENCGC_ALLOC_GRANULARITY;
 
 \f
 /*
@@ -272,14 +397,13 @@ static lispobj free_pages_lock=0;
 
 /* Count the number of pages which are write-protected within the
  * given generation. */
-static long
-count_write_protect_generation_pages(int generation)
+static page_index_t
+count_write_protect_generation_pages(generation_index_t generation)
 {
-    long i;
-    long count = 0;
+    page_index_t i, count = 0;
 
     for (i = 0; i < last_free_page; i++)
-        if ((page_table[i].allocated != FREE_PAGE_FLAG)
+        if (page_allocated_p(i)
             && (page_table[i].gen == generation)
             && (page_table[i].write_protected == 1))
             count++;
@@ -287,27 +411,28 @@ count_write_protect_generation_pages(int generation)
 }
 
 /* Count the number of pages within the given generation. */
-static long
-count_generation_pages(int generation)
+static page_index_t
+count_generation_pages(generation_index_t generation)
 {
-    long i;
-    long count = 0;
+    page_index_t i;
+    page_index_t count = 0;
 
     for (i = 0; i < last_free_page; i++)
-        if ((page_table[i].allocated != 0)
+        if (page_allocated_p(i)
             && (page_table[i].gen == generation))
             count++;
     return count;
 }
 
-#ifdef QSHOW
-static long
+#if QSHOW
+static page_index_t
 count_dont_move_pages(void)
 {
-    long i;
-    long count = 0;
+    page_index_t i;
+    page_index_t count = 0;
     for (i = 0; i < last_free_page; i++) {
-        if ((page_table[i].allocated != 0) && (page_table[i].dont_move != 0)) {
+        if (page_allocated_p(i)
+            && (page_table[i].dont_move != 0)) {
             ++count;
         }
     }
@@ -317,21 +442,22 @@ count_dont_move_pages(void)
 
 /* Work through the pages and add up the number of bytes used for the
  * given generation. */
-static long
-count_generation_bytes_allocated (int gen)
+static os_vm_size_t
+count_generation_bytes_allocated (generation_index_t gen)
 {
-    long i;
-    long result = 0;
+    page_index_t i;
+    os_vm_size_t result = 0;
     for (i = 0; i < last_free_page; i++) {
-        if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
+        if (page_allocated_p(i)
+            && (page_table[i].gen == gen))
             result += page_table[i].bytes_used;
     }
     return result;
 }
 
 /* Return the average age of the memory in a generation. */
-static double
-gen_av_mem_age(int gen)
+extern double
+generation_average_age(generation_index_t gen)
 {
     if (generations[gen].bytes_allocated == 0)
         return 0.0;
@@ -341,44 +467,50 @@ gen_av_mem_age(int gen)
         / ((double)generations[gen].bytes_allocated);
 }
 
-void fpu_save(int *);           /* defined in x86-assem.S */
-void fpu_restore(int *);        /* defined in x86-assem.S */
-/* The verbose argument controls how much to print: 0 for normal
- * level of detail; 1 for debugging. */
-static void
-print_generation_stats(int verbose) /* FIXME: should take FILE argument */
+extern void
+write_generation_stats(FILE *file)
 {
-    int i, gens;
-    int fpu_state[27];
+    generation_index_t i;
+
+#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
+#define FPU_STATE_SIZE 27
+    int fpu_state[FPU_STATE_SIZE];
+#elif defined(LISP_FEATURE_PPC)
+#define FPU_STATE_SIZE 32
+    long long fpu_state[FPU_STATE_SIZE];
+#elif defined(LISP_FEATURE_SPARC)
+    /*
+     * 32 (single-precision) FP registers, and the FP state register.
+     * But Sparc V9 has 32 double-precision registers (equivalent to 64
+     * single-precision, but can't be accessed), so we leave enough room
+     * for that.
+     */
+#define FPU_STATE_SIZE (((32 + 32 + 1) + 1)/2)
+    long long fpu_state[FPU_STATE_SIZE];
+#endif
 
     /* This code uses the FP instructions which may be set up for Lisp
      * so they need to be saved and reset for C. */
     fpu_save(fpu_state);
 
-    /* number of generations to print */
-    if (verbose)
-        gens = NUM_GENERATIONS+1;
-    else
-        gens = NUM_GENERATIONS;
-
     /* Print the heap stats. */
-    fprintf(stderr,
-            "   Gen Boxed Unboxed LB   LUB  !move  Alloc  Waste   Trig    WP  GCs Mem-age\n");
+    fprintf(file,
+            " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB   LUB  !move  Alloc  Waste   Trig    WP  GCs Mem-age\n");
 
-    for (i = 0; i < gens; i++) {
-        int j;
-        int boxed_cnt = 0;
-        int unboxed_cnt = 0;
-        int large_boxed_cnt = 0;
-        int large_unboxed_cnt = 0;
-        int pinned_cnt=0;
+    for (i = 0; i < SCRATCH_GENERATION; i++) {
+        page_index_t j;
+        page_index_t boxed_cnt = 0;
+        page_index_t unboxed_cnt = 0;
+        page_index_t large_boxed_cnt = 0;
+        page_index_t large_unboxed_cnt = 0;
+        page_index_t pinned_cnt=0;
 
         for (j = 0; j < last_free_page; j++)
             if (page_table[j].gen == i) {
 
                 /* Count the number of boxed pages within the given
                  * generation. */
-                if (page_table[j].allocated & BOXED_PAGE_FLAG) {
+                if (page_boxed_p(j)) {
                     if (page_table[j].large_object)
                         large_boxed_cnt++;
                     else
@@ -387,7 +519,7 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
                 if(page_table[j].dont_move) pinned_cnt++;
                 /* Count the number of unboxed pages within the given
                  * generation. */
-                if (page_table[j].allocated & UNBOXED_PAGE_FLAG) {
+                if (page_unboxed_p(j)) {
                     if (page_table[j].large_object)
                         large_unboxed_cnt++;
                     else
@@ -397,27 +529,177 @@ print_generation_stats(int verbose) /* FIXME: should take FILE argument */
 
         gc_assert(generations[i].bytes_allocated
                   == count_generation_bytes_allocated(i));
-        fprintf(stderr,
-                "   %1d: %5d %5d %5d %5d %5d %8ld %5ld %8ld %4ld %3d %7.4f\n",
+        fprintf(file,
+                "   %1d: %5ld %5ld %5ld %5ld",
                 i,
-                boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
-                pinned_cnt,
+                generations[i].alloc_start_page,
+                generations[i].alloc_unboxed_start_page,
+                generations[i].alloc_large_start_page,
+                generations[i].alloc_large_unboxed_start_page);
+        fprintf(file,
+                " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT
+                " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT,
+                boxed_cnt, unboxed_cnt, large_boxed_cnt,
+                large_unboxed_cnt, pinned_cnt);
+        fprintf(file,
+                " %8"OS_VM_SIZE_FMT
+                " %5"OS_VM_SIZE_FMT
+                " %8"OS_VM_SIZE_FMT
+                " %4"PAGE_INDEX_FMT" %3d %7.4f\n",
                 generations[i].bytes_allocated,
-                (count_generation_pages(i)*PAGE_BYTES
-                 - generations[i].bytes_allocated),
+                (npage_bytes(count_generation_pages(i)) - generations[i].bytes_allocated),
                 generations[i].gc_trigger,
                 count_write_protect_generation_pages(i),
                 generations[i].num_gc,
-                gen_av_mem_age(i));
+                generation_average_age(i));
     }
-    fprintf(stderr,"   Total bytes allocated=%ld\n", bytes_allocated);
+    fprintf(file,"   Total bytes allocated    = %"OS_VM_SIZE_FMT"\n", bytes_allocated);
+    fprintf(file,"   Dynamic-space-size bytes = %"OS_VM_SIZE_FMT"\n", dynamic_space_size);
 
     fpu_restore(fpu_state);
 }
+
+extern void
+write_heap_exhaustion_report(FILE *file, long available, long requested,
+                             struct thread *thread)
+{
+    fprintf(file,
+            "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
+            gc_active_p ? "garbage collection" : "allocation",
+            available,
+            requested);
+    write_generation_stats(file);
+    fprintf(file, "GC control variables:\n");
+    fprintf(file, "   *GC-INHIBIT* = %s\n   *GC-PENDING* = %s\n",
+            SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
+            (SymbolValue(GC_PENDING, thread) == T) ?
+            "true" : ((SymbolValue(GC_PENDING, thread) == NIL) ?
+                      "false" : "in progress"));
+#ifdef LISP_FEATURE_SB_THREAD
+    fprintf(file, "   *STOP-FOR-GC-PENDING* = %s\n",
+            SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
+#endif
+}
+
+extern void
+print_generation_stats(void)
+{
+    write_generation_stats(stderr);
+}
+
+extern char* gc_logfile;
+char * gc_logfile = NULL;
+
+extern void
+log_generation_stats(char *logfile, char *header)
+{
+    if (logfile) {
+        FILE * log = fopen(logfile, "a");
+        if (log) {
+            fprintf(log, "%s\n", header);
+            write_generation_stats(log);
+            fclose(log);
+        } else {
+            fprintf(stderr, "Could not open gc logfile: %s\n", logfile);
+            fflush(stderr);
+        }
+    }
+}
+
+extern void
+report_heap_exhaustion(long available, long requested, struct thread *th)
+{
+    if (gc_logfile) {
+        FILE * log = fopen(gc_logfile, "a");
+        if (log) {
+            write_heap_exhaustion_report(log, available, requested, th);
+            fclose(log);
+        } else {
+            fprintf(stderr, "Could not open gc logfile: %s\n", gc_logfile);
+            fflush(stderr);
+        }
+    }
+    /* Always to stderr as well. */
+    write_heap_exhaustion_report(stderr, available, requested, th);
+}
 \f
-/*
- * allocation routines
+
+#if defined(LISP_FEATURE_X86)
+void fast_bzero(void*, size_t); /* in <arch>-assem.S */
+#endif
+
+/* Zero the pages from START to END (inclusive), but use mmap/munmap instead
+ * if zeroing it ourselves, i.e. in practice give the memory back to the
+ * OS. Generally done after a large GC.
+ */
+void zero_pages_with_mmap(page_index_t start, page_index_t end) {
+    page_index_t i;
+    void *addr = page_address(start), *new_addr;
+    os_vm_size_t length = npage_bytes(1+end-start);
+
+    if (start > end)
+      return;
+
+    gc_assert(length >= gencgc_release_granularity);
+    gc_assert((length % gencgc_release_granularity) == 0);
+
+    os_invalidate(addr, length);
+    new_addr = os_validate(addr, length);
+    if (new_addr == NULL || new_addr != addr) {
+        lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
+             start, new_addr);
+    }
+
+    for (i = start; i <= end; i++) {
+        page_table[i].need_to_zero = 0;
+    }
+}
+
+/* Zero the pages from START to END (inclusive). Generally done just after
+ * a new region has been allocated.
  */
+static void
+zero_pages(page_index_t start, page_index_t end) {
+    if (start > end)
+      return;
+
+#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
+    fast_bzero(page_address(start), npage_bytes(1+end-start));
+#else
+    bzero(page_address(start), npage_bytes(1+end-start));
+#endif
+
+}
+
+static void
+zero_and_mark_pages(page_index_t start, page_index_t end) {
+    page_index_t i;
+
+    zero_pages(start, end);
+    for (i = start; i <= end; i++)
+        page_table[i].need_to_zero = 0;
+}
+
+/* Zero the pages from START to END (inclusive), except for those
+ * pages that are known to already zeroed. Mark all pages in the
+ * ranges as non-zeroed.
+ */
+static void
+zero_dirty_pages(page_index_t start, page_index_t end) {
+    page_index_t i, j;
+
+    for (i = start; i <= end; i++) {
+        if (!page_table[i].need_to_zero) continue;
+        for (j = i+1; (j <= end) && (page_table[j].need_to_zero); j++);
+        zero_pages(i, j-1);
+        i = j;
+    }
+
+    for (i = start; i <= end; i++) {
+        page_table[i].need_to_zero = 1;
+    }
+}
+
 
 /*
  * To support quick and inline allocation, regions of memory can be
@@ -471,7 +753,56 @@ struct alloc_region boxed_region;
 struct alloc_region unboxed_region;
 
 /* The generation currently being allocated to. */
-static int gc_alloc_generation;
+static generation_index_t gc_alloc_generation;
+
+static inline page_index_t
+generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
+{
+    if (large) {
+        if (UNBOXED_PAGE_FLAG == page_type_flag) {
+            return generations[generation].alloc_large_unboxed_start_page;
+        } else if (BOXED_PAGE_FLAG & page_type_flag) {
+            /* Both code and data. */
+            return generations[generation].alloc_large_start_page;
+        } else {
+            lose("bad page type flag: %d", page_type_flag);
+        }
+    } else {
+        if (UNBOXED_PAGE_FLAG == page_type_flag) {
+            return generations[generation].alloc_unboxed_start_page;
+        } else if (BOXED_PAGE_FLAG & page_type_flag) {
+            /* Both code and data. */
+            return generations[generation].alloc_start_page;
+        } else {
+            lose("bad page_type_flag: %d", page_type_flag);
+        }
+    }
+}
+
+static inline void
+set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
+                                page_index_t page)
+{
+    if (large) {
+        if (UNBOXED_PAGE_FLAG == page_type_flag) {
+            generations[generation].alloc_large_unboxed_start_page = page;
+        } else if (BOXED_PAGE_FLAG & page_type_flag) {
+            /* Both code and data. */
+            generations[generation].alloc_large_start_page = page;
+        } else {
+            lose("bad page type flag: %d", page_type_flag);
+        }
+    } else {
+        if (UNBOXED_PAGE_FLAG == page_type_flag) {
+            generations[generation].alloc_unboxed_start_page = page;
+        } else if (BOXED_PAGE_FLAG & page_type_flag) {
+            /* Both code and data. */
+            generations[generation].alloc_start_page = page;
+        } else {
+            lose("bad page type flag: %d", page_type_flag);
+        }
+    }
+}
 
 /* Find a new region with room for at least the given number of bytes.
  *
@@ -497,12 +828,13 @@ static int gc_alloc_generation;
  * are allocated, although they will initially be empty.
  */
 static void
-gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
+gc_alloc_new_region(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
 {
-    long first_page;
-    long last_page;
-    long bytes_found;
-    long i;
+    page_index_t first_page;
+    page_index_t last_page;
+    os_vm_size_t bytes_found;
+    page_index_t i;
+    int ret;
 
     /*
     FSHOW((stderr,
@@ -514,17 +846,12 @@ gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
     gc_assert((alloc_region->first_page == 0)
               && (alloc_region->last_page == -1)
               && (alloc_region->free_pointer == alloc_region->end_addr));
-    get_spinlock(&free_pages_lock,(long) alloc_region);
-    if (unboxed) {
-        first_page =
-            generations[gc_alloc_generation].alloc_unboxed_start_page;
-    } else {
-        first_page =
-            generations[gc_alloc_generation].alloc_start_page;
-    }
-    last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
-    bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
-            + PAGE_BYTES*(last_page-first_page);
+    ret = thread_mutex_lock(&free_pages_lock);
+    gc_assert(ret == 0);
+    first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
+    last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
+    bytes_found=(GENCGC_CARD_BYTES - page_table[first_page].bytes_used)
+            + npage_bytes(last_page-first_page);
 
     /* Set up the alloc_region. */
     alloc_region->first_page = first_page;
@@ -538,63 +865,67 @@ gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
 
     /* The first page may have already been in use. */
     if (page_table[first_page].bytes_used == 0) {
-        if (unboxed)
-            page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
-        else
-            page_table[first_page].allocated = BOXED_PAGE_FLAG;
+        page_table[first_page].allocated = page_type_flag;
         page_table[first_page].gen = gc_alloc_generation;
         page_table[first_page].large_object = 0;
-        page_table[first_page].first_object_offset = 0;
+        page_table[first_page].scan_start_offset = 0;
     }
 
-    if (unboxed)
-        gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
-    else
-        gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
+    gc_assert(page_table[first_page].allocated == page_type_flag);
     page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
 
     gc_assert(page_table[first_page].gen == gc_alloc_generation);
     gc_assert(page_table[first_page].large_object == 0);
 
     for (i = first_page+1; i <= last_page; i++) {
-        if (unboxed)
-            page_table[i].allocated = UNBOXED_PAGE_FLAG;
-        else
-            page_table[i].allocated = BOXED_PAGE_FLAG;
+        page_table[i].allocated = page_type_flag;
         page_table[i].gen = gc_alloc_generation;
         page_table[i].large_object = 0;
         /* This may not be necessary for unboxed regions (think it was
          * broken before!) */
-        page_table[i].first_object_offset =
-            alloc_region->start_addr - page_address(i);
+        page_table[i].scan_start_offset =
+            void_diff(page_address(i),alloc_region->start_addr);
         page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
     }
     /* Bump up last_free_page. */
     if (last_page+1 > last_free_page) {
         last_free_page = last_page+1;
-        SetSymbolValue(ALLOCATION_POINTER,
-                       (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),
-                       0);
+        /* do we only want to call this on special occasions? like for
+         * boxed_region? */
+        set_alloc_pointer((lispobj)page_address(last_free_page));
+    }
+    ret = thread_mutex_unlock(&free_pages_lock);
+    gc_assert(ret == 0);
+
+#ifdef READ_PROTECT_FREE_PAGES
+    os_protect(page_address(first_page),
+               npage_bytes(1+last_page-first_page),
+               OS_VM_PROT_ALL);
+#endif
+
+    /* If the first page was only partial, don't check whether it's
+     * zeroed (it won't be) and don't zero it (since the parts that
+     * we're interested in are guaranteed to be zeroed).
+     */
+    if (page_table[first_page].bytes_used) {
+        first_page++;
     }
-    release_spinlock(&free_pages_lock);
+
+    zero_dirty_pages(first_page, last_page);
 
     /* we can do this after releasing free_pages_lock */
     if (gencgc_zero_check) {
-        long *p;
-        for (p = (long *)alloc_region->start_addr;
-             p < (long *)alloc_region->end_addr; p++) {
+        word_t *p;
+        for (p = (word_t *)alloc_region->start_addr;
+             p < (word_t *)alloc_region->end_addr; p++) {
             if (*p != 0) {
-                /* KLUDGE: It would be nice to use %lx and explicit casts
-                 * (long) in code like this, so that it is less likely to
-                 * break randomly when running on a machine with different
-                 * word sizes. -- WHN 19991129 */
-                lose("The new region at %x is not zero.", p);
+                lose("The new region is not zero at %p (start=%p, end=%p).\n",
+                     p, alloc_region->start_addr, alloc_region->end_addr);
             }
+        }
     }
 }
 
-}
-
 /* If the record_new_objects flag is 2 then all new regions created
  * are recorded.
  *
@@ -612,22 +943,22 @@ gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
  * scavenge of a generation. */
 #define NUM_NEW_AREAS 512
 static int record_new_objects = 0;
-static long new_areas_ignore_page;
+static page_index_t new_areas_ignore_page;
 struct new_area {
-    long  page;
-    long  offset;
-    long  size;
+    page_index_t page;
+    size_t offset;
+    size_t size;
 };
 static struct new_area (*new_areas)[];
-static long new_areas_index;
-long max_new_areas;
+static size_t new_areas_index;
+size_t max_new_areas;
 
 /* Add a new area to new_areas. */
 static void
-add_new_area(long first_page, long offset, long size)
+add_new_area(page_index_t first_page, size_t offset, size_t size)
 {
-    unsigned new_area_start,c;
-    long i;
+    size_t new_area_start, c;
+    ssize_t i;
 
     /* Ignore if full. */
     if (new_areas_index >= NUM_NEW_AREAS)
@@ -646,13 +977,13 @@ add_new_area(long first_page, long offset, long size)
         gc_abort();
     }
 
-    new_area_start = PAGE_BYTES*first_page + offset;
+    new_area_start = npage_bytes(first_page) + offset;
 
     /* Search backwards for a prior area that this follows from. If
        found this will save adding a new area. */
     for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
-        unsigned area_end =
-            PAGE_BYTES*((*new_areas)[i].page)
+        size_t area_end =
+            npage_bytes((*new_areas)[i].page)
             + (*new_areas)[i].offset
             + (*new_areas)[i].size;
         /*FSHOW((stderr,
@@ -694,15 +1025,16 @@ add_new_area(long first_page, long offset, long size)
  * it is safe to try to re-update the page table of this reset
  * alloc_region. */
 void
-gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
+gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
 {
-    long more;
-    long first_page;
-    long next_page;
-    long bytes_used;
-    long orig_first_page_bytes_used;
-    long region_size;
-    long byte_cnt;
+    boolean more;
+    page_index_t first_page;
+    page_index_t next_page;
+    os_vm_size_t bytes_used;
+    os_vm_size_t region_size;
+    os_vm_size_t byte_cnt;
+    page_bytes_t orig_first_page_bytes_used;
+    int ret;
 
 
     first_page = alloc_region->first_page;
@@ -713,27 +1045,27 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
 
     next_page = first_page+1;
 
-    get_spinlock(&free_pages_lock,(long) alloc_region);
+    ret = thread_mutex_lock(&free_pages_lock);
+    gc_assert(ret == 0);
     if (alloc_region->free_pointer != alloc_region->start_addr) {
         /* some bytes were allocated in the region */
         orig_first_page_bytes_used = page_table[first_page].bytes_used;
 
-        gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
+        gc_assert(alloc_region->start_addr ==
+                  (page_address(first_page)
+                   + page_table[first_page].bytes_used));
 
         /* All the pages used need to be updated */
 
         /* Update the first page. */
 
         /* If the page was free then set up the gen, and
-         * first_object_offset. */
+         * scan_start_offset. */
         if (page_table[first_page].bytes_used == 0)
-            gc_assert(page_table[first_page].first_object_offset == 0);
+            gc_assert(page_starts_contiguous_block_p(first_page));
         page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
 
-        if (unboxed)
-            gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
-        else
-            gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
+        gc_assert(page_table[first_page].allocated & page_type_flag);
         gc_assert(page_table[first_page].gen == gc_alloc_generation);
         gc_assert(page_table[first_page].large_object == 0);
 
@@ -742,35 +1074,35 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
         /* Calculate the number of bytes used in this page. This is not
          * always the number of new bytes, unless it was free. */
         more = 0;
-        if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>PAGE_BYTES) {
-            bytes_used = PAGE_BYTES;
+        if ((bytes_used = void_diff(alloc_region->free_pointer,
+                                    page_address(first_page)))
+            >GENCGC_CARD_BYTES) {
+            bytes_used = GENCGC_CARD_BYTES;
             more = 1;
         }
         page_table[first_page].bytes_used = bytes_used;
         byte_cnt += bytes_used;
 
 
-        /* All the rest of the pages should be free. We need to set their
-         * first_object_offset pointer to the start of the region, and set
-         * the bytes_used. */
+        /* All the rest of the pages should be free. We need to set
+         * their scan_start_offset pointer to the start of the
+         * region, and set the bytes_used. */
         while (more) {
             page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
-            if (unboxed)
-                gc_assert(page_table[next_page].allocated==UNBOXED_PAGE_FLAG);
-            else
-                gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
+            gc_assert(page_table[next_page].allocated & page_type_flag);
             gc_assert(page_table[next_page].bytes_used == 0);
             gc_assert(page_table[next_page].gen == gc_alloc_generation);
             gc_assert(page_table[next_page].large_object == 0);
 
-            gc_assert(page_table[next_page].first_object_offset ==
-                      alloc_region->start_addr - page_address(next_page));
+            gc_assert(page_table[next_page].scan_start_offset ==
+                      void_diff(page_address(next_page),
+                                alloc_region->start_addr));
 
             /* Calculate the number of bytes used in this page. */
             more = 0;
-            if ((bytes_used = (alloc_region->free_pointer
-                               - page_address(next_page)))>PAGE_BYTES) {
-                bytes_used = PAGE_BYTES;
+            if ((bytes_used = void_diff(alloc_region->free_pointer,
+                                        page_address(next_page)))>GENCGC_CARD_BYTES) {
+                bytes_used = GENCGC_CARD_BYTES;
                 more = 1;
             }
             page_table[next_page].bytes_used = bytes_used;
@@ -779,7 +1111,8 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
             next_page++;
         }
 
-        region_size = alloc_region->free_pointer - alloc_region->start_addr;
+        region_size = void_diff(alloc_region->free_pointer,
+                                alloc_region->start_addr);
         bytes_allocated += region_size;
         generations[gc_alloc_generation].bytes_allocated += region_size;
 
@@ -787,14 +1120,10 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
 
         /* Set the generations alloc restart page to the last page of
          * the region. */
-        if (unboxed)
-            generations[gc_alloc_generation].alloc_unboxed_start_page =
-                next_page-1;
-        else
-            generations[gc_alloc_generation].alloc_start_page = next_page-1;
+        set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
 
         /* Add the region to the new_areas if requested. */
-        if (!unboxed)
+        if (BOXED_PAGE_FLAG & page_type_flag)
             add_new_area(first_page,orig_first_page_bytes_used, region_size);
 
         /*
@@ -817,65 +1146,53 @@ gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
         page_table[next_page].allocated = FREE_PAGE_FLAG;
         next_page++;
     }
-    release_spinlock(&free_pages_lock);
+    ret = thread_mutex_unlock(&free_pages_lock);
+    gc_assert(ret == 0);
+
     /* alloc_region is per-thread, we're ok to do this unlocked */
     gc_set_region_empty(alloc_region);
 }
 
-static inline void *gc_quick_alloc(long nbytes);
+static inline void *gc_quick_alloc(word_t nbytes);
 
 /* Allocate a possibly large object. */
 void *
-gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
+gc_alloc_large(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
 {
-    long first_page;
-    long last_page;
-    long orig_first_page_bytes_used;
-    long byte_cnt;
-    long more;
-    long bytes_used;
-    long next_page;
-
-    get_spinlock(&free_pages_lock,(long) alloc_region);
-
-    if (unboxed) {
-        first_page =
-            generations[gc_alloc_generation].alloc_large_unboxed_start_page;
-    } else {
-        first_page = generations[gc_alloc_generation].alloc_large_start_page;
-    }
+    boolean more;
+    page_index_t first_page, next_page, last_page;
+    page_bytes_t orig_first_page_bytes_used;
+    os_vm_size_t byte_cnt;
+    os_vm_size_t bytes_used;
+    int ret;
+
+    ret = thread_mutex_lock(&free_pages_lock);
+    gc_assert(ret == 0);
+
+    first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
     if (first_page <= alloc_region->last_page) {
         first_page = alloc_region->last_page+1;
     }
 
-    last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
+    last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
 
     gc_assert(first_page > alloc_region->last_page);
-    if (unboxed)
-        generations[gc_alloc_generation].alloc_large_unboxed_start_page =
-            last_page;
-    else
-        generations[gc_alloc_generation].alloc_large_start_page = last_page;
+
+    set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
 
     /* Set up the pages. */
     orig_first_page_bytes_used = page_table[first_page].bytes_used;
 
     /* If the first page was free then set up the gen, and
-     * first_object_offset. */
+     * scan_start_offset. */
     if (page_table[first_page].bytes_used == 0) {
-        if (unboxed)
-            page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
-        else
-            page_table[first_page].allocated = BOXED_PAGE_FLAG;
+        page_table[first_page].allocated = page_type_flag;
         page_table[first_page].gen = gc_alloc_generation;
-        page_table[first_page].first_object_offset = 0;
+        page_table[first_page].scan_start_offset = 0;
         page_table[first_page].large_object = 1;
     }
 
-    if (unboxed)
-        gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
-    else
-        gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
+    gc_assert(page_table[first_page].allocated == page_type_flag);
     gc_assert(page_table[first_page].gen == gc_alloc_generation);
     gc_assert(page_table[first_page].large_object == 1);
 
@@ -884,8 +1201,8 @@ gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
     /* Calc. the number of bytes used in this page. This is not
      * always the number of new bytes, unless it was free. */
     more = 0;
-    if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
-        bytes_used = PAGE_BYTES;
+    if ((bytes_used = nbytes+orig_first_page_bytes_used) > GENCGC_CARD_BYTES) {
+        bytes_used = GENCGC_CARD_BYTES;
         more = 1;
     }
     page_table[first_page].bytes_used = bytes_used;
@@ -894,25 +1211,23 @@ gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
     next_page = first_page+1;
 
     /* All the rest of the pages should be free. We need to set their
-     * first_object_offset pointer to the start of the region, and
-     * set the bytes_used. */
+     * scan_start_offset pointer to the start of the region, and set
+     * the bytes_used. */
     while (more) {
-        gc_assert(page_table[next_page].allocated == FREE_PAGE_FLAG);
+        gc_assert(page_free_p(next_page));
         gc_assert(page_table[next_page].bytes_used == 0);
-        if (unboxed)
-            page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
-        else
-            page_table[next_page].allocated = BOXED_PAGE_FLAG;
+        page_table[next_page].allocated = page_type_flag;
         page_table[next_page].gen = gc_alloc_generation;
         page_table[next_page].large_object = 1;
 
-        page_table[next_page].first_object_offset =
-            orig_first_page_bytes_used - PAGE_BYTES*(next_page-first_page);
+        page_table[next_page].scan_start_offset =
+            npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
 
         /* Calculate the number of bytes used in this page. */
         more = 0;
-        if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > PAGE_BYTES) {
-            bytes_used = PAGE_BYTES;
+        bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
+        if (bytes_used > GENCGC_CARD_BYTES) {
+            bytes_used = GENCGC_CARD_BYTES;
             more = 1;
         }
         page_table[next_page].bytes_used = bytes_used;
@@ -928,111 +1243,172 @@ gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
     generations[gc_alloc_generation].bytes_allocated += nbytes;
 
     /* Add the region to the new_areas if requested. */
-    if (!unboxed)
+    if (BOXED_PAGE_FLAG & page_type_flag)
         add_new_area(first_page,orig_first_page_bytes_used,nbytes);
 
     /* Bump up last_free_page */
     if (last_page+1 > last_free_page) {
         last_free_page = last_page+1;
-        SetSymbolValue(ALLOCATION_POINTER,
-                       (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),0);
+        set_alloc_pointer((lispobj)(page_address(last_free_page)));
     }
-    release_spinlock(&free_pages_lock);
+    ret = thread_mutex_unlock(&free_pages_lock);
+    gc_assert(ret == 0);
+
+#ifdef READ_PROTECT_FREE_PAGES
+    os_protect(page_address(first_page),
+               npage_bytes(1+last_page-first_page),
+               OS_VM_PROT_ALL);
+#endif
 
-    return((void *)(page_address(first_page)+orig_first_page_bytes_used));
+    zero_dirty_pages(first_page, last_page);
+
+    return page_address(first_page);
 }
 
-long
-gc_find_freeish_pages(long *restart_page_ptr, long nbytes, int unboxed)
+static page_index_t gencgc_alloc_start_page = -1;
+
+void
+gc_heap_exhausted_error_or_lose (sword_t available, sword_t requested)
 {
-    long first_page;
-    long last_page;
-    long region_size;
-    long restart_page=*restart_page_ptr;
-    long bytes_found;
-    long num_pages;
-    long large_p=(nbytes>=large_object_size);
-    gc_assert(free_pages_lock);
-
-    /* Search for a contiguous free space of at least nbytes. If it's
-     * a large object then align it on a page boundary by searching
-     * for a free page. */
+    struct thread *thread = arch_os_get_current_thread();
+    /* Write basic information before doing anything else: if we don't
+     * call to lisp this is a must, and even if we do there is always
+     * the danger that we bounce back here before the error has been
+     * handled, or indeed even printed.
+     */
+    report_heap_exhaustion(available, requested, thread);
+    if (gc_active_p || (available == 0)) {
+        /* If we are in GC, or totally out of memory there is no way
+         * to sanely transfer control to the lisp-side of things.
+         */
+        lose("Heap exhausted, game over.");
+    }
+    else {
+        /* FIXME: assert free_pages_lock held */
+        (void)thread_mutex_unlock(&free_pages_lock);
+#if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
+        gc_assert(get_pseudo_atomic_atomic(thread));
+        clear_pseudo_atomic_atomic(thread);
+        if (get_pseudo_atomic_interrupted(thread))
+            do_pending_interrupt();
+#endif
+        /* Another issue is that signalling HEAP-EXHAUSTED error leads
+         * to running user code at arbitrary places, even in a
+         * WITHOUT-INTERRUPTS which may lead to a deadlock without
+         * running out of the heap. So at this point all bets are
+         * off. */
+        if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
+            corruption_warning_and_maybe_lose
+                ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
+        funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
+                 alloc_number(available), alloc_number(requested));
+        lose("HEAP-EXHAUSTED-ERROR fell through");
+    }
+}
 
-    do {
-        first_page = restart_page;
-        if (large_p)
-            while ((first_page < NUM_PAGES)
-                   && (page_table[first_page].allocated != FREE_PAGE_FLAG))
-                first_page++;
-        else
-            while (first_page < NUM_PAGES) {
-                if(page_table[first_page].allocated == FREE_PAGE_FLAG)
-                    break;
-                if((page_table[first_page].allocated ==
-                    (unboxed ? UNBOXED_PAGE_FLAG : BOXED_PAGE_FLAG)) &&
+page_index_t
+gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t bytes,
+                      int page_type_flag)
+{
+    page_index_t most_bytes_found_from = 0, most_bytes_found_to = 0;
+    page_index_t first_page, last_page, restart_page = *restart_page_ptr;
+    os_vm_size_t nbytes = bytes;
+    os_vm_size_t nbytes_goal = nbytes;
+    os_vm_size_t bytes_found = 0;
+    os_vm_size_t most_bytes_found = 0;
+    boolean small_object = nbytes < GENCGC_CARD_BYTES;
+    /* FIXME: assert(free_pages_lock is held); */
+
+    if (nbytes_goal < gencgc_alloc_granularity)
+        nbytes_goal = gencgc_alloc_granularity;
+
+    /* Toggled by gc_and_save for heap compaction, normally -1. */
+    if (gencgc_alloc_start_page != -1) {
+        restart_page = gencgc_alloc_start_page;
+    }
+
+    /* FIXME: This is on bytes instead of nbytes pending cleanup of
+     * long from the interface. */
+    gc_assert(bytes>=0);
+    /* Search for a page with at least nbytes of space. We prefer
+     * not to split small objects on multiple pages, to reduce the
+     * number of contiguous allocation regions spaning multiple
+     * pages: this helps avoid excessive conservativism.
+     *
+     * For other objects, we guarantee that they start on their own
+     * page boundary.
+     */
+    first_page = restart_page;
+    while (first_page < page_table_pages) {
+        bytes_found = 0;
+        if (page_free_p(first_page)) {
+                gc_assert(0 == page_table[first_page].bytes_used);
+                bytes_found = GENCGC_CARD_BYTES;
+        } else if (small_object &&
+                   (page_table[first_page].allocated == page_type_flag) &&
                    (page_table[first_page].large_object == 0) &&
                    (page_table[first_page].gen == gc_alloc_generation) &&
-                   (page_table[first_page].bytes_used < (PAGE_BYTES-32)) &&
                    (page_table[first_page].write_protected == 0) &&
                    (page_table[first_page].dont_move == 0)) {
-                    break;
-                }
+            bytes_found = GENCGC_CARD_BYTES - page_table[first_page].bytes_used;
+            if (bytes_found < nbytes) {
+                if (bytes_found > most_bytes_found)
+                    most_bytes_found = bytes_found;
                 first_page++;
+                continue;
             }
-
-        if (first_page >= NUM_PAGES) {
-            fprintf(stderr,
-                    "Argh! gc_find_free_space failed (first_page), nbytes=%ld.\n",
-                    nbytes);
-            print_generation_stats(1);
-            lose(NULL);
+        } else {
+            first_page++;
+            continue;
         }
 
         gc_assert(page_table[first_page].write_protected == 0);
+        for (last_page = first_page+1;
+             ((last_page < page_table_pages) &&
+              page_free_p(last_page) &&
+              (bytes_found < nbytes_goal));
+             last_page++) {
+            bytes_found += GENCGC_CARD_BYTES;
+            gc_assert(0 == page_table[last_page].bytes_used);
+            gc_assert(0 == page_table[last_page].write_protected);
+        }
 
-        last_page = first_page;
-        bytes_found = PAGE_BYTES - page_table[first_page].bytes_used;
-        num_pages = 1;
-        while (((bytes_found < nbytes)
-                || (!large_p && (num_pages < 2)))
-               && (last_page < (NUM_PAGES-1))
-               && (page_table[last_page+1].allocated == FREE_PAGE_FLAG)) {
-            last_page++;
-            num_pages++;
-            bytes_found += PAGE_BYTES;
-            gc_assert(page_table[last_page].write_protected == 0);
+        if (bytes_found > most_bytes_found) {
+            most_bytes_found = bytes_found;
+            most_bytes_found_from = first_page;
+            most_bytes_found_to = last_page;
         }
+        if (bytes_found >= nbytes_goal)
+            break;
 
-        region_size = (PAGE_BYTES - page_table[first_page].bytes_used)
-            + PAGE_BYTES*(last_page-first_page);
+        first_page = last_page;
+    }
 
-        gc_assert(bytes_found == region_size);
-        restart_page = last_page + 1;
-    } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
+    bytes_found = most_bytes_found;
+    restart_page = first_page + 1;
 
     /* Check for a failure */
-    if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
-        fprintf(stderr,
-                "Argh! gc_find_freeish_pages failed (restart_page), nbytes=%ld.\n",
-                nbytes);
-        print_generation_stats(1);
-        lose(NULL);
+    if (bytes_found < nbytes) {
+        gc_assert(restart_page >= page_table_pages);
+        gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
     }
-    *restart_page_ptr=first_page;
-    return last_page;
+
+    gc_assert(most_bytes_found_to);
+    *restart_page_ptr = most_bytes_found_from;
+    return most_bytes_found_to-1;
 }
 
 /* Allocate bytes.  All the rest of the special-purpose allocation
  * functions will eventually call this  */
 
 void *
-gc_alloc_with_region(long nbytes,int unboxed_p, struct alloc_region *my_region,
+gc_alloc_with_region(sword_t nbytes,int page_type_flag, struct alloc_region *my_region,
                      int quick_p)
 {
     void *new_free_pointer;
 
-    if(nbytes>=large_object_size)
-        return gc_alloc_large(nbytes,unboxed_p,my_region);
+    if (nbytes>=large_object_size)
+        return gc_alloc_large(nbytes, page_type_flag, my_region);
 
     /* Check whether there is room in the current alloc region. */
     new_free_pointer = my_region->free_pointer + nbytes;
@@ -1040,249 +1416,75 @@ gc_alloc_with_region(long nbytes,int unboxed_p, struct alloc_region *my_region,
     /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
        my_region->free_pointer, new_free_pointer); */
 
-    if (new_free_pointer <= my_region->end_addr) {
-        /* If so then allocate from the current alloc region. */
-        void *new_obj = my_region->free_pointer;
-        my_region->free_pointer = new_free_pointer;
-
-        /* Unless a `quick' alloc was requested, check whether the
-           alloc region is almost empty. */
-        if (!quick_p &&
-            (my_region->end_addr - my_region->free_pointer) <= 32) {
-            /* If so, finished with the current region. */
-            gc_alloc_update_page_tables(unboxed_p, my_region);
-            /* Set up a new region. */
-            gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
-        }
-
-        return((void *)new_obj);
-    }
-
-    /* Else not enough free space in the current region: retry with a
-     * new region. */
-
-    gc_alloc_update_page_tables(unboxed_p, my_region);
-    gc_alloc_new_region(nbytes, unboxed_p, my_region);
-    return gc_alloc_with_region(nbytes,unboxed_p,my_region,0);
-}
-
-/* these are only used during GC: all allocation from the mutator calls
- * alloc() -> gc_alloc_with_region() with the appropriate per-thread
- * region */
-
-void *
-gc_general_alloc(long nbytes,int unboxed_p,int quick_p)
-{
-    struct alloc_region *my_region =
-      unboxed_p ? &unboxed_region : &boxed_region;
-    return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
-}
-
-static inline void *
-gc_quick_alloc(long nbytes)
-{
-    return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
-}
-
-static inline void *
-gc_quick_alloc_large(long nbytes)
-{
-    return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
-}
-
-static inline void *
-gc_alloc_unboxed(long nbytes)
-{
-    return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
-}
-
-static inline void *
-gc_quick_alloc_unboxed(long nbytes)
-{
-    return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
-}
-
-static inline void *
-gc_quick_alloc_large_unboxed(long nbytes)
-{
-    return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
-}
-\f
-/*
- * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
- */
-
-extern long (*scavtab[256])(lispobj *where, lispobj object);
-extern lispobj (*transother[256])(lispobj object);
-extern long (*sizetab[256])(lispobj *where);
-
-/* Copy a large boxed object. If the object is in a large object
- * region then it is simply promoted, else it is copied. If it's large
- * enough then it's copied to a large object region.
- *
- * Vectors may have shrunk. If the object is not copied the space
- * needs to be reclaimed, and the page_tables corrected. */
-lispobj
-copy_large_object(lispobj object, long nwords)
-{
-    int tag;
-    lispobj *new;
-    long first_page;
-
-    gc_assert(is_lisp_pointer(object));
-    gc_assert(from_space_p(object));
-    gc_assert((nwords & 0x01) == 0);
-
-
-    /* Check whether it's in a large object region. */
-    first_page = find_page_index((void *)object);
-    gc_assert(first_page >= 0);
-
-    if (page_table[first_page].large_object) {
-
-        /* Promote the object. */
-
-        long remaining_bytes;
-        long next_page;
-        long bytes_freed;
-        long old_bytes_used;
-
-        /* Note: Any page write-protection must be removed, else a
-         * later scavenge_newspace may incorrectly not scavenge these
-         * pages. This would not be necessary if they are added to the
-         * new areas, but let's do it for them all (they'll probably
-         * be written anyway?). */
-
-        gc_assert(page_table[first_page].first_object_offset == 0);
-
-        next_page = first_page;
-        remaining_bytes = nwords*N_WORD_BYTES;
-        while (remaining_bytes > PAGE_BYTES) {
-            gc_assert(page_table[next_page].gen == from_space);
-            gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
-            gc_assert(page_table[next_page].large_object);
-            gc_assert(page_table[next_page].first_object_offset==
-                      -PAGE_BYTES*(next_page-first_page));
-            gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
-
-            page_table[next_page].gen = new_space;
-
-            /* Remove any write-protection. We should be able to rely
-             * on the write-protect flag to avoid redundant calls. */
-            if (page_table[next_page].write_protected) {
-                os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
-                page_table[next_page].write_protected = 0;
-            }
-            remaining_bytes -= PAGE_BYTES;
-            next_page++;
-        }
-
-        /* Now only one page remains, but the object may have shrunk
-         * so there may be more unused pages which will be freed. */
-
-        /* The object may have shrunk but shouldn't have grown. */
-        gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
-
-        page_table[next_page].gen = new_space;
-        gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
-
-        /* Adjust the bytes_used. */
-        old_bytes_used = page_table[next_page].bytes_used;
-        page_table[next_page].bytes_used = remaining_bytes;
-
-        bytes_freed = old_bytes_used - remaining_bytes;
-
-        /* Free any remaining pages; needs care. */
-        next_page++;
-        while ((old_bytes_used == PAGE_BYTES) &&
-               (page_table[next_page].gen == from_space) &&
-               (page_table[next_page].allocated == BOXED_PAGE_FLAG) &&
-               page_table[next_page].large_object &&
-               (page_table[next_page].first_object_offset ==
-                -(next_page - first_page)*PAGE_BYTES)) {
-            /* Checks out OK, free the page. Don't need to bother zeroing
-             * pages as this should have been done before shrinking the
-             * object. These pages shouldn't be write-protected as they
-             * should be zero filled. */
-            gc_assert(page_table[next_page].write_protected == 0);
-
-            old_bytes_used = page_table[next_page].bytes_used;
-            page_table[next_page].allocated = FREE_PAGE_FLAG;
-            page_table[next_page].bytes_used = 0;
-            bytes_freed += old_bytes_used;
-            next_page++;
-        }
-
-        generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords +
-          bytes_freed;
-        generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
-        bytes_allocated -= bytes_freed;
-
-        /* Add the region to the new_areas if requested. */
-        add_new_area(first_page,0,nwords*N_WORD_BYTES);
-
-        return(object);
-    } else {
-        /* Get tag of object. */
-        tag = lowtag_of(object);
-
-        /* Allocate space. */
-        new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
+    if (new_free_pointer <= my_region->end_addr) {
+        /* If so then allocate from the current alloc region. */
+        void *new_obj = my_region->free_pointer;
+        my_region->free_pointer = new_free_pointer;
 
-        memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
+        /* Unless a `quick' alloc was requested, check whether the
+           alloc region is almost empty. */
+        if (!quick_p &&
+            void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
+            /* If so, finished with the current region. */
+            gc_alloc_update_page_tables(page_type_flag, my_region);
+            /* Set up a new region. */
+            gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
+        }
 
-        /* Return Lisp pointer of new object. */
-        return ((lispobj) new) | tag;
+        return((void *)new_obj);
     }
-}
 
-/* to copy unboxed objects */
-lispobj
-copy_unboxed_object(lispobj object, long nwords)
-{
-    long tag;
-    lispobj *new;
-
-    gc_assert(is_lisp_pointer(object));
-    gc_assert(from_space_p(object));
-    gc_assert((nwords & 0x01) == 0);
+    /* Else not enough free space in the current region: retry with a
+     * new region. */
 
-    /* Get tag of object. */
-    tag = lowtag_of(object);
+    gc_alloc_update_page_tables(page_type_flag, my_region);
+    gc_alloc_new_region(nbytes, page_type_flag, my_region);
+    return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
+}
 
-    /* Allocate space. */
-    new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
+/* these are only used during GC: all allocation from the mutator calls
+ * alloc() -> gc_alloc_with_region() with the appropriate per-thread
+ * region */
 
-    memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
+static inline void *
+gc_quick_alloc(word_t nbytes)
+{
+    return gc_general_alloc(nbytes, BOXED_PAGE_FLAG, ALLOC_QUICK);
+}
 
-    /* Return Lisp pointer of new object. */
-    return ((lispobj) new) | tag;
+static inline void *
+gc_alloc_unboxed(word_t nbytes)
+{
+    return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, 0);
 }
 
-/* to copy large unboxed objects
- *
- * If the object is in a large object region then it is simply
- * promoted, else it is copied. If it's large enough then it's copied
- * to a large object region.
+static inline void *
+gc_quick_alloc_unboxed(word_t nbytes)
+{
+    return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
+}
+\f
+/* Copy a large object. If the object is in a large object region then
+ * it is simply promoted, else it is copied. If it's large enough then
+ * it's copied to a large object region.
  *
  * Bignums and vectors may have shrunk. If the object is not copied
- * the space needs to be reclaimed, and the page_tables corrected.
- *
- * KLUDGE: There's a lot of cut-and-paste duplication between this
- * function and copy_large_object(..). -- WHN 20000619 */
-lispobj
-copy_large_unboxed_object(lispobj object, long nwords)
+ * the space needs to be reclaimed, and the page_tables corrected. */
+static lispobj
+general_copy_large_object(lispobj object, word_t nwords, boolean boxedp)
 {
     int tag;
     lispobj *new;
-    long first_page;
+    page_index_t first_page;
 
     gc_assert(is_lisp_pointer(object));
     gc_assert(from_space_p(object));
     gc_assert((nwords & 0x01) == 0);
 
-    if ((nwords > 1024*1024) && gencgc_verbose)
-        FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*N_WORD_BYTES));
+    if ((nwords > 1024*1024) && gencgc_verbose) {
+        FSHOW((stderr, "/general_copy_large_object: %d bytes\n",
+               nwords*N_WORD_BYTES));
+    }
 
     /* Check whether it's a large object. */
     first_page = find_page_index((void *)object);
@@ -1292,27 +1494,43 @@ copy_large_unboxed_object(lispobj object, long nwords)
         /* Promote the object. Note: Unboxed objects may have been
          * allocated to a BOXED region so it may be necessary to
          * change the region to UNBOXED. */
-        long remaining_bytes;
-        long next_page;
-        long bytes_freed;
-        long old_bytes_used;
+        os_vm_size_t remaining_bytes;
+        os_vm_size_t bytes_freed;
+        page_index_t next_page;
+        page_bytes_t old_bytes_used;
 
-        gc_assert(page_table[first_page].first_object_offset == 0);
+        /* FIXME: This comment is somewhat stale.
+         *
+         * Note: Any page write-protection must be removed, else a
+         * later scavenge_newspace may incorrectly not scavenge these
+         * pages. This would not be necessary if they are added to the
+         * new areas, but let's do it for them all (they'll probably
+         * be written anyway?). */
 
+        gc_assert(page_starts_contiguous_block_p(first_page));
         next_page = first_page;
         remaining_bytes = nwords*N_WORD_BYTES;
-        while (remaining_bytes > PAGE_BYTES) {
+
+        while (remaining_bytes > GENCGC_CARD_BYTES) {
             gc_assert(page_table[next_page].gen == from_space);
-            gc_assert((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
-                      || (page_table[next_page].allocated == BOXED_PAGE_FLAG));
             gc_assert(page_table[next_page].large_object);
-            gc_assert(page_table[next_page].first_object_offset==
-                      -PAGE_BYTES*(next_page-first_page));
-            gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
-
+            gc_assert(page_table[next_page].scan_start_offset ==
+                      npage_bytes(next_page-first_page));
+            gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
+            /* Should have been unprotected by unprotect_oldspace()
+             * for boxed objects, and after promotion unboxed ones
+             * should not be on protected pages at all. */
+            gc_assert(!page_table[next_page].write_protected);
+
+            if (boxedp)
+                gc_assert(page_boxed_p(next_page));
+            else {
+                gc_assert(page_allocated_no_region_p(next_page));
+                page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
+            }
             page_table[next_page].gen = new_space;
-            page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
-            remaining_bytes -= PAGE_BYTES;
+
+            remaining_bytes -= GENCGC_CARD_BYTES;
             next_page++;
         }
 
@@ -1323,7 +1541,11 @@ copy_large_unboxed_object(lispobj object, long nwords)
         gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
 
         page_table[next_page].gen = new_space;
-        page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
+
+        if (boxedp)
+            gc_assert(page_boxed_p(next_page));
+        else
+            page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
 
         /* Adjust the bytes_used. */
         old_bytes_used = page_table[next_page].bytes_used;
@@ -1333,13 +1555,19 @@ copy_large_unboxed_object(lispobj object, long nwords)
 
         /* Free any remaining pages; needs care. */
         next_page++;
-        while ((old_bytes_used == PAGE_BYTES) &&
+        while ((old_bytes_used == GENCGC_CARD_BYTES) &&
                (page_table[next_page].gen == from_space) &&
-               ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
-                || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
+               /* FIXME: It is not obvious to me why this is necessary
+                * as a loop condition: it seems to me that the
+                * scan_start_offset test should be sufficient, but
+                * experimentally that is not the case. --NS
+                * 2011-11-28 */
+               (boxedp ?
+                page_boxed_p(next_page) :
+                page_allocated_no_region_p(next_page)) &&
                page_table[next_page].large_object &&
-               (page_table[next_page].first_object_offset ==
-                -(next_page - first_page)*PAGE_BYTES)) {
+               (page_table[next_page].scan_start_offset ==
+                npage_bytes(next_page - first_page))) {
             /* Checks out OK, free the page. Don't need to both zeroing
              * pages as this should have been done before shrinking the
              * object. These pages shouldn't be write-protected, even if
@@ -1353,23 +1581,31 @@ copy_large_unboxed_object(lispobj object, long nwords)
             next_page++;
         }
 
-        if ((bytes_freed > 0) && gencgc_verbose)
+        if ((bytes_freed > 0) && gencgc_verbose) {
             FSHOW((stderr,
-                   "/copy_large_unboxed bytes_freed=%d\n",
+                   "/general_copy_large_object bytes_freed=%"OS_VM_SIZE_FMT"\n",
                    bytes_freed));
+        }
 
-        generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES + bytes_freed;
+        generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES
+            + bytes_freed;
         generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
         bytes_allocated -= bytes_freed;
 
+        /* Add the region to the new_areas if requested. */
+        if (boxedp)
+            add_new_area(first_page,0,nwords*N_WORD_BYTES);
+
         return(object);
-    }
-    else {
+
+    } else {
         /* Get tag of object. */
         tag = lowtag_of(object);
 
         /* Allocate space. */
-        new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
+        new = gc_general_alloc(nwords*N_WORD_BYTES,
+                               (boxedp ? BOXED_PAGE_FLAG : UNBOXED_PAGE_FLAG),
+                               ALLOC_QUICK);
 
         /* Copy the object. */
         memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
@@ -1379,8 +1615,24 @@ copy_large_unboxed_object(lispobj object, long nwords)
     }
 }
 
+lispobj
+copy_large_object(lispobj object, sword_t nwords)
+{
+    return general_copy_large_object(object, nwords, 1);
+}
 
+lispobj
+copy_large_unboxed_object(lispobj object, sword_t nwords)
+{
+    return general_copy_large_object(object, nwords, 0);
+}
 
+/* to copy unboxed objects */
+lispobj
+copy_unboxed_object(lispobj object, sword_t nwords)
+{
+    return gc_general_copy_object(object, nwords, UNBOXED_PAGE_FLAG);
+}
 \f
 
 /*
@@ -1400,26 +1652,29 @@ static lispobj trans_boxed(lispobj object);
  *
  * Currently only absolute fixups to the constant vector, or to the
  * code area are checked. */
+#ifdef LISP_FEATURE_X86
 void
-sniff_code_object(struct code *code, unsigned displacement)
+sniff_code_object(struct code *code, os_vm_size_t displacement)
 {
-    long nheader_words, ncode_words, nwords;
-    void *p;
-    void *constants_start_addr, *constants_end_addr;
-    void *code_start_addr, *code_end_addr;
+    sword_t nheader_words, ncode_words, nwords;
+    os_vm_address_t constants_start_addr = NULL, constants_end_addr, p;
+    os_vm_address_t code_start_addr, code_end_addr;
+    os_vm_address_t code_addr = (os_vm_address_t)code;
     int fixup_found = 0;
 
     if (!check_code_fixups)
         return;
 
+    FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
+
     ncode_words = fixnum_value(code->code_size);
     nheader_words = HeaderValue(*(lispobj *)code);
     nwords = ncode_words + nheader_words;
 
-    constants_start_addr = (void *)code + 5*N_WORD_BYTES;
-    constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
-    code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
-    code_end_addr = (void *)code + nwords*N_WORD_BYTES;
+    constants_start_addr = code_addr + 5*N_WORD_BYTES;
+    constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
+    code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
+    code_end_addr = code_addr + nwords*N_WORD_BYTES;
 
     /* Work through the unboxed code. */
     for (p = code_start_addr; p < code_end_addr; p++) {
@@ -1428,7 +1683,7 @@ sniff_code_object(struct code *code, unsigned displacement)
         unsigned d2 = *((unsigned char *)p - 2);
         unsigned d3 = *((unsigned char *)p - 3);
         unsigned d4 = *((unsigned char *)p - 4);
-#ifdef QSHOW
+#if QSHOW
         unsigned d5 = *((unsigned char *)p - 5);
         unsigned d6 = *((unsigned char *)p - 6);
 #endif
@@ -1436,11 +1691,12 @@ sniff_code_object(struct code *code, unsigned displacement)
         /* Check for code references. */
         /* Check for a 32 bit word that looks like an absolute
            reference to within the code adea of the code object. */
-        if ((data >= (code_start_addr-displacement))
-            && (data < (code_end_addr-displacement))) {
+        if ((data >= (void*)(code_start_addr-displacement))
+            && (data < (void*)(code_end_addr-displacement))) {
             /* function header */
             if ((d4 == 0x5e)
-                && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
+                && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
+                    (unsigned)code)) {
                 /* Skip the function header */
                 p += 6*4 - 4 - 1;
                 continue;
@@ -1478,8 +1734,8 @@ sniff_code_object(struct code *code, unsigned displacement)
         /* Check for a 32 bit word that looks like an absolute
            reference to within the constant vector. Constant references
            will be aligned. */
-        if ((data >= (constants_start_addr-displacement))
-            && (data < (constants_end_addr-displacement))
+        if ((data >= (void*)(constants_start_addr-displacement))
+            && (data < (void*)(constants_end_addr-displacement))
             && (((unsigned)data & 0x3) == 0)) {
             /*  Mov eax,m32 */
             if (d1 == 0xa1) {
@@ -1569,15 +1825,19 @@ sniff_code_object(struct code *code, unsigned displacement)
                code_start_addr, code_end_addr));
     }
 }
+#endif
 
+#ifdef LISP_FEATURE_X86
 void
 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
 {
-    long nheader_words, ncode_words, nwords;
-    void *constants_start_addr, *constants_end_addr;
-    void *code_start_addr, *code_end_addr;
+    sword_t nheader_words, ncode_words, nwords;
+    os_vm_address_t constants_start_addr, constants_end_addr;
+    os_vm_address_t code_start_addr, code_end_addr;
+    os_vm_address_t code_addr = (os_vm_address_t)new_code;
+    os_vm_address_t old_addr = (os_vm_address_t)old_code;
+    os_vm_size_t displacement = code_addr - old_addr;
     lispobj fixups = NIL;
-    unsigned displacement = (unsigned)new_code - (unsigned)old_code;
     struct vector *fixups_vector;
 
     ncode_words = fixnum_value(new_code->code_size);
@@ -1586,10 +1846,10 @@ gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
     /* FSHOW((stderr,
              "/compiled code object at %x: header words = %d, code words = %d\n",
              new_code, nheader_words, ncode_words)); */
-    constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
-    constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
-    code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
-    code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
+    constants_start_addr = code_addr + 5*N_WORD_BYTES;
+    constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
+    code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
+    code_end_addr = code_addr + nwords*N_WORD_BYTES;
     /*
     FSHOW((stderr,
            "/const start = %x, end = %x\n",
@@ -1625,7 +1885,8 @@ gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
         (fixups_vector->header == 0x01)) {
         /* If so, then follow it. */
         /*SHOW("following pointer to a forwarding pointer");*/
-        fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
+        fixups_vector =
+            (struct vector *)native_pointer((lispobj)fixups_vector->length);
     }
 
     /*SHOW("got fixups");*/
@@ -1633,30 +1894,32 @@ gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
     if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
         /* Got the fixups for the code block. Now work through the vector,
            and apply a fixup at each address. */
-        long length = fixnum_value(fixups_vector->length);
-        long i;
+        sword_t length = fixnum_value(fixups_vector->length);
+        sword_t i;
         for (i = 0; i < length; i++) {
-            unsigned offset = fixups_vector->data[i];
+            long offset = fixups_vector->data[i];
             /* Now check the current value of offset. */
-            unsigned old_value =
-                *(unsigned *)((unsigned)code_start_addr + offset);
+            os_vm_address_t old_value = *(os_vm_address_t *)(code_start_addr + offset);
 
             /* If it's within the old_code object then it must be an
              * absolute fixup (relative ones are not saved) */
-            if ((old_value >= (unsigned)old_code)
-                && (old_value < ((unsigned)old_code + nwords*N_WORD_BYTES)))
+            if ((old_value >= old_addr)
+                && (old_value < (old_addr + nwords*N_WORD_BYTES)))
                 /* So add the dispacement. */
-                *(unsigned *)((unsigned)code_start_addr + offset) =
+                *(os_vm_address_t *)(code_start_addr + offset) =
                     old_value + displacement;
             else
                 /* It is outside the old code object so it must be a
                  * relative fixup (absolute fixups are not saved). So
                  * subtract the displacement. */
-                *(unsigned *)((unsigned)code_start_addr + offset) =
+                *(os_vm_address_t *)(code_start_addr + offset) =
                     old_value - displacement;
         }
     } else {
-        fprintf(stderr, "widetag of fixup vector is %d\n", widetag_of(fixups_vector->header));
+        /* This used to just print a note to stderr, but a bogus fixup seems to
+         * indicate real heap corruption, so a hard hailure is in order. */
+        lose("fixup vector %p has a bad widetag: %d\n",
+             fixups_vector, widetag_of(fixups_vector->header));
     }
 
     /* Check for possible errors. */
@@ -1664,13 +1927,13 @@ gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
         sniff_code_object(new_code,displacement);
     }
 }
-
+#endif
 
 static lispobj
 trans_boxed_large(lispobj object)
 {
     lispobj header;
-    unsigned long length;
+    uword_t length;
 
     gc_assert(is_lisp_pointer(object));
 
@@ -1687,8 +1950,7 @@ static lispobj
 trans_unboxed_large(lispobj object)
 {
     lispobj header;
-    unsigned long length;
-
+    uword_t length;
 
     gc_assert(is_lisp_pointer(object));
 
@@ -1699,222 +1961,6 @@ trans_unboxed_large(lispobj object)
     return copy_large_unboxed_object(object, length);
 }
 #endif
-
-\f
-/*
- * vector-like objects
- */
-
-
-/* FIXME: What does this mean? */
-int gencgc_hash = 1;
-
-static long
-scav_vector(lispobj *where, lispobj object)
-{
-    unsigned long kv_length;
-    lispobj *kv_vector;
-    unsigned long length = 0; /* (0 = dummy to stop GCC warning) */
-    struct hash_table *hash_table;
-    lispobj empty_symbol;
-    unsigned long *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    unsigned long *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    unsigned long *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
-    lispobj weak_p_obj;
-    unsigned next_vector_length = 0;
-
-    /* FIXME: A comment explaining this would be nice. It looks as
-     * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
-     * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
-    if (HeaderValue(object) != subtype_VectorValidHashing)
-        return 1;
-
-    if (!gencgc_hash) {
-        /* This is set for backward compatibility. FIXME: Do we need
-         * this any more? */
-        *where =
-            (subtype_VectorMustRehash<<N_WIDETAG_BITS) | SIMPLE_VECTOR_WIDETAG;
-        return 1;
-    }
-
-    kv_length = fixnum_value(where[1]);
-    kv_vector = where + 2;  /* Skip the header and length. */
-    /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
-
-    /* Scavenge element 0, which may be a hash-table structure. */
-    scavenge(where+2, 1);
-    if (!is_lisp_pointer(where[2])) {
-        lose("no pointer at %x in hash table", where[2]);
-    }
-    hash_table = (struct hash_table *)native_pointer(where[2]);
-    /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
-    if (widetag_of(hash_table->header) != INSTANCE_HEADER_WIDETAG) {
-        lose("hash table not instance (%x at %x)",
-             hash_table->header,
-             hash_table);
-    }
-
-    /* Scavenge element 1, which should be some internal symbol that
-     * the hash table code reserves for marking empty slots. */
-    scavenge(where+3, 1);
-    if (!is_lisp_pointer(where[3])) {
-        lose("not empty-hash-table-slot symbol pointer: %x", where[3]);
-    }
-    empty_symbol = where[3];
-    /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
-    if (widetag_of(*(lispobj *)native_pointer(empty_symbol)) !=
-        SYMBOL_HEADER_WIDETAG) {
-        lose("not a symbol where empty-hash-table-slot symbol expected: %x",
-             *(lispobj *)native_pointer(empty_symbol));
-    }
-
-    /* Scavenge hash table, which will fix the positions of the other
-     * needed objects. */
-    scavenge((lispobj *)hash_table,
-             sizeof(struct hash_table) / sizeof(lispobj));
-
-    /* Cross-check the kv_vector. */
-    if (where != (lispobj *)native_pointer(hash_table->table)) {
-        lose("hash_table table!=this table %x", hash_table->table);
-    }
-
-    /* WEAK-P */
-    weak_p_obj = hash_table->weak_p;
-
-    /* index vector */
-    {
-        lispobj index_vector_obj = hash_table->index_vector;
-
-        if (is_lisp_pointer(index_vector_obj) &&
-            (widetag_of(*(lispobj *)native_pointer(index_vector_obj)) ==
-                 SIMPLE_ARRAY_WORD_WIDETAG)) {
-            index_vector =
-                ((unsigned long *)native_pointer(index_vector_obj)) + 2;
-            /*FSHOW((stderr, "/index_vector = %x\n",index_vector));*/
-            length = fixnum_value(((lispobj *)native_pointer(index_vector_obj))[1]);
-            /*FSHOW((stderr, "/length = %d\n", length));*/
-        } else {
-            lose("invalid index_vector %x", index_vector_obj);
-        }
-    }
-
-    /* next vector */
-    {
-        lispobj next_vector_obj = hash_table->next_vector;
-
-        if (is_lisp_pointer(next_vector_obj) &&
-            (widetag_of(*(lispobj *)native_pointer(next_vector_obj)) ==
-             SIMPLE_ARRAY_WORD_WIDETAG)) {
-            next_vector = ((unsigned long *)native_pointer(next_vector_obj)) + 2;
-            /*FSHOW((stderr, "/next_vector = %x\n", next_vector));*/
-            next_vector_length = fixnum_value(((lispobj *)native_pointer(next_vector_obj))[1]);
-            /*FSHOW((stderr, "/next_vector_length = %d\n", next_vector_length));*/
-        } else {
-            lose("invalid next_vector %x", next_vector_obj);
-        }
-    }
-
-    /* maybe hash vector */
-    {
-        lispobj hash_vector_obj = hash_table->hash_vector;
-
-        if (is_lisp_pointer(hash_vector_obj) &&
-            (widetag_of(*(lispobj *)native_pointer(hash_vector_obj)) ==
-             SIMPLE_ARRAY_WORD_WIDETAG)){
-            hash_vector =
-                ((unsigned long *)native_pointer(hash_vector_obj)) + 2;
-            /*FSHOW((stderr, "/hash_vector = %x\n", hash_vector));*/
-            gc_assert(fixnum_value(((lispobj *)native_pointer(hash_vector_obj))[1])
-                      == next_vector_length);
-        } else {
-            hash_vector = NULL;
-            /*FSHOW((stderr, "/no hash_vector: %x\n", hash_vector_obj));*/
-        }
-    }
-
-    /* These lengths could be different as the index_vector can be a
-     * different length from the others, a larger index_vector could help
-     * reduce collisions. */
-    gc_assert(next_vector_length*2 == kv_length);
-
-    /* now all set up.. */
-
-    /* Work through the KV vector. */
-    {
-        long i;
-        for (i = 1; i < next_vector_length; i++) {
-            lispobj old_key = kv_vector[2*i];
-
-#if N_WORD_BITS == 32
-            unsigned long old_index = (old_key & 0x1fffffff)%length;
-#elif N_WORD_BITS == 64
-            unsigned long old_index = (old_key & 0x1fffffffffffffff)%length;
-#endif
-
-            /* Scavenge the key and value. */
-            scavenge(&kv_vector[2*i],2);
-
-            /* Check whether the key has moved and is EQ based. */
-            {
-                lispobj new_key = kv_vector[2*i];
-#if N_WORD_BITS == 32
-                unsigned long new_index = (new_key & 0x1fffffff)%length;
-#elif N_WORD_BITS == 64
-                unsigned long new_index = (new_key & 0x1fffffffffffffff)%length;
-#endif
-
-                if ((old_index != new_index) &&
-                    ((!hash_vector) || (hash_vector[i] == 0x80000000)) &&
-                    ((new_key != empty_symbol) ||
-                     (kv_vector[2*i] != empty_symbol))) {
-
-                     /*FSHOW((stderr,
-                            "* EQ key %d moved from %x to %x; index %d to %d\n",
-                            i, old_key, new_key, old_index, new_index));*/
-
-                    if (index_vector[old_index] != 0) {
-                         /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
-
-                        /* Unlink the key from the old_index chain. */
-                        if (index_vector[old_index] == i) {
-                            /*FSHOW((stderr, "/P2a %d\n", next_vector[i]));*/
-                            index_vector[old_index] = next_vector[i];
-                            /* Link it into the needing rehash chain. */
-                            next_vector[i] = fixnum_value(hash_table->needing_rehash);
-                            hash_table->needing_rehash = make_fixnum(i);
-                            /*SHOW("P2");*/
-                        } else {
-                            unsigned prior = index_vector[old_index];
-                            unsigned next = next_vector[prior];
-
-                            /*FSHOW((stderr, "/P3a %d %d\n", prior, next));*/
-
-                            while (next != 0) {
-                                 /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
-                                if (next == i) {
-                                    /* Unlink it. */
-                                    next_vector[prior] = next_vector[next];
-                                    /* Link it into the needing rehash
-                                     * chain. */
-                                    next_vector[next] =
-                                        fixnum_value(hash_table->needing_rehash);
-                                    hash_table->needing_rehash = make_fixnum(next);
-                                    /*SHOW("/P3");*/
-                                    break;
-                                }
-                                prior = next;
-                                next = next_vector[next];
-                            }
-                        }
-                    }
-                }
-            }
-        }
-    }
-    return (CEILING(kv_length + 2, 2));
-}
-
-
 \f
 /*
  * weak pointers
@@ -1928,32 +1974,24 @@ scav_vector(lispobj *where, lispobj object)
 #define WEAK_POINTER_NWORDS \
     CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
 
-static long
+static sword_t
 scav_weak_pointer(lispobj *where, lispobj object)
 {
-    struct weak_pointer *wp = weak_pointers;
-    /* Push the weak pointer onto the list of weak pointers.
-     * Do I have to watch for duplicates? Originally this was
-     * part of trans_weak_pointer but that didn't work in the
-     * case where the WP was in a promoted region.
+    /* Since we overwrite the 'next' field, we have to make
+     * sure not to do so for pointers already in the list.
+     * Instead of searching the list of weak_pointers each
+     * time, we ensure that next is always NULL when the weak
+     * pointer isn't in the list, and not NULL otherwise.
+     * Since we can't use NULL to denote end of list, we
+     * use a pointer back to the same weak_pointer.
      */
+    struct weak_pointer * wp = (struct weak_pointer*)where;
 
-    /* Check whether it's already in the list. */
-    while (wp != NULL) {
-        if (wp == (struct weak_pointer*)where) {
-            break;
-        }
-        wp = wp->next;
-    }
-    if (wp == NULL) {
-        /* Add it to the start of the list. */
-        wp = (struct weak_pointer*)where;
-        if (wp->next != weak_pointers) {
-            wp->next = weak_pointers;
-        } else {
-            /*SHOW("avoided write to weak pointer");*/
-        }
+    if (NULL == wp->next) {
+        wp->next = weak_pointers;
         weak_pointers = wp;
+        if (NULL == wp->next)
+            wp->next = wp;
     }
 
     /* Do not let GC scavenge the value slot of the weak pointer.
@@ -1992,20 +2030,20 @@ search_static_space(void *pointer)
 lispobj *
 search_dynamic_space(void *pointer)
 {
-    long page_index = find_page_index(pointer);
+    page_index_t page_index = find_page_index(pointer);
     lispobj *start;
 
     /* The address may be invalid, so do some checks. */
-    if ((page_index == -1) ||
-        (page_table[page_index].allocated == FREE_PAGE_FLAG))
+    if ((page_index == -1) || page_free_p(page_index))
         return NULL;
-    start = (lispobj *)((void *)page_address(page_index)
-                        + page_table[page_index].first_object_offset);
+    start = (lispobj *)page_scan_start(page_index);
     return (gc_search_space(start,
                             (((lispobj *)pointer)+2)-start,
                             (lispobj *)pointer));
 }
 
+#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
+
 /* Is there any possibility that pointer is a valid Lisp object
  * reference, and/or something else (e.g. subroutine call return
  * address) which should prevent us from moving the referred-to thing?
@@ -2020,260 +2058,11 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
         return 0;
     }
 
-    /* We need to allow raw pointers into Code objects for return
-     * addresses. This will also pick up pointers to functions in code
-     * objects. */
-    if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
-        /* XXX could do some further checks here */
-        return 1;
-    }
-
-    /* If it's not a return address then it needs to be a valid Lisp
-     * pointer. */
-    if (!is_lisp_pointer((lispobj)pointer)) {
-        return 0;
-    }
-
-    /* Check that the object pointed to is consistent with the pointer
-     * low tag.
-     */
-    switch (lowtag_of((lispobj)pointer)) {
-    case FUN_POINTER_LOWTAG:
-        /* Start_addr should be the enclosing code object, or a closure
-         * header. */
-        switch (widetag_of(*start_addr)) {
-        case CODE_HEADER_WIDETAG:
-            /* This case is probably caught above. */
-            break;
-        case CLOSURE_HEADER_WIDETAG:
-        case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
-            if ((unsigned)pointer !=
-                ((unsigned)start_addr+FUN_POINTER_LOWTAG)) {
-                if (gencgc_verbose)
-                    FSHOW((stderr,
-                           "/Wf2: %x %x %x\n",
-                           pointer, start_addr, *start_addr));
-                return 0;
-            }
-            break;
-        default:
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "/Wf3: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-        }
-        break;
-    case LIST_POINTER_LOWTAG:
-        if ((unsigned)pointer !=
-            ((unsigned)start_addr+LIST_POINTER_LOWTAG)) {
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "/Wl1: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-        }
-        /* Is it plausible cons? */
-        if ((is_lisp_pointer(start_addr[0])
-            || (fixnump(start_addr[0]))
-            || (widetag_of(start_addr[0]) == CHARACTER_WIDETAG)
-#if N_WORD_BITS == 64
-            || (widetag_of(start_addr[0]) == SINGLE_FLOAT_WIDETAG)
-#endif
-            || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
-           && (is_lisp_pointer(start_addr[1])
-               || (fixnump(start_addr[1]))
-               || (widetag_of(start_addr[1]) == CHARACTER_WIDETAG)
-#if N_WORD_BITS == 64
-               || (widetag_of(start_addr[1]) == SINGLE_FLOAT_WIDETAG)
-#endif
-               || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
-            break;
-        else {
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "/Wl2: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-        }
-    case INSTANCE_POINTER_LOWTAG:
-        if ((unsigned)pointer !=
-            ((unsigned)start_addr+INSTANCE_POINTER_LOWTAG)) {
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "/Wi1: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-        }
-        if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "/Wi2: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-        }
-        break;
-    case OTHER_POINTER_LOWTAG:
-        if ((unsigned)pointer !=
-            ((int)start_addr+OTHER_POINTER_LOWTAG)) {
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "/Wo1: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-        }
-        /* Is it plausible?  Not a cons. XXX should check the headers. */
-        if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "/Wo2: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-        }
-        switch (widetag_of(start_addr[0])) {
-        case UNBOUND_MARKER_WIDETAG:
-        case CHARACTER_WIDETAG:
-#if N_WORD_BITS == 64
-        case SINGLE_FLOAT_WIDETAG:
-#endif
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "*Wo3: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-
-            /* only pointed to by function pointers? */
-        case CLOSURE_HEADER_WIDETAG:
-        case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "*Wo4: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-
-        case INSTANCE_HEADER_WIDETAG:
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "*Wo5: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-
-            /* the valid other immediate pointer objects */
-        case SIMPLE_VECTOR_WIDETAG:
-        case RATIO_WIDETAG:
-        case COMPLEX_WIDETAG:
-#ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
-        case COMPLEX_SINGLE_FLOAT_WIDETAG:
-#endif
-#ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
-        case COMPLEX_DOUBLE_FLOAT_WIDETAG:
-#endif
-#ifdef COMPLEX_LONG_FLOAT_WIDETAG
-        case COMPLEX_LONG_FLOAT_WIDETAG:
-#endif
-        case SIMPLE_ARRAY_WIDETAG:
-        case COMPLEX_BASE_STRING_WIDETAG:
-#ifdef COMPLEX_CHARACTER_STRING_WIDETAG
-        case COMPLEX_CHARACTER_STRING_WIDETAG:
-#endif
-        case COMPLEX_VECTOR_NIL_WIDETAG:
-        case COMPLEX_BIT_VECTOR_WIDETAG:
-        case COMPLEX_VECTOR_WIDETAG:
-        case COMPLEX_ARRAY_WIDETAG:
-        case VALUE_CELL_HEADER_WIDETAG:
-        case SYMBOL_HEADER_WIDETAG:
-        case FDEFN_WIDETAG:
-        case CODE_HEADER_WIDETAG:
-        case BIGNUM_WIDETAG:
-#if N_WORD_BITS != 64
-        case SINGLE_FLOAT_WIDETAG:
-#endif
-        case DOUBLE_FLOAT_WIDETAG:
-#ifdef LONG_FLOAT_WIDETAG
-        case LONG_FLOAT_WIDETAG:
-#endif
-        case SIMPLE_BASE_STRING_WIDETAG:
-#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
-        case SIMPLE_CHARACTER_STRING_WIDETAG:
-#endif
-        case SIMPLE_BIT_VECTOR_WIDETAG:
-        case SIMPLE_ARRAY_NIL_WIDETAG:
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
-#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
-#endif
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
-#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
-#endif
-#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
-#endif
-#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
-        case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
-        case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
-        case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
-        case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
-        case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
-        case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
-        case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
-#endif
-        case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
-        case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
-#ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
-        case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
-        case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
-        case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
-#endif
-#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
-        case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
-#endif
-        case SAP_WIDETAG:
-        case WEAK_POINTER_WIDETAG:
-            break;
-
-        default:
-            if (gencgc_verbose)
-                FSHOW((stderr,
-                       "/Wo6: %x %x %x\n",
-                       pointer, start_addr, *start_addr));
-            return 0;
-        }
-        break;
-    default:
-        if (gencgc_verbose)
-            FSHOW((stderr,
-                   "*W?: %x %x %x\n",
-                   pointer, start_addr, *start_addr));
-        return 0;
-    }
-
-    /* looks good */
-    return 1;
+    return looks_like_valid_lisp_pointer_p(pointer, start_addr);
 }
 
+#endif  // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
+
 /* Adjust large bignum and vector objects. This will adjust the
  * allocated region if the size has shrunk, and move unboxed objects
  * into unboxed pages. The pages are not promoted here, and the
@@ -2284,13 +2073,13 @@ possibly_valid_dynamic_space_pointer(lispobj *pointer)
 static void
 maybe_adjust_large_object(lispobj *where)
 {
-    long first_page;
-    long nwords;
+    page_index_t first_page;
+    page_index_t next_page;
+    sword_t nwords;
 
-    long remaining_bytes;
-    long next_page;
-    long bytes_freed;
-    long old_bytes_used;
+    uword_t remaining_bytes;
+    uword_t bytes_freed;
+    uword_t old_bytes_used;
 
     int boxed;
 
@@ -2312,14 +2101,11 @@ maybe_adjust_large_object(lispobj *where)
     case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
     case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
     case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
-#ifdef  SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
-    case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
-#endif
+
+    case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
+
     case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
     case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
-#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
-    case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
-#endif
 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
     case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
 #endif
@@ -2332,15 +2118,12 @@ maybe_adjust_large_object(lispobj *where)
 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
     case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
 #endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
-    case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
-#endif
+
+    case SIMPLE_ARRAY_FIXNUM_WIDETAG:
+
 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
     case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
 #endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
-    case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
-#endif
 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
     case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
 #endif
@@ -2376,25 +2159,24 @@ maybe_adjust_large_object(lispobj *where)
      * but lets do it for them all (they'll probably be written
      * anyway?). */
 
-    gc_assert(page_table[first_page].first_object_offset == 0);
+    gc_assert(page_starts_contiguous_block_p(first_page));
 
     next_page = first_page;
     remaining_bytes = nwords*N_WORD_BYTES;
-    while (remaining_bytes > PAGE_BYTES) {
+    while (remaining_bytes > GENCGC_CARD_BYTES) {
         gc_assert(page_table[next_page].gen == from_space);
-        gc_assert((page_table[next_page].allocated == BOXED_PAGE_FLAG)
-                  || (page_table[next_page].allocated == UNBOXED_PAGE_FLAG));
+        gc_assert(page_allocated_no_region_p(next_page));
         gc_assert(page_table[next_page].large_object);
-        gc_assert(page_table[next_page].first_object_offset ==
-                  -PAGE_BYTES*(next_page-first_page));
-        gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
+        gc_assert(page_table[next_page].scan_start_offset ==
+                  npage_bytes(next_page-first_page));
+        gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
 
         page_table[next_page].allocated = boxed;
 
         /* Shouldn't be write-protected at this stage. Essential that the
          * pages aren't. */
         gc_assert(!page_table[next_page].write_protected);
-        remaining_bytes -= PAGE_BYTES;
+        remaining_bytes -= GENCGC_CARD_BYTES;
         next_page++;
     }
 
@@ -2416,13 +2198,12 @@ maybe_adjust_large_object(lispobj *where)
 
     /* Free any remaining pages; needs care. */
     next_page++;
-    while ((old_bytes_used == PAGE_BYTES) &&
+    while ((old_bytes_used == GENCGC_CARD_BYTES) &&
            (page_table[next_page].gen == from_space) &&
-           ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
-            || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
+           page_allocated_no_region_p(next_page) &&
            page_table[next_page].large_object &&
-           (page_table[next_page].first_object_offset ==
-            -(next_page - first_page)*PAGE_BYTES)) {
+           (page_table[next_page].scan_start_offset ==
+            npage_bytes(next_page - first_page))) {
         /* It checks out OK, free the page. We don't need to both zeroing
          * pages as this should have been done before shrinking the
          * object. These pages shouldn't be write protected as they
@@ -2460,17 +2241,18 @@ maybe_adjust_large_object(lispobj *where)
  *
  * It is also assumed that the current gc_alloc() region has been
  * flushed and the tables updated. */
+
 static void
 preserve_pointer(void *addr)
 {
-    long addr_page_index = find_page_index(addr);
-    long first_page;
-    long i;
-    unsigned region_allocation;
+    page_index_t addr_page_index = find_page_index(addr);
+    page_index_t first_page;
+    page_index_t i;
+    unsigned int region_allocation;
 
     /* quick check 1: Address is quite likely to have been invalid. */
     if ((addr_page_index == -1)
-        || (page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
+        || page_free_p(addr_page_index)
         || (page_table[addr_page_index].bytes_used == 0)
         || (page_table[addr_page_index].gen != from_space)
         /* Skip if already marked dont_move. */
@@ -2484,7 +2266,8 @@ preserve_pointer(void *addr)
     /* quick check 2: Check the offset within the page.
      *
      */
-    if (((unsigned)addr & (PAGE_BYTES - 1)) > page_table[addr_page_index].bytes_used)
+    if (((uword_t)addr & (GENCGC_CARD_BYTES - 1)) >
+        page_table[addr_page_index].bytes_used)
         return;
 
     /* Filter out anything which can't be a pointer to a Lisp object
@@ -2492,9 +2275,17 @@ preserve_pointer(void *addr)
      * address referring to something in a CodeObject). This is
      * expensive but important, since it vastly reduces the
      * probability that random garbage will be bogusly interpreted as
-     * a pointer which prevents a page from moving. */
-    if (!(possibly_valid_dynamic_space_pointer(addr)))
+     * a pointer which prevents a page from moving.
+     *
+     * This only needs to happen on x86oids, where this is used for
+     * conservative roots.  Non-x86oid systems only ever call this
+     * function on known-valid lisp objects. */
+#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
+    if (!(code_page_p(addr_page_index)
+          || (is_lisp_pointer((lispobj)addr) &&
+              possibly_valid_dynamic_space_pointer(addr))))
         return;
+#endif
 
     /* Find the beginning of the region.  Note that there may be
      * objects in the region preceding the one that we were passed a
@@ -2504,15 +2295,13 @@ preserve_pointer(void *addr)
 #if 0
     /* I think this'd work just as well, but without the assertions.
      * -dan 2004.01.01 */
-    first_page=
-        find_page_index(page_address(addr_page_index)+
-                        page_table[addr_page_index].first_object_offset);
+    first_page = find_page_index(page_scan_start(addr_page_index))
 #else
     first_page = addr_page_index;
-    while (page_table[first_page].first_object_offset != 0) {
+    while (!page_starts_contiguous_block_p(first_page)) {
         --first_page;
         /* Do some checks. */
-        gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
+        gc_assert(page_table[first_page].bytes_used == GENCGC_CARD_BYTES);
         gc_assert(page_table[first_page].gen == from_space);
         gc_assert(page_table[first_page].allocated == region_allocation);
     }
@@ -2521,21 +2310,22 @@ preserve_pointer(void *addr)
     /* Adjust any large objects before promotion as they won't be
      * copied after promotion. */
     if (page_table[first_page].large_object) {
-        maybe_adjust_large_object(page_address(first_page));
-        /* If a large object has shrunk then addr may now point to a
-         * free area in which case it's ignored here. Note it gets
-         * through the valid pointer test above because the tail looks
-         * like conses. */
-        if ((page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
-            || (page_table[addr_page_index].bytes_used == 0)
-            /* Check the offset within the page. */
-            || (((unsigned)addr & (PAGE_BYTES - 1))
-                > page_table[addr_page_index].bytes_used)) {
-            FSHOW((stderr,
-                   "weird? ignore ptr 0x%x to freed area of large object\n",
-                   addr));
+        /* Large objects (specifically vectors and bignums) can
+         * shrink, leaving a "tail" of zeroed space, which appears to
+         * the filter above as a seris of valid conses, both car and
+         * cdr of which contain the fixnum zero, but will be
+         * deallocated when the GC shrinks the large object region to
+         * fit the object within.  We allow raw pointers within code
+         * space, but for boxed and unboxed space we do not, nor do
+         * pointers to within a non-code object appear valid above.  A
+         * cons cell will never merit allocation to a large object
+         * page, so pick them off now, before we try to adjust the
+         * object. */
+        if ((lowtag_of((lispobj)addr) == LIST_POINTER_LOWTAG) &&
+            !code_page_p(first_page)) {
             return;
         }
+        maybe_adjust_large_object(page_address(first_page));
         /* It may have moved to unboxed pages. */
         region_allocation = page_table[first_page].allocated;
     }
@@ -2548,14 +2338,6 @@ preserve_pointer(void *addr)
         /* Mark the page static. */
         page_table[i].dont_move = 1;
 
-        /* Move the page to the new_space. XX I'd rather not do this
-         * but the GC logic is not quite able to copy with the static
-         * pages remaining in the from space. This also requires the
-         * generation bytes_allocated counters be updated. */
-        page_table[i].gen = new_space;
-        generations[new_space].bytes_allocated += page_table[i].bytes_used;
-        generations[from_space].bytes_allocated -= page_table[i].bytes_used;
-
         /* It is essential that the pages are not write protected as
          * they may have pointers into the old-space which need
          * scavenging. They shouldn't be write protected at this
@@ -2563,12 +2345,7 @@ preserve_pointer(void *addr)
         gc_assert(!page_table[i].write_protected);
 
         /* Check whether this is the last page in this contiguous block.. */
-        if ((page_table[i].bytes_used < PAGE_BYTES)
-            /* ..or it is PAGE_BYTES and is the last in the block */
-            || (page_table[i+1].allocated == FREE_PAGE_FLAG)
-            || (page_table[i+1].bytes_used == 0) /* next page free */
-            || (page_table[i+1].gen != from_space) /* diff. gen */
-            || (page_table[i+1].first_object_offset == 0))
+        if (page_ends_contiguous_block_p(i, from_space))
             break;
     }
 
@@ -2590,22 +2367,23 @@ preserve_pointer(void *addr)
  *
  * We return 1 if the page was write-protected, else 0. */
 static int
-update_page_write_prot(long page)
+update_page_write_prot(page_index_t page)
 {
-    int gen = page_table[page].gen;
-    long j;
+    generation_index_t gen = page_table[page].gen;
+    sword_t j;
     int wp_it = 1;
     void **page_addr = (void **)page_address(page);
-    long num_words = page_table[page].bytes_used / N_WORD_BYTES;
+    sword_t num_words = page_table[page].bytes_used / N_WORD_BYTES;
 
     /* Shouldn't be a free page. */
-    gc_assert(page_table[page].allocated != FREE_PAGE_FLAG);
+    gc_assert(page_allocated_p(page));
     gc_assert(page_table[page].bytes_used != 0);
 
     /* Skip if it's already write-protected, pinned, or unboxed */
     if (page_table[page].write_protected
+        /* FIXME: What's the reason for not write-protecting pinned pages? */
         || page_table[page].dont_move
-        || (page_table[page].allocated & UNBOXED_PAGE_FLAG))
+        || page_unboxed_p(page))
         return (0);
 
     /* Scan the page for pointers to younger generations or the
@@ -2613,15 +2391,15 @@ update_page_write_prot(long page)
 
     for (j = 0; j < num_words; j++) {
         void *ptr = *(page_addr+j);
-        long index = find_page_index(ptr);
+        page_index_t index = find_page_index(ptr);
 
         /* Check that it's in the dynamic space */
         if (index != -1)
             if (/* Does it point to a younger or the temp. generation? */
-                ((page_table[index].allocated != FREE_PAGE_FLAG)
+                (page_allocated_p(index)
                  && (page_table[index].bytes_used != 0)
                  && ((page_table[index].gen < gen)
-                     || (page_table[index].gen == NUM_GENERATIONS)))
+                     || (page_table[index].gen == SCRATCH_GENERATION)))
 
                 /* Or does it point within a current gc_alloc() region? */
                 || ((boxed_region.start_addr <= ptr)
@@ -2638,7 +2416,7 @@ update_page_write_prot(long page)
         /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
 
         os_protect((void *)page_addr,
-                   PAGE_BYTES,
+                   GENCGC_CARD_BYTES,
                    OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
 
         /* Note the page as protected in the page tables. */
@@ -2648,11 +2426,9 @@ update_page_write_prot(long page)
     return (wp_it);
 }
 
-/* Scavenge a generation.
- *
- * This will not resolve all pointers when generation is the new
- * space, as new objects may be added which are not checked here - use
- * scavenge_newspace generation.
+/* Scavenge all generations from FROM to TO, inclusive, except for
+ * new_space which needs special handling, as new objects may be
+ * added which are not checked here - use scavenge_newspace generation.
  *
  * Write-protected pages should not have any pointers to the
  * from_space so do need scavenging; thus write-protected pages are
@@ -2680,44 +2456,43 @@ update_page_write_prot(long page)
  * pointers as the objects contain a link to the next and are written
  * if a weak pointer is scavenged. Still it's a useful check. */
 static void
-scavenge_generation(int generation)
+scavenge_generations(generation_index_t from, generation_index_t to)
 {
-    long i;
-    int num_wp = 0;
+    page_index_t i;
+    page_index_t num_wp = 0;
 
 #define SC_GEN_CK 0
 #if SC_GEN_CK
     /* Clear the write_protected_cleared flags on all pages. */
-    for (i = 0; i < NUM_PAGES; i++)
+    for (i = 0; i < page_table_pages; i++)
         page_table[i].write_protected_cleared = 0;
 #endif
 
     for (i = 0; i < last_free_page; i++) {
-        if ((page_table[i].allocated & BOXED_PAGE_FLAG)
+        generation_index_t generation = page_table[i].gen;
+        if (page_boxed_p(i)
             && (page_table[i].bytes_used != 0)
-            && (page_table[i].gen == generation)) {
-            long last_page,j;
+            && (generation != new_space)
+            && (generation >= from)
+            && (generation <= to)) {
+            page_index_t last_page,j;
             int write_protected=1;
 
             /* This should be the start of a region */
-            gc_assert(page_table[i].first_object_offset == 0);
+            gc_assert(page_starts_contiguous_block_p(i));
 
             /* Now work forward until the end of the region */
             for (last_page = i; ; last_page++) {
                 write_protected =
                     write_protected && page_table[last_page].write_protected;
-                if ((page_table[last_page].bytes_used < PAGE_BYTES)
-                    /* Or it is PAGE_BYTES and is the last in the block */
-                    || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
-                    || (page_table[last_page+1].bytes_used == 0)
-                    || (page_table[last_page+1].gen != generation)
-                    || (page_table[last_page+1].first_object_offset == 0))
+                if (page_ends_contiguous_block_p(last_page, generation))
                     break;
             }
             if (!write_protected) {
                 scavenge(page_address(i),
-                         (page_table[last_page].bytes_used +
-                          (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
+                         ((uword_t)(page_table[last_page].bytes_used
+                                          + npage_bytes(last_page-i)))
+                         /N_WORD_BYTES);
 
                 /* Now scan the pages and write protect those that
                  * don't have pointers to younger generations. */
@@ -2726,31 +2501,31 @@ scavenge_generation(int generation)
                         num_wp += update_page_write_prot(j);
                     }
                 }
+                if ((gencgc_verbose > 1) && (num_wp != 0)) {
+                    FSHOW((stderr,
+                           "/write protected %d pages within generation %d\n",
+                           num_wp, generation));
+                }
             }
             i = last_page;
         }
     }
-    if ((gencgc_verbose > 1) && (num_wp != 0)) {
-        FSHOW((stderr,
-               "/write protected %d pages within generation %d\n",
-               num_wp, generation));
-    }
 
 #if SC_GEN_CK
     /* Check that none of the write_protected pages in this generation
      * have been written to. */
-    for (i = 0; i < NUM_PAGES; i++) {
-        if ((page_table[i].allocation != FREE_PAGE_FLAG)
+    for (i = 0; i < page_table_pages; i++) {
+        if (page_allocated_p(i)
             && (page_table[i].bytes_used != 0)
             && (page_table[i].gen == generation)
             && (page_table[i].write_protected_cleared != 0)) {
             FSHOW((stderr, "/scavenge_generation() %d\n", generation));
             FSHOW((stderr,
-                   "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
+                   "/page bytes_used=%d scan_start_offset=%lu dont_move=%d\n",
                     page_table[i].bytes_used,
-                    page_table[i].first_object_offset,
+                    page_table[i].scan_start_offset,
                     page_table[i].dont_move));
-            lose("write to protected page %d in scavenge_generation()", i);
+            lose("write to protected page %d in scavenge_generation()\n", i);
         }
     }
 #endif
@@ -2785,26 +2560,27 @@ static struct new_area new_areas_2[NUM_NEW_AREAS];
  * complete the job as new objects may be added to the generation in
  * the process which are not scavenged. */
 static void
-scavenge_newspace_generation_one_scan(int generation)
+scavenge_newspace_generation_one_scan(generation_index_t generation)
 {
-    long i;
+    page_index_t i;
 
     FSHOW((stderr,
            "/starting one full scan of newspace generation %d\n",
            generation));
     for (i = 0; i < last_free_page; i++) {
         /* Note that this skips over open regions when it encounters them. */
-        if ((page_table[i].allocated & BOXED_PAGE_FLAG)
+        if (page_boxed_p(i)
             && (page_table[i].bytes_used != 0)
             && (page_table[i].gen == generation)
             && ((page_table[i].write_protected == 0)
                 /* (This may be redundant as write_protected is now
                  * cleared before promotion.) */
                 || (page_table[i].dont_move == 1))) {
-            long last_page;
+            page_index_t last_page;
             int all_wp=1;
 
-            /* The scavenge will start at the first_object_offset of page i.
+            /* The scavenge will start at the scan_start_offset of
+             * page i.
              *
              * We need to find the full extent of this contiguous
              * block in case objects span pages.
@@ -2820,27 +2596,20 @@ scavenge_newspace_generation_one_scan(int generation)
 
                 /* Check whether this is the last page in this
                  * contiguous block */
-                if ((page_table[last_page].bytes_used < PAGE_BYTES)
-                    /* Or it is PAGE_BYTES and is the last in the block */
-                    || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
-                    || (page_table[last_page+1].bytes_used == 0)
-                    || (page_table[last_page+1].gen != generation)
-                    || (page_table[last_page+1].first_object_offset == 0))
+                if (page_ends_contiguous_block_p(last_page, generation))
                     break;
             }
 
             /* Do a limited check for write-protected pages.  */
             if (!all_wp) {
-                long size;
-
-                size = (page_table[last_page].bytes_used
-                        + (last_page-i)*PAGE_BYTES
-                        - page_table[i].first_object_offset)/N_WORD_BYTES;
+                sword_t nwords = (((uword_t)
+                               (page_table[last_page].bytes_used
+                                + npage_bytes(last_page-i)
+                                + page_table[i].scan_start_offset))
+                               / N_WORD_BYTES);
                 new_areas_ignore_page = last_page;
 
-                scavenge(page_address(i) +
-                         page_table[i].first_object_offset,
-                         size);
+                scavenge(page_scan_start(i), nwords);
 
             }
             i = last_page;
@@ -2853,17 +2622,17 @@ scavenge_newspace_generation_one_scan(int generation)
 
 /* Do a complete scavenge of the newspace generation. */
 static void
-scavenge_newspace_generation(int generation)
+scavenge_newspace_generation(generation_index_t generation)
 {
-    long i;
+    size_t i;
 
     /* the new_areas array currently being written to by gc_alloc() */
     struct new_area (*current_new_areas)[] = &new_areas_1;
-    long current_new_areas_index;
+    size_t current_new_areas_index;
 
     /* the new_areas created by the previous scavenge cycle */
     struct new_area (*previous_new_areas)[] = NULL;
-    long previous_new_areas_index;
+    size_t previous_new_areas_index;
 
     /* Flush the current regions updating the tables. */
     gc_alloc_update_all_page_tables();
@@ -2882,6 +2651,13 @@ scavenge_newspace_generation(int generation)
     /* Record all new areas now. */
     record_new_objects = 2;
 
+    /* Give a chance to weak hash tables to make other objects live.
+     * FIXME: The algorithm implemented here for weak hash table gcing
+     * is O(W^2+N) as Bruno Haible warns in
+     * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
+     * see "Implementation 2". */
+    scav_weak_hash_tables();
+
     /* Flush the current regions updating the tables. */
     gc_alloc_update_all_page_tables();
 
@@ -2917,11 +2693,12 @@ scavenge_newspace_generation(int generation)
             /* New areas of objects allocated have been lost so need to do a
              * full scan to be sure! If this becomes a problem try
              * increasing NUM_NEW_AREAS. */
-            if (gencgc_verbose)
+            if (gencgc_verbose) {
                 SHOW("new_areas overflow, doing full scavenge");
+            }
 
-            /* Don't need to record new areas that get scavenge anyway
-             * during scavenge_newspace_generation_one_scan. */
+            /* Don't need to record new areas that get scavenged
+             * anyway during scavenge_newspace_generation_one_scan. */
             record_new_objects = 1;
 
             scavenge_newspace_generation_one_scan(generation);
@@ -2929,6 +2706,8 @@ scavenge_newspace_generation(int generation)
             /* Record all new areas now. */
             record_new_objects = 2;
 
+            scav_weak_hash_tables();
+
             /* Flush the current regions updating the tables. */
             gc_alloc_update_all_page_tables();
 
@@ -2936,13 +2715,15 @@ scavenge_newspace_generation(int generation)
 
             /* Work through previous_new_areas. */
             for (i = 0; i < previous_new_areas_index; i++) {
-                long page = (*previous_new_areas)[i].page;
-                long offset = (*previous_new_areas)[i].offset;
-                long size = (*previous_new_areas)[i].size / N_WORD_BYTES;
+                page_index_t page = (*previous_new_areas)[i].page;
+                size_t offset = (*previous_new_areas)[i].offset;
+                size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
                 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
                 scavenge(page_address(page)+offset, size);
             }
 
+            scav_weak_hash_tables();
+
             /* Flush the current regions updating the tables. */
             gc_alloc_update_all_page_tables();
         }
@@ -2957,17 +2738,20 @@ scavenge_newspace_generation(int generation)
     /* Turn off recording of areas allocated by gc_alloc(). */
     record_new_objects = 0;
 
-#if SC_NS_GEN_CK
-    /* Check that none of the write_protected pages in this generation
-     * have been written to. */
-    for (i = 0; i < NUM_PAGES; i++) {
-        if ((page_table[i].allocation != FREE_PAGE_FLAG)
-            && (page_table[i].bytes_used != 0)
-            && (page_table[i].gen == generation)
-            && (page_table[i].write_protected_cleared != 0)
-            && (page_table[i].dont_move == 0)) {
-            lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d",
-                 i, generation, page_table[i].dont_move);
+#if SC_NS_GEN_CK
+    {
+        page_index_t i;
+        /* Check that none of the write_protected pages in this generation
+         * have been written to. */
+        for (i = 0; i < page_table_pages; i++) {
+            if (page_allocated_p(i)
+                && (page_table[i].bytes_used != 0)
+                && (page_table[i].gen == generation)
+                && (page_table[i].write_protected_cleared != 0)
+                && (page_table[i].dont_move == 0)) {
+                lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
+                     i, generation, page_table[i].dont_move);
+            }
         }
     }
 #endif
@@ -2981,42 +2765,60 @@ scavenge_newspace_generation(int generation)
 static void
 unprotect_oldspace(void)
 {
-    long i;
+    page_index_t i;
+    void *region_addr = 0;
+    void *page_addr = 0;
+    uword_t region_bytes = 0;
 
     for (i = 0; i < last_free_page; i++) {
-        if ((page_table[i].allocated != FREE_PAGE_FLAG)
+        if (page_allocated_p(i)
             && (page_table[i].bytes_used != 0)
             && (page_table[i].gen == from_space)) {
-            void *page_start;
-
-            page_start = (void *)page_address(i);
 
             /* Remove any write-protection. We should be able to rely
              * on the write-protect flag to avoid redundant calls. */
             if (page_table[i].write_protected) {
-                os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
                 page_table[i].write_protected = 0;
+                page_addr = page_address(i);
+                if (!region_addr) {
+                    /* First region. */
+                    region_addr = page_addr;
+                    region_bytes = GENCGC_CARD_BYTES;
+                } else if (region_addr + region_bytes == page_addr) {
+                    /* Region continue. */
+                    region_bytes += GENCGC_CARD_BYTES;
+                } else {
+                    /* Unprotect previous region. */
+                    os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
+                    /* First page in new region. */
+                    region_addr = page_addr;
+                    region_bytes = GENCGC_CARD_BYTES;
+                }
             }
         }
     }
+    if (region_addr) {
+        /* Unprotect last region. */
+        os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
+    }
 }
 
 /* Work through all the pages and free any in from_space. This
  * assumes that all objects have been copied or promoted to an older
  * generation. Bytes_allocated and the generation bytes_allocated
  * counter are updated. The number of bytes freed is returned. */
-static long
+static uword_t
 free_oldspace(void)
 {
-    long bytes_freed = 0;
-    long first_page, last_page;
+    uword_t bytes_freed = 0;
+    page_index_t first_page, last_page;
 
     first_page = 0;
 
     do {
         /* Find a first page for the next region of pages. */
         while ((first_page < last_free_page)
-               && ((page_table[first_page].allocated == FREE_PAGE_FLAG)
+               && (page_free_p(first_page)
                    || (page_table[first_page].bytes_used == 0)
                    || (page_table[first_page].gen != from_space)))
             first_page++;
@@ -3034,49 +2836,21 @@ free_oldspace(void)
                 page_table[last_page].bytes_used;
             page_table[last_page].allocated = FREE_PAGE_FLAG;
             page_table[last_page].bytes_used = 0;
-
-            /* Remove any write-protection. We should be able to rely
-             * on the write-protect flag to avoid redundant calls. */
-            {
-                void  *page_start = (void *)page_address(last_page);
-
-                if (page_table[last_page].write_protected) {
-                    os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
-                    page_table[last_page].write_protected = 0;
-                }
-            }
+            /* Should already be unprotected by unprotect_oldspace(). */
+            gc_assert(!page_table[last_page].write_protected);
             last_page++;
         }
         while ((last_page < last_free_page)
-               && (page_table[last_page].allocated != FREE_PAGE_FLAG)
+               && page_allocated_p(last_page)
                && (page_table[last_page].bytes_used != 0)
                && (page_table[last_page].gen == from_space));
 
-        /* Zero pages from first_page to (last_page-1).
-         *
-         * FIXME: Why not use os_zero(..) function instead of
-         * hand-coding this again? (Check other gencgc_unmap_zero
-         * stuff too. */
-        if (gencgc_unmap_zero) {
-            void *page_start, *addr;
-
-            page_start = (void *)page_address(first_page);
-
-            os_invalidate(page_start, PAGE_BYTES*(last_page-first_page));
-            addr = os_validate(page_start, PAGE_BYTES*(last_page-first_page));
-            if (addr == NULL || addr != page_start) {
-                lose("free_oldspace: page moved, 0x%08x ==> 0x%08x",page_start,
-                     addr);
-            }
-        } else {
-            long *page_start;
-
-            page_start = (long *)page_address(first_page);
-            memset(page_start, 0,PAGE_BYTES*(last_page-first_page));
-        }
-
+#ifdef READ_PROTECT_FREE_PAGES
+        os_protect(page_address(first_page),
+                   npage_bytes(last_page-first_page),
+                   OS_VM_PROT_NONE);
+#endif
         first_page = last_page;
-
     } while (first_page < last_free_page);
 
     bytes_allocated -= bytes_freed;
@@ -3089,16 +2863,16 @@ static void
 print_ptr(lispobj *addr)
 {
     /* If addr is in the dynamic space then out the page information. */
-    long pi1 = find_page_index((void*)addr);
+    page_index_t pi1 = find_page_index((void*)addr);
 
     if (pi1 != -1)
-        fprintf(stderr,"  %x: page %d  alloc %d  gen %d  bytes_used %d  offset %d  dont_move %d\n",
-                (unsigned long) addr,
+        fprintf(stderr,"  %p: page %d  alloc %d  gen %d  bytes_used %d  offset %lu  dont_move %d\n",
+                addr,
                 pi1,
                 page_table[pi1].allocated,
                 page_table[pi1].gen,
                 page_table[pi1].bytes_used,
-                page_table[pi1].first_object_offset,
+                page_table[pi1].scan_start_offset,
                 page_table[pi1].dont_move);
     fprintf(stderr,"  %x %x %x %x (%x) %x %x %x %x\n",
             *(addr-4),
@@ -3113,26 +2887,41 @@ print_ptr(lispobj *addr)
 }
 #endif
 
-extern long undefined_tramp;
+static int
+is_in_stack_space(lispobj ptr)
+{
+    /* For space verification: Pointers can be valid if they point
+     * to a thread stack space.  This would be faster if the thread
+     * structures had page-table entries as if they were part of
+     * the heap space. */
+    struct thread *th;
+    for_each_thread(th) {
+        if ((th->control_stack_start <= (lispobj *)ptr) &&
+            (th->control_stack_end >= (lispobj *)ptr)) {
+            return 1;
+        }
+    }
+    return 0;
+}
 
 static void
 verify_space(lispobj *start, size_t words)
 {
     int is_in_dynamic_space = (find_page_index((void*)start) != -1);
     int is_in_readonly_space =
-        (READ_ONLY_SPACE_START <= (unsigned)start &&
-         (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
+        (READ_ONLY_SPACE_START <= (uword_t)start &&
+         (uword_t)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
 
     while (words > 0) {
         size_t count = 1;
         lispobj thing = *(lispobj*)start;
 
         if (is_lisp_pointer(thing)) {
-            long page_index = find_page_index((void*)thing);
-            long to_readonly_space =
+            page_index_t page_index = find_page_index((void*)thing);
+            sword_t to_readonly_space =
                 (READ_ONLY_SPACE_START <= thing &&
                  thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
-            long to_static_space =
+            sword_t to_static_space =
                 (STATIC_SPACE_START <= thing &&
                  thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
 
@@ -3140,17 +2929,17 @@ verify_space(lispobj *start, size_t words)
             if (page_index != -1) {
                 /* If it's within the dynamic space it should point to a used
                  * page. XX Could check the offset too. */
-                if ((page_table[page_index].allocated != FREE_PAGE_FLAG)
+                if (page_allocated_p(page_index)
                     && (page_table[page_index].bytes_used == 0))
-                    lose ("Ptr %x @ %x sees free page.", thing, start);
+                    lose ("Ptr %p @ %p sees free page.\n", thing, start);
                 /* Check that it doesn't point to a forwarding pointer! */
                 if (*((lispobj *)native_pointer(thing)) == 0x01) {
-                    lose("Ptr %x @ %x sees forwarding ptr.", thing, start);
+                    lose("Ptr %p @ %p sees forwarding ptr.\n", thing, start);
                 }
                 /* Check that its not in the RO space as it would then be a
                  * pointer from the RO to the dynamic space. */
                 if (is_in_readonly_space) {
-                    lose("ptr to dynamic space %x from RO space %x",
+                    lose("ptr to dynamic space %p from RO space %x\n",
                          thing, start);
                 }
                 /* Does it point to a plausible object? This check slows
@@ -3164,14 +2953,16 @@ verify_space(lispobj *start, size_t words)
                  * dynamically. */
                 /*
                 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
-                    lose("ptr %x to invalid object %x", thing, start);
+                    lose("ptr %p to invalid object %p\n", thing, start);
                 }
                 */
             } else {
+                extern void funcallable_instance_tramp;
                 /* Verify that it points to another valid space. */
                 if (!to_readonly_space && !to_static_space
-                    && (thing != (unsigned)&undefined_tramp)) {
-                    lose("Ptr %x @ %x sees junk.", thing, start);
+                    && (thing != (lispobj)&funcallable_instance_tramp)
+                    && !is_in_stack_space(thing)) {
+                    lose("Ptr %p @ %p sees junk.\n", thing, start);
                 }
             }
         } else {
@@ -3201,16 +2992,31 @@ verify_space(lispobj *start, size_t words)
                 case SINGLE_FLOAT_WIDETAG:
 #endif
                 case UNBOUND_MARKER_WIDETAG:
-                case INSTANCE_HEADER_WIDETAG:
                 case FDEFN_WIDETAG:
                     count = 1;
                     break;
 
+                case INSTANCE_HEADER_WIDETAG:
+                    {
+                        lispobj nuntagged;
+                        sword_t ntotal = HeaderValue(thing);
+                        lispobj layout = ((struct instance *)start)->slots[0];
+                        if (!layout) {
+                            count = 1;
+                            break;
+                        }
+                        nuntagged = ((struct layout *)
+                                     native_pointer(layout))->n_untagged_slots;
+                        verify_space(start + 1,
+                                     ntotal - fixnum_value(nuntagged));
+                        count = ntotal + 1;
+                        break;
+                    }
                 case CODE_HEADER_WIDETAG:
                     {
                         lispobj object = *start;
                         struct code *code;
-                        long nheader_words, ncode_words, nwords;
+                        sword_t nheader_words, ncode_words, nwords;
                         lispobj fheaderl;
                         struct simple_fun *fheaderp;
 
@@ -3233,7 +3039,7 @@ verify_space(lispobj *start, size_t words)
                             /* Only when enabled */
                             && verify_dynamic_code_check) {
                             FSHOW((stderr,
-                                   "/code object at %x in the dynamic space\n",
+                                   "/code object at %p in the dynamic space\n",
                                    start));
                         }
 
@@ -3250,7 +3056,8 @@ verify_space(lispobj *start, size_t words)
                         while (fheaderl != NIL) {
                             fheaderp =
                                 (struct simple_fun *) native_pointer(fheaderl);
-                            gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
+                            gc_assert(widetag_of(fheaderp->header) ==
+                                      SIMPLE_FUN_HEADER_WIDETAG);
                             verify_space(&fheaderp->name, 1);
                             verify_space(&fheaderp->arglist, 1);
                             verify_space(&fheaderp->type, 1);
@@ -3278,6 +3085,9 @@ verify_space(lispobj *start, size_t words)
 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
                 case COMPLEX_LONG_FLOAT_WIDETAG:
 #endif
+#ifdef SIMD_PACK_WIDETAG
+                case SIMD_PACK_WIDETAG:
+#endif
                 case SIMPLE_BASE_STRING_WIDETAG:
 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
                 case SIMPLE_CHARACTER_STRING_WIDETAG:
@@ -3290,14 +3100,11 @@ verify_space(lispobj *start, size_t words)
                 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
                 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
                 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
-#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
-                case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
-#endif
+
+                case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
+
                 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
                 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
-#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
-                case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
-#endif
 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
                 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
 #endif
@@ -3310,15 +3117,12 @@ verify_space(lispobj *start, size_t words)
 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
                 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
 #endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
-                case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
-#endif
+
+                case SIMPLE_ARRAY_FIXNUM_WIDETAG:
+
 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
                 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
 #endif
-#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
-                case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
-#endif
 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
                 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
 #endif
@@ -3338,11 +3142,15 @@ verify_space(lispobj *start, size_t words)
 #endif
                 case SAP_WIDETAG:
                 case WEAK_POINTER_WIDETAG:
+#ifdef NO_TLS_VALUE_MARKER_WIDETAG
+                case NO_TLS_VALUE_MARKER_WIDETAG:
+#endif
                     count = (sizetab[widetag_of(*start)])(start);
                     break;
 
                 default:
-                    gc_abort();
+                    lose("Unhandled widetag %p at %p\n",
+                         widetag_of(*start), start);
                 }
             }
         }
@@ -3360,16 +3168,16 @@ verify_gc(void)
      * Some counts of lispobjs are called foo_count; it might be good
      * to grep for all foo_size and rename the appropriate ones to
      * foo_count. */
-    long read_only_space_size =
+    sword_t read_only_space_size =
         (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
         - (lispobj*)READ_ONLY_SPACE_START;
-    long static_space_size =
+    sword_t static_space_size =
         (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
         - (lispobj*)STATIC_SPACE_START;
     struct thread *th;
     for_each_thread(th) {
-    long binding_stack_size =
-            (lispobj*)SymbolValue(BINDING_STACK_POINTER,th)
+    sword_t binding_stack_size =
+        (lispobj*)get_binding_stack_pointer(th)
             - (lispobj*)th->binding_stack_start;
         verify_space(th->binding_stack_start, binding_stack_size);
     }
@@ -3378,19 +3186,18 @@ verify_gc(void)
 }
 
 static void
-verify_generation(int  generation)
+verify_generation(generation_index_t generation)
 {
-    int i;
+    page_index_t i;
 
     for (i = 0; i < last_free_page; i++) {
-        if ((page_table[i].allocated != FREE_PAGE_FLAG)
+        if (page_allocated_p(i)
             && (page_table[i].bytes_used != 0)
             && (page_table[i].gen == generation)) {
-            long last_page;
-            int region_allocation = page_table[i].allocated;
+            page_index_t last_page;
 
             /* This should be the start of a contiguous block */
-            gc_assert(page_table[i].first_object_offset == 0);
+            gc_assert(page_starts_contiguous_block_p(i));
 
             /* Need to find the full extent of this contiguous block in case
                objects span pages. */
@@ -3400,16 +3207,14 @@ verify_generation(int  generation)
             for (last_page = i; ;last_page++)
                 /* Check whether this is the last page in this contiguous
                  * block. */
-                if ((page_table[last_page].bytes_used < PAGE_BYTES)
-                    /* Or it is PAGE_BYTES and is the last in the block */
-                    || (page_table[last_page+1].allocated != region_allocation)
-                    || (page_table[last_page+1].bytes_used == 0)
-                    || (page_table[last_page+1].gen != generation)
-                    || (page_table[last_page+1].first_object_offset == 0))
+                if (page_ends_contiguous_block_p(last_page, generation))
                     break;
 
-            verify_space(page_address(i), (page_table[last_page].bytes_used
-                                           + (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
+            verify_space(page_address(i),
+                         ((uword_t)
+                          (page_table[last_page].bytes_used
+                           + npage_bytes(last_page-i)))
+                         / N_WORD_BYTES);
             i = last_page;
         }
     }
@@ -3419,29 +3224,29 @@ verify_generation(int  generation)
 static void
 verify_zero_fill(void)
 {
-    long page;
+    page_index_t page;
 
     for (page = 0; page < last_free_page; page++) {
-        if (page_table[page].allocated == FREE_PAGE_FLAG) {
+        if (page_free_p(page)) {
             /* The whole page should be zero filled. */
-            long *start_addr = (long *)page_address(page);
-            long size = 1024;
-            long i;
+            sword_t *start_addr = (sword_t *)page_address(page);
+            sword_t size = 1024;
+            sword_t i;
             for (i = 0; i < size; i++) {
                 if (start_addr[i] != 0) {
-                    lose("free page not zero at %x", start_addr + i);
+                    lose("free page not zero at %x\n", start_addr + i);
                 }
             }
         } else {
-            long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
+            sword_t free_bytes = GENCGC_CARD_BYTES - page_table[page].bytes_used;
             if (free_bytes > 0) {
-                long *start_addr = (long *)((unsigned)page_address(page)
+                sword_t *start_addr = (sword_t *)((uword_t)page_address(page)
                                           + page_table[page].bytes_used);
-                long size = free_bytes / N_WORD_BYTES;
-                long i;
+                sword_t size = free_bytes / N_WORD_BYTES;
+                sword_t i;
                 for (i = 0; i < size; i++) {
                     if (start_addr[i] != 0) {
-                        lose("free region not zero at %x", start_addr + i);
+                        lose("free region not zero at %x\n", start_addr + i);
                     }
                 }
             }
@@ -3462,9 +3267,9 @@ gencgc_verify_zero_fill(void)
 static void
 verify_dynamic_space(void)
 {
-    long i;
+    generation_index_t i;
 
-    for (i = 0; i < NUM_GENERATIONS; i++)
+    for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
         verify_generation(i);
 
     if (gencgc_enable_verify_zero_fill)
@@ -3473,28 +3278,35 @@ verify_dynamic_space(void)
 \f
 /* Write-protect all the dynamic boxed pages in the given generation. */
 static void
-write_protect_generation_pages(int generation)
+write_protect_generation_pages(generation_index_t generation)
 {
-    long i;
+    page_index_t start;
 
-    gc_assert(generation < NUM_GENERATIONS);
+    gc_assert(generation < SCRATCH_GENERATION);
 
-    for (i = 0; i < last_free_page; i++)
-        if ((page_table[i].allocated == BOXED_PAGE_FLAG)
-            && (page_table[i].bytes_used != 0)
-            && !page_table[i].dont_move
-            && (page_table[i].gen == generation))  {
+    for (start = 0; start < last_free_page; start++) {
+        if (protect_page_p(start, generation)) {
             void *page_start;
+            page_index_t last;
+
+            /* Note the page as protected in the page tables. */
+            page_table[start].write_protected = 1;
 
-            page_start = (void *)page_address(i);
+            for (last = start + 1; last < last_free_page; last++) {
+                if (!protect_page_p(last, generation))
+                  break;
+                page_table[last].write_protected = 1;
+            }
+
+            page_start = (void *)page_address(start);
 
             os_protect(page_start,
-                       PAGE_BYTES,
+                       npage_bytes(last - start),
                        OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
 
-            /* Note the page as protected in the page tables. */
-            page_table[i].write_protected = 1;
+            start = last;
         }
+    }
 
     if (gencgc_verbose > 1) {
         FSHOW((stderr,
@@ -3505,19 +3317,90 @@ write_protect_generation_pages(int generation)
     }
 }
 
+#if defined(LISP_FEATURE_SB_THREAD) && (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
+static void
+preserve_context_registers (os_context_t *c)
+{
+    void **ptr;
+    /* On Darwin the signal context isn't a contiguous block of memory,
+     * so just preserve_pointering its contents won't be sufficient.
+     */
+#if defined(LISP_FEATURE_DARWIN)||defined(LISP_FEATURE_WIN32)
+#if defined LISP_FEATURE_X86
+    preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
+    preserve_pointer((void*)*os_context_pc_addr(c));
+#elif defined LISP_FEATURE_X86_64
+    preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
+    preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
+    preserve_pointer((void*)*os_context_pc_addr(c));
+#else
+    #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
+#endif
+#endif
+#if !defined(LISP_FEATURE_WIN32)
+    for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
+        preserve_pointer(*ptr);
+    }
+#endif
+}
+#endif
+
+static void
+move_pinned_pages_to_newspace()
+{
+    page_index_t i;
+
+    /* scavenge() will evacuate all oldspace pages, but no newspace
+     * pages.  Pinned pages are precisely those pages which must not
+     * be evacuated, so move them to newspace directly. */
+
+    for (i = 0; i < last_free_page; i++) {
+        if (page_table[i].dont_move &&
+            /* dont_move is cleared lazily, so validate the space as well. */
+            page_table[i].gen == from_space) {
+            page_table[i].gen = new_space;
+            /* And since we're moving the pages wholesale, also adjust
+             * the generation allocation counters. */
+            generations[new_space].bytes_allocated += page_table[i].bytes_used;
+            generations[from_space].bytes_allocated -= page_table[i].bytes_used;
+        }
+    }
+}
+
 /* Garbage collect a generation. If raise is 0 then the remains of the
  * generation are not raised to the next generation. */
 static void
-garbage_collect_generation(int generation, int raise)
+garbage_collect_generation(generation_index_t generation, int raise)
 {
-    unsigned long bytes_freed;
-    unsigned long i;
-    unsigned long static_space_size;
+    uword_t bytes_freed;
+    page_index_t i;
+    uword_t static_space_size;
     struct thread *th;
-    gc_assert(generation <= (NUM_GENERATIONS-1));
+
+    gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
 
     /* The oldest generation can't be raised. */
-    gc_assert((generation != (NUM_GENERATIONS-1)) || (raise == 0));
+    gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
+
+    /* Check if weak hash tables were processed in the previous GC. */
+    gc_assert(weak_hash_tables == NULL);
 
     /* Initialize the weak pointer list. */
     weak_pointers = NULL;
@@ -3527,7 +3410,7 @@ garbage_collect_generation(int generation, int raise)
      * done. Set up this new generation. There should be no pages
      * allocated to it yet. */
     if (!raise) {
-         gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
+         gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
     }
 
     /* Set the global src and dest. generations */
@@ -3535,7 +3418,7 @@ garbage_collect_generation(int generation, int raise)
     if (raise)
         new_space = generation+1;
     else
-        new_space = NUM_GENERATIONS;
+        new_space = SCRATCH_GENERATION;
 
     /* Change to a new space for allocation, resetting the alloc_start_page */
     gc_alloc_generation = new_space;
@@ -3572,74 +3455,158 @@ garbage_collect_generation(int generation, int raise)
     /* we assume that none of the preceding applies to the thread that
      * initiates GC.  If you ever call GC from inside an altstack
      * handler, you will lose. */
-    for_each_thread(th) {
-        void **ptr;
-        void **esp=(void **)-1;
-#ifdef LISP_FEATURE_SB_THREAD
-        long i,free;
-        if(th==arch_os_get_current_thread()) {
-            /* Somebody is going to burn in hell for this, but casting
-             * it in two steps shuts gcc up about strict aliasing. */
-            esp = (void **)((void *)&raise);
-        } else {
-            void **esp1;
-            free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
-            for(i=free-1;i>=0;i--) {
-                os_context_t *c=th->interrupt_contexts[i];
-                esp1 = (void **) *os_context_register_addr(c,reg_SP);
-                if (esp1>=(void **)th->control_stack_start &&
-                    esp1<(void **)th->control_stack_end) {
-                    if(esp1<esp) esp=esp1;
-                    for(ptr = (void **)(c+1); ptr>=(void **)c; ptr--) {
-                        preserve_pointer(*ptr);
+
+#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
+    /* And if we're saving a core, there's no point in being conservative. */
+    if (conservative_stack) {
+        for_each_thread(th) {
+            void **ptr;
+            void **esp=(void **)-1;
+            if (th->state == STATE_DEAD)
+                continue;
+# if defined(LISP_FEATURE_SB_SAFEPOINT)
+            /* Conservative collect_garbage is always invoked with a
+             * foreign C call or an interrupt handler on top of every
+             * existing thread, so the stored SP in each thread
+             * structure is valid, no matter which thread we are looking
+             * at.  For threads that were running Lisp code, the pitstop
+             * and edge functions maintain this value within the
+             * interrupt or exception handler. */
+            esp = os_get_csp(th);
+            assert_on_stack(th, esp);
+
+            /* In addition to pointers on the stack, also preserve the
+             * return PC, the only value from the context that we need
+             * in addition to the SP.  The return PC gets saved by the
+             * foreign call wrapper, and removed from the control stack
+             * into a register. */
+            preserve_pointer(th->pc_around_foreign_call);
+
+            /* And on platforms with interrupts: scavenge ctx registers. */
+
+            /* Disabled on Windows, because it does not have an explicit
+             * stack of `interrupt_contexts'.  The reported CSP has been
+             * chosen so that the current context on the stack is
+             * covered by the stack scan.  See also set_csp_from_context(). */
+#  ifndef LISP_FEATURE_WIN32
+            if (th != arch_os_get_current_thread()) {
+                long k = fixnum_value(
+                    SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
+                while (k > 0)
+                    preserve_context_registers(th->interrupt_contexts[--k]);
+            }
+#  endif
+# elif defined(LISP_FEATURE_SB_THREAD)
+            sword_t i,free;
+            if(th==arch_os_get_current_thread()) {
+                /* Somebody is going to burn in hell for this, but casting
+                 * it in two steps shuts gcc up about strict aliasing. */
+                esp = (void **)((void *)&raise);
+            } else {
+                void **esp1;
+                free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
+                for(i=free-1;i>=0;i--) {
+                    os_context_t *c=th->interrupt_contexts[i];
+                    esp1 = (void **) *os_context_register_addr(c,reg_SP);
+                    if (esp1>=(void **)th->control_stack_start &&
+                        esp1<(void **)th->control_stack_end) {
+                        if(esp1<esp) esp=esp1;
+                        preserve_context_registers(c);
                     }
                 }
             }
+# else
+            esp = (void **)((void *)&raise);
+# endif
+            if (!esp || esp == (void*) -1)
+                lose("garbage_collect: no SP known for thread %x (OS %x)",
+                     th, th->os_thread);
+            for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp;  ptr--) {
+                preserve_pointer(*ptr);
+            }
         }
+    }
 #else
-        esp = (void **)((void *)&raise);
-#endif
-        for (ptr = (void **)th->control_stack_end; ptr > esp;  ptr--) {
-            preserve_pointer(*ptr);
+    /* Non-x86oid systems don't have "conservative roots" as such, but
+     * the same mechanism is used for objects pinned for use by alien
+     * code. */
+    for_each_thread(th) {
+        lispobj pin_list = SymbolTlValue(PINNED_OBJECTS,th);
+        while (pin_list != NIL) {
+            struct cons *list_entry =
+                (struct cons *)native_pointer(pin_list);
+            preserve_pointer(list_entry->car);
+            pin_list = list_entry->cdr;
         }
     }
+#endif
 
-#ifdef QSHOW
+#if QSHOW
     if (gencgc_verbose > 1) {
-        long num_dont_move_pages = count_dont_move_pages();
+        sword_t num_dont_move_pages = count_dont_move_pages();
         fprintf(stderr,
                 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
                 num_dont_move_pages,
-                num_dont_move_pages * PAGE_BYTES);
+                npage_bytes(num_dont_move_pages));
     }
 #endif
 
+    /* Now that all of the pinned (dont_move) pages are known, and
+     * before we start to scavenge (and thus relocate) objects,
+     * relocate the pinned pages to newspace, so that the scavenger
+     * will not attempt to relocate their contents. */
+    move_pinned_pages_to_newspace();
+
     /* Scavenge all the rest of the roots. */
 
+#if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
+    /*
+     * If not x86, we need to scavenge the interrupt context(s) and the
+     * control stack.
+     */
+    {
+        struct thread *th;
+        for_each_thread(th) {
+            scavenge_interrupt_contexts(th);
+            scavenge_control_stack(th);
+        }
+
+# ifdef LISP_FEATURE_SB_SAFEPOINT
+        /* In this case, scrub all stacks right here from the GCing thread
+         * instead of doing what the comment below says.  Suboptimal, but
+         * easier. */
+        for_each_thread(th)
+            scrub_thread_control_stack(th);
+# else
+        /* Scrub the unscavenged control stack space, so that we can't run
+         * into any stale pointers in a later GC (this is done by the
+         * stop-for-gc handler in the other threads). */
+        scrub_control_stack();
+# endif
+    }
+#endif
+
     /* Scavenge the Lisp functions of the interrupt handlers, taking
      * care to avoid SIG_DFL and SIG_IGN. */
-    for_each_thread(th) {
-        struct interrupt_data *data=th->interrupt_data;
     for (i = 0; i < NSIG; i++) {
-            union interrupt_handler handler = data->interrupt_handlers[i];
+        union interrupt_handler handler = interrupt_handlers[i];
         if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
             !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
-                scavenge((lispobj *)(data->interrupt_handlers + i), 1);
-            }
+            scavenge((lispobj *)(interrupt_handlers + i), 1);
         }
     }
     /* Scavenge the binding stacks. */
- {
-     struct thread *th;
-     for_each_thread(th) {
-         long len= (lispobj *)SymbolValue(BINDING_STACK_POINTER,th) -
-             th->binding_stack_start;
-         scavenge((lispobj *) th->binding_stack_start,len);
+    {
+        struct thread *th;
+        for_each_thread(th) {
+            sword_t len= (lispobj *)get_binding_stack_pointer(th) -
+                th->binding_stack_start;
+            scavenge((lispobj *) th->binding_stack_start,len);
 #ifdef LISP_FEATURE_SB_THREAD
-         /* do the tls as well */
-         len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
-             (sizeof (struct thread))/(sizeof (lispobj));
-         scavenge((lispobj *) (th+1),len);
+            /* do the tls as well */
+            len=(SymbolValue(FREE_TLS_INDEX,0) >> WORD_SHIFT) -
+                (sizeof (struct thread))/(sizeof (lispobj));
+            scavenge((lispobj *) (th+1),len);
 #endif
         }
     }
@@ -3653,7 +3620,7 @@ garbage_collect_generation(int generation, int raise)
      * please submit a patch. */
 #if 0
     if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
-        unsigned long read_only_space_size =
+        uword_t read_only_space_size =
             (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
             (lispobj*)READ_ONLY_SPACE_START;
         FSHOW((stderr,
@@ -3677,11 +3644,7 @@ garbage_collect_generation(int generation, int raise)
     /* All generations but the generation being GCed need to be
      * scavenged. The new_space generation needs special handling as
      * objects may be moved in - it is handled separately below. */
-    for (i = 0; i < NUM_GENERATIONS; i++) {
-        if ((i != generation) && (i != new_space)) {
-            scavenge_generation(i);
-        }
-    }
+    scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
 
     /* Finally scavenge the new_space generation. Keep going until no
      * more objects are moved into the new generation */
@@ -3698,8 +3661,8 @@ garbage_collect_generation(int generation, int raise)
     /* As a check re-scavenge the newspace once; no new objects should
      * be found. */
     {
-        long old_bytes_allocated = bytes_allocated;
-        long bytes_allocated;
+        os_vm_size_t old_bytes_allocated = bytes_allocated;
+        os_vm_size_t bytes_allocated;
 
         /* Start with a full scavenge. */
         scavenge_newspace_generation_one_scan(new_space);
@@ -3710,12 +3673,13 @@ garbage_collect_generation(int generation, int raise)
         bytes_allocated = bytes_allocated - old_bytes_allocated;
 
         if (bytes_allocated != 0) {
-            lose("Rescan of new_space allocated %d more bytes.",
+            lose("Rescan of new_space allocated %d more bytes.\n",
                  bytes_allocated);
         }
     }
 #endif
 
+    scan_weak_hash_tables();
     scan_weak_pointers();
 
     /* Flush the current regions, updating the tables. */
@@ -3729,12 +3693,12 @@ garbage_collect_generation(int generation, int raise)
     if (!raise) {
         for (i = 0; i < last_free_page; i++)
             if ((page_table[i].bytes_used != 0)
-                && (page_table[i].gen == NUM_GENERATIONS))
+                && (page_table[i].gen == SCRATCH_GENERATION))
                 page_table[i].gen = generation;
         gc_assert(generations[generation].bytes_allocated == 0);
         generations[generation].bytes_allocated =
-            generations[NUM_GENERATIONS].bytes_allocated;
-        generations[NUM_GENERATIONS].bytes_allocated = 0;
+            generations[SCRATCH_GENERATION].bytes_allocated;
+        generations[SCRATCH_GENERATION].bytes_allocated = 0;
     }
 
     /* Reset the alloc_start_page for generation. */
@@ -3744,8 +3708,9 @@ garbage_collect_generation(int generation, int raise)
     generations[generation].alloc_large_unboxed_start_page = 0;
 
     if (generation >= verify_gens) {
-        if (gencgc_verbose)
+        if (gencgc_verbose) {
             SHOW("verifying");
+        }
         verify_gc();
         verify_dynamic_space();
     }
@@ -3759,27 +3724,81 @@ garbage_collect_generation(int generation, int raise)
         generations[generation].num_gc = 0;
     else
         ++generations[generation].num_gc;
+
 }
 
 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
-long
-update_x86_dynamic_space_free_pointer(void)
+sword_t
+update_dynamic_space_free_pointer(void)
 {
-    long last_page = -1;
-    long i;
+    page_index_t last_page = -1, i;
 
     for (i = 0; i < last_free_page; i++)
-        if ((page_table[i].allocated != FREE_PAGE_FLAG)
-            && (page_table[i].bytes_used != 0))
+        if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
             last_page = i;
 
     last_free_page = last_page+1;
 
-    SetSymbolValue(ALLOCATION_POINTER,
-                   (lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES),0);
+    set_alloc_pointer((lispobj)(page_address(last_free_page)));
     return 0; /* dummy value: return something ... */
 }
 
+static void
+remap_page_range (page_index_t from, page_index_t to)
+{
+    /* There's a mysterious Solaris/x86 problem with using mmap
+     * tricks for memory zeroing. See sbcl-devel thread
+     * "Re: patch: standalone executable redux".
+     */
+#if defined(LISP_FEATURE_SUNOS)
+    zero_and_mark_pages(from, to);
+#else
+    const page_index_t
+            release_granularity = gencgc_release_granularity/GENCGC_CARD_BYTES,
+                   release_mask = release_granularity-1,
+                            end = to+1,
+                   aligned_from = (from+release_mask)&~release_mask,
+                    aligned_end = (end&~release_mask);
+
+    if (aligned_from < aligned_end) {
+        zero_pages_with_mmap(aligned_from, aligned_end-1);
+        if (aligned_from != from)
+            zero_and_mark_pages(from, aligned_from-1);
+        if (aligned_end != end)
+            zero_and_mark_pages(aligned_end, end-1);
+    } else {
+        zero_and_mark_pages(from, to);
+    }
+#endif
+}
+
+static void
+remap_free_pages (page_index_t from, page_index_t to, int forcibly)
+{
+    page_index_t first_page, last_page;
+
+    if (forcibly)
+        return remap_page_range(from, to);
+
+    for (first_page = from; first_page <= to; first_page++) {
+        if (page_allocated_p(first_page) ||
+            (page_table[first_page].need_to_zero == 0))
+            continue;
+
+        last_page = first_page + 1;
+        while (page_free_p(last_page) &&
+               (last_page <= to) &&
+               (page_table[last_page].need_to_zero == 1))
+            last_page++;
+
+        remap_page_range(first_page, last_page-1);
+
+        first_page = last_page;
+    }
+}
+
+generation_index_t small_generation_limit = 1;
+
 /* GC all generations newer than last_gen, raising the objects in each
  * to the next older generation - we finish when all generations below
  * last_gen are empty.  Then if last_gen is due for a GC, or if
@@ -3788,18 +3807,22 @@ update_x86_dynamic_space_free_pointer(void)
  *
  * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
  * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
-
 void
-collect_garbage(unsigned last_gen)
+collect_garbage(generation_index_t last_gen)
 {
-    int gen = 0;
-    int raise;
+    generation_index_t gen = 0, i;
+    int raise, more = 0;
     int gen_to_wp;
-    long i;
+    /* The largest value of last_free_page seen since the time
+     * remap_free_pages was called. */
+    static page_index_t high_water_mark = 0;
 
     FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
+    log_generation_stats(gc_logfile, "=== GC Start ===");
 
-    if (last_gen > NUM_GENERATIONS) {
+    gc_active_p = 1;
+
+    if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
         FSHOW((stderr,
                "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
                last_gen));
@@ -3816,18 +3839,28 @@ collect_garbage(unsigned last_gen)
     }
 
     if (gencgc_verbose > 1)
-        print_generation_stats(0);
+        print_generation_stats();
 
     do {
         /* Collect the generation. */
 
-        if (gen >= gencgc_oldest_gen_to_gc) {
-            /* Never raise the oldest generation. */
+        if (more || (gen >= gencgc_oldest_gen_to_gc)) {
+            /* Never raise the oldest generation. Never raise the extra generation
+             * collected due to more-flag. */
             raise = 0;
+            more = 0;
         } else {
             raise =
                 (gen < last_gen)
-                || (generations[gen].num_gc >= generations[gen].trigger_age);
+                || (generations[gen].num_gc >= generations[gen].number_of_gcs_before_promotion);
+            /* If we would not normally raise this one, but we're
+             * running low on space in comparison to the object-sizes
+             * we've been seeing, raise it and collect the next one
+             * too. */
+            if (!raise && gen == last_gen) {
+                more = (2*large_allocation) >= (dynamic_space_size - bytes_allocated);
+                raise = more;
+            }
         }
 
         if (gencgc_verbose > 1) {
@@ -3854,18 +3887,18 @@ collect_garbage(unsigned last_gen)
 
         if (gencgc_verbose > 1) {
             FSHOW((stderr, "GC of generation %d finished:\n", gen));
-            print_generation_stats(0);
+            print_generation_stats();
         }
 
         gen++;
     } while ((gen <= gencgc_oldest_gen_to_gc)
              && ((gen < last_gen)
-                 || ((gen <= gencgc_oldest_gen_to_gc)
-                     && raise
+                 || more
+                 || (raise
                      && (generations[gen].bytes_allocated
                          > generations[gen].gc_trigger)
-                     && (gen_av_mem_age(gen)
-                         > generations[gen].min_av_mem_age))));
+                     && (generation_average_age(gen)
+                         > generations[gen].minimum_age_before_gc))));
 
     /* Now if gen-1 was raised all generations before gen are empty.
      * If it wasn't raised then all generations before gen-1 are empty.
@@ -3886,7 +3919,7 @@ collect_garbage(unsigned last_gen)
         /* Check that they are all empty. */
         for (i = 0; i < gen_to_wp; i++) {
             if (generations[i].bytes_allocated)
-                lose("trying to write-protect gen. %d when gen. %d nonempty",
+                lose("trying to write-protect gen. %d when gen. %d nonempty\n",
                      gen_to_wp, i);
         }
         write_protect_generation_pages(gen_to_wp);
@@ -3897,11 +3930,37 @@ collect_garbage(unsigned last_gen)
     gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
     gc_alloc_generation = 0;
 
-    update_x86_dynamic_space_free_pointer();
-    auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
+    /* Save the high-water mark before updating last_free_page */
+    if (last_free_page > high_water_mark)
+        high_water_mark = last_free_page;
+
+    update_dynamic_space_free_pointer();
+
+    /* Update auto_gc_trigger. Make sure we trigger the next GC before
+     * running out of heap! */
+    if (bytes_consed_between_gcs <= (dynamic_space_size - bytes_allocated))
+        auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
+    else
+        auto_gc_trigger = bytes_allocated + (dynamic_space_size - bytes_allocated)/2;
+
     if(gencgc_verbose)
-        fprintf(stderr,"Next gc when %ld bytes have been consed\n",
+        fprintf(stderr,"Next gc when %"OS_VM_SIZE_FMT" bytes have been consed\n",
                 auto_gc_trigger);
+
+    /* If we did a big GC (arbitrarily defined as gen > 1), release memory
+     * back to the OS.
+     */
+    if (gen > small_generation_limit) {
+        if (last_free_page > high_water_mark)
+            high_water_mark = last_free_page;
+        remap_free_pages(0, high_water_mark, 0);
+        high_water_mark = 0;
+    }
+
+    gc_active_p = 0;
+    large_allocation = 0;
+
+    log_generation_stats(gc_logfile, "=== GC End ===");
     SHOW("returning from collect_garbage");
 }
 
@@ -3913,47 +3972,46 @@ collect_garbage(unsigned last_gen)
 void
 gc_free_heap(void)
 {
-    long page;
+    page_index_t page, last_page;
 
-    if (gencgc_verbose > 1)
+    if (gencgc_verbose > 1) {
         SHOW("entering gc_free_heap");
+    }
 
-    for (page = 0; page < NUM_PAGES; page++) {
+    for (page = 0; page < page_table_pages; page++) {
         /* Skip free pages which should already be zero filled. */
-        if (page_table[page].allocated != FREE_PAGE_FLAG) {
-            void *page_start, *addr;
-
-            /* Mark the page free. The other slots are assumed invalid
-             * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
-             * should not be write-protected -- except that the
-             * generation is used for the current region but it sets
-             * that up. */
-            page_table[page].allocated = FREE_PAGE_FLAG;
-            page_table[page].bytes_used = 0;
-
-            /* Zero the page. */
-            page_start = (void *)page_address(page);
-
-            /* First, remove any write-protection. */
-            os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
-            page_table[page].write_protected = 0;
-
-            os_invalidate(page_start,PAGE_BYTES);
-            addr = os_validate(page_start,PAGE_BYTES);
-            if (addr == NULL || addr != page_start) {
-                lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x",
-                     page_start,
-                     addr);
+        if (page_allocated_p(page)) {
+            void *page_start;
+            for (last_page = page;
+                 (last_page < page_table_pages) && page_allocated_p(last_page);
+                 last_page++) {
+                /* Mark the page free. The other slots are assumed invalid
+                 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
+                 * should not be write-protected -- except that the
+                 * generation is used for the current region but it sets
+                 * that up. */
+                page_table[page].allocated = FREE_PAGE_FLAG;
+                page_table[page].bytes_used = 0;
+                page_table[page].write_protected = 0;
             }
+
+#ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
+                            * about this change. */
+            page_start = (void *)page_address(page);
+            os_protect(page_start, npage_bytes(last_page-page), OS_VM_PROT_ALL);
+            remap_free_pages(page, last_page-1, 1);
+            page = last_page-1;
+#endif
         } else if (gencgc_zero_check_during_free_heap) {
             /* Double-check that the page is zero filled. */
-            long *page_start, i;
-            gc_assert(page_table[page].allocated == FREE_PAGE_FLAG);
+            sword_t *page_start;
+            page_index_t i;
+            gc_assert(page_free_p(page));
             gc_assert(page_table[page].bytes_used == 0);
-            page_start = (long *)page_address(page);
-            for (i=0; i<1024; i++) {
+            page_start = (sword_t *)page_address(page);
+            for (i=0; i<GENCGC_CARD_BYTES/sizeof(sword_t); i++) {
                 if (page_start[i] != 0) {
-                    lose("free region not zero at %x", page_start + i);
+                    lose("free region not zero at %x\n", page_start + i);
                 }
             }
         }
@@ -3974,7 +4032,7 @@ gc_free_heap(void)
     }
 
     if (gencgc_verbose > 1)
-        print_generation_stats(0);
+        print_generation_stats();
 
     /* Initialize gc_alloc(). */
     gc_alloc_generation = 0;
@@ -3983,12 +4041,11 @@ gc_free_heap(void)
     gc_set_region_empty(&unboxed_region);
 
     last_free_page = 0;
-    SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base),0);
+    set_alloc_pointer((lispobj)((char *)heap_base));
 
     if (verify_after_free_heap) {
         /* Check whether purify has left any bad pointers. */
-        if (gencgc_verbose)
-            SHOW("checking after free_heap\n");
+        FSHOW((stderr, "checking after free_heap\n"));
         verify_gc();
     }
 }
@@ -3996,23 +4053,68 @@ gc_free_heap(void)
 void
 gc_init(void)
 {
-    long i;
+    page_index_t i;
+
+#if defined(LISP_FEATURE_SB_SAFEPOINT)
+    alloc_gc_page();
+#endif
+
+    /* Compute the number of pages needed for the dynamic space.
+     * Dynamic space size should be aligned on page size. */
+    page_table_pages = dynamic_space_size/GENCGC_CARD_BYTES;
+    gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
+
+    /* Default nursery size to 5% of the total dynamic space size,
+     * min 1Mb. */
+    bytes_consed_between_gcs = dynamic_space_size/(os_vm_size_t)20;
+    if (bytes_consed_between_gcs < (1024*1024))
+        bytes_consed_between_gcs = 1024*1024;
+
+    /* The page_table must be allocated using "calloc" to initialize
+     * the page structures correctly. There used to be a separate
+     * initialization loop (now commented out; see below) but that was
+     * unnecessary and did hurt startup time. */
+    page_table = calloc(page_table_pages, sizeof(struct page));
+    gc_assert(page_table);
 
     gc_init_tables();
-    scavtab[SIMPLE_VECTOR_WIDETAG] = scav_vector;
     scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
     transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
 
     heap_base = (void*)DYNAMIC_SPACE_START;
 
-    /* Initialize each page structure. */
-    for (i = 0; i < NUM_PAGES; i++) {
-        /* Initialize all pages as free. */
-        page_table[i].allocated = FREE_PAGE_FLAG;
-        page_table[i].bytes_used = 0;
-
-        /* Pages are not write-protected at startup. */
-        page_table[i].write_protected = 0;
+    /* The page structures are initialized implicitly when page_table
+     * is allocated with "calloc" above. Formerly we had the following
+     * explicit initialization here (comments converted to C99 style
+     * for readability as C's block comments don't nest):
+     *
+     * // Initialize each page structure.
+     * for (i = 0; i < page_table_pages; i++) {
+     *     // Initialize all pages as free.
+     *     page_table[i].allocated = FREE_PAGE_FLAG;
+     *     page_table[i].bytes_used = 0;
+     *
+     *     // Pages are not write-protected at startup.
+     *     page_table[i].write_protected = 0;
+     * }
+     *
+     * Without this loop the image starts up much faster when dynamic
+     * space is large -- which it is on 64-bit platforms already by
+     * default -- and when "calloc" for large arrays is implemented
+     * using copy-on-write of a page of zeroes -- which it is at least
+     * on Linux. In this case the pages that page_table_pages is stored
+     * in are mapped and cleared not before the corresponding part of
+     * dynamic space is used. For example, this saves clearing 16 MB of
+     * memory at startup if the page size is 4 KB and the size of
+     * dynamic space is 4 GB.
+     * FREE_PAGE_FLAG must be 0 for this to work correctly which is
+     * asserted below: */
+    {
+      /* Compile time assertion: If triggered, declares an array
+       * of dimension -1 forcing a syntax error. The intent of the
+       * assignment is to avoid an "unused variable" warning. */
+      char assert_free_page_flag_0[(FREE_PAGE_FLAG) ? -1 : 1];
+      assert_free_page_flag_0[0] = assert_free_page_flag_0[0];
     }
 
     bytes_allocated = 0;
@@ -4030,9 +4132,10 @@ gc_init(void)
         generations[i].num_gc = 0;
         generations[i].cum_sum_bytes_allocated = 0;
         /* the tune-able parameters */
-        generations[i].bytes_consed_between_gc = 2000000;
-        generations[i].trigger_age = 1;
-        generations[i].min_av_mem_age = 0.75;
+        generations[i].bytes_consed_between_gc
+            = bytes_consed_between_gcs/(os_vm_size_t)HIGHEST_NORMAL_GENERATION;
+        generations[i].number_of_gcs_before_promotion = 1;
+        generations[i].minimum_age_before_gc = 0.75;
     }
 
     /* Initialize gc_alloc. */
@@ -4041,7 +4144,6 @@ gc_init(void)
     gc_set_region_empty(&unboxed_region);
 
     last_free_page = 0;
-
 }
 
 /*  Pick up the dynamic space from after a core load.
@@ -4052,37 +4154,54 @@ gc_init(void)
 static void
 gencgc_pickup_dynamic(void)
 {
-    long page = 0;
-    long alloc_ptr = SymbolValue(ALLOCATION_POINTER,0);
+    page_index_t page = 0;
+    void *alloc_ptr = (void *)get_alloc_pointer();
     lispobj *prev=(lispobj *)page_address(page);
+    generation_index_t gen = PSEUDO_STATIC_GENERATION;
+
+    bytes_allocated = 0;
 
     do {
         lispobj *first,*ptr= (lispobj *)page_address(page);
-        page_table[page].allocated = BOXED_PAGE_FLAG;
-        page_table[page].gen = 0;
-        page_table[page].bytes_used = PAGE_BYTES;
-        page_table[page].large_object = 0;
-
-        first=gc_search_space(prev,(ptr+2)-prev,ptr);
-        if(ptr == first)  prev=ptr;
-        page_table[page].first_object_offset =
-            (void *)prev - page_address(page);
+
+        if (!gencgc_partial_pickup || page_allocated_p(page)) {
+          /* It is possible, though rare, for the saved page table
+           * to contain free pages below alloc_ptr. */
+          page_table[page].gen = gen;
+          page_table[page].bytes_used = GENCGC_CARD_BYTES;
+          page_table[page].large_object = 0;
+          page_table[page].write_protected = 0;
+          page_table[page].write_protected_cleared = 0;
+          page_table[page].dont_move = 0;
+          page_table[page].need_to_zero = 1;
+
+          bytes_allocated += GENCGC_CARD_BYTES;
+        }
+
+        if (!gencgc_partial_pickup) {
+            page_table[page].allocated = BOXED_PAGE_FLAG;
+            first=gc_search_space(prev,(ptr+2)-prev,ptr);
+            if(ptr == first)
+                prev=ptr;
+            page_table[page].scan_start_offset =
+                page_address(page) - (void *)prev;
+        }
         page++;
-    } while ((long)page_address(page) < alloc_ptr);
+    } while (page_address(page) < alloc_ptr);
 
-    generations[0].bytes_allocated = PAGE_BYTES*page;
-    bytes_allocated = PAGE_BYTES*page;
+    last_free_page = page;
 
-}
+    generations[gen].bytes_allocated = bytes_allocated;
 
+    gc_alloc_update_all_page_tables();
+    write_protect_generation_pages(gen);
+}
 
 void
 gc_initialize_pointers(void)
 {
     gencgc_pickup_dynamic();
 }
-
-
 \f
 
 /* alloc(..) is the external interface for memory allocation. It
@@ -4097,42 +4216,31 @@ gc_initialize_pointers(void)
  * The check for a GC trigger is only performed when the current
  * region is full, so in most cases it's not needed. */
 
-char *
-alloc(long nbytes)
+static inline lispobj *
+general_alloc_internal(sword_t nbytes, int page_type_flag, struct alloc_region *region,
+                       struct thread *thread)
 {
-    struct thread *thread=arch_os_get_current_thread();
-    struct alloc_region *region=
-#ifdef LISP_FEATURE_SB_THREAD
-        thread ? &(thread->alloc_region) : &boxed_region;
-#else
-        &boxed_region;
+#ifndef LISP_FEATURE_WIN32
+    lispobj alloc_signal;
 #endif
     void *new_obj;
     void *new_free_pointer;
+    os_vm_size_t trigger_bytes = 0;
+
     gc_assert(nbytes>0);
+
     /* Check for alignment allocation problems. */
-    gc_assert((((unsigned)region->free_pointer & LOWTAG_MASK) == 0)
+    gc_assert((((uword_t)region->free_pointer & LOWTAG_MASK) == 0)
               && ((nbytes & LOWTAG_MASK) == 0));
-#if 0
-    if(all_threads)
-        /* there are a few places in the C code that allocate data in the
-         * heap before Lisp starts.  This is before interrupts are enabled,
-         * so we don't need to check for pseudo-atomic */
-#ifdef LISP_FEATURE_SB_THREAD
-        if(!SymbolValue(PSEUDO_ATOMIC_ATOMIC,th)) {
-            register u32 fs;
-            fprintf(stderr, "fatal error in thread 0x%x, tid=%ld\n",
-                    th,th->os_thread);
-            __asm__("movl %fs,%0" : "=r" (fs)  : );
-            fprintf(stderr, "fs is %x, th->tls_cookie=%x \n",
-                    debug_get_fs(),th->tls_cookie);
-            lose("If you see this message before 2004.01.31, mail details to sbcl-devel\n");
-        }
-#else
-    gc_assert(SymbolValue(PSEUDO_ATOMIC_ATOMIC,th));
-#endif
+
+#if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
+    /* Must be inside a PA section. */
+    gc_assert(get_pseudo_atomic_atomic(thread));
 #endif
 
+    if (nbytes > large_allocation)
+        large_allocation = nbytes;
+
     /* maybe we can do this quickly ... */
     new_free_pointer = region->free_pointer + nbytes;
     if (new_free_pointer <= region->end_addr) {
@@ -4141,11 +4249,19 @@ alloc(long nbytes)
         return(new_obj);        /* yup */
     }
 
-    /* we have to go the long way around, it seems.  Check whether
-     * we should GC in the near future
+    /* We don't want to count nbytes against auto_gc_trigger unless we
+     * have to: it speeds up the tenuring of objects and slows down
+     * allocation. However, unless we do so when allocating _very_
+     * large objects we are in danger of exhausting the heap without
+     * running sufficient GCs.
      */
-    if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
-        gc_assert(fixnum_value(SymbolValue(PSEUDO_ATOMIC_ATOMIC,thread)));
+    if (nbytes >= bytes_consed_between_gcs)
+        trigger_bytes = nbytes;
+
+    /* we have to go the long way around, it seems. Check whether we
+     * should GC in the near future
+     */
+    if (auto_gc_trigger && (bytes_allocated+trigger_bytes > auto_gc_trigger)) {
         /* Don't flood the system with interrupts if the need to gc is
          * already noted. This can happen for example when SUB-GC
          * allocates or after a gc triggered in a WITHOUT-GCING. */
@@ -4153,20 +4269,99 @@ alloc(long nbytes)
             /* set things up so that GC happens when we finish the PA
              * section */
             SetSymbolValue(GC_PENDING,T,thread);
-            if (SymbolValue(GC_INHIBIT,thread) == NIL)
-                arch_set_pseudo_atomic_interrupted(0);
+            if (SymbolValue(GC_INHIBIT,thread) == NIL) {
+#ifdef LISP_FEATURE_SB_SAFEPOINT
+                thread_register_gc_trigger();
+#else
+                set_pseudo_atomic_interrupted(thread);
+#ifdef GENCGC_IS_PRECISE
+                /* PPC calls alloc() from a trap or from pa_alloc(),
+                 * look up the most context if it's from a trap. */
+                {
+                    os_context_t *context =
+                        thread->interrupt_data->allocation_trap_context;
+                    maybe_save_gc_mask_and_block_deferrables
+                        (context ? os_context_sigmask_addr(context) : NULL);
+                }
+#else
+                maybe_save_gc_mask_and_block_deferrables(NULL);
+#endif
+#endif
+            }
         }
     }
-    new_obj = gc_alloc_with_region(nbytes,0,region,0);
+    new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
+
+#ifndef LISP_FEATURE_WIN32
+    /* for sb-prof, and not supported on Windows yet */
+    alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
+    if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
+        if ((sword_t) alloc_signal <= 0) {
+            SetSymbolValue(ALLOC_SIGNAL, T, thread);
+            raise(SIGPROF);
+        } else {
+            SetSymbolValue(ALLOC_SIGNAL,
+                           alloc_signal - (1 << N_FIXNUM_TAG_BITS),
+                           thread);
+        }
+    }
+#endif
+
     return (new_obj);
 }
+
+lispobj *
+general_alloc(sword_t nbytes, int page_type_flag)
+{
+    struct thread *thread = arch_os_get_current_thread();
+    /* Select correct region, and call general_alloc_internal with it.
+     * For other then boxed allocation we must lock first, since the
+     * region is shared. */
+    if (BOXED_PAGE_FLAG & page_type_flag) {
+#ifdef LISP_FEATURE_SB_THREAD
+        struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
+#else
+        struct alloc_region *region = &boxed_region;
+#endif
+        return general_alloc_internal(nbytes, page_type_flag, region, thread);
+    } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
+        lispobj * obj;
+        gc_assert(0 == thread_mutex_lock(&allocation_lock));
+        obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
+        gc_assert(0 == thread_mutex_unlock(&allocation_lock));
+        return obj;
+    } else {
+        lose("bad page type flag: %d", page_type_flag);
+    }
+}
+
+lispobj AMD64_SYSV_ABI *
+alloc(long nbytes)
+{
+#ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
+    struct thread *self = arch_os_get_current_thread();
+    int was_pseudo_atomic = get_pseudo_atomic_atomic(self);
+    if (!was_pseudo_atomic)
+        set_pseudo_atomic_atomic(self);
+#else
+    gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
+#endif
+
+    lispobj *result = general_alloc(nbytes, BOXED_PAGE_FLAG);
+
+#ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
+    if (!was_pseudo_atomic)
+        clear_pseudo_atomic_atomic(self);
+#endif
+
+    return result;
+}
 \f
 /*
  * shared support for the OS-dependent signal handlers which
  * catch GENCGC-related write-protect violations
  */
-
-void unhandled_sigmemoryfault(void);
+void unhandled_sigmemoryfault(void* addr);
 
 /* Depending on which OS we're running under, different signals might
  * be raised for a violation of write protection in the heap. This
@@ -4176,14 +4371,24 @@ void unhandled_sigmemoryfault(void);
  *
  * Return true if this signal is a normal generational GC thing that
  * we were able to handle, or false if it was abnormal and control
- * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
+ * should fall through to the general SIGSEGV/SIGBUS/whatever logic.
+ *
+ * We have two control flags for this: one causes us to ignore faults
+ * on unprotected pages completely, and the second complains to stderr
+ * but allows us to continue without losing.
+ */
+extern boolean ignore_memoryfaults_on_unprotected_pages;
+boolean ignore_memoryfaults_on_unprotected_pages = 0;
+
+extern boolean continue_after_memoryfault_on_unprotected_pages;
+boolean continue_after_memoryfault_on_unprotected_pages = 0;
 
 int
 gencgc_handle_wp_violation(void* fault_addr)
 {
-    long  page_index = find_page_index(fault_addr);
+    page_index_t page_index = find_page_index(fault_addr);
 
-#ifdef QSHOW_SIGNALS
+#if QSHOW_SIGNALS
     FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
            fault_addr, page_index));
 #endif
@@ -4193,27 +4398,56 @@ gencgc_handle_wp_violation(void* fault_addr)
 
         /* It can be helpful to be able to put a breakpoint on this
          * case to help diagnose low-level problems. */
-        unhandled_sigmemoryfault();
+        unhandled_sigmemoryfault(fault_addr);
 
         /* not within the dynamic space -- not our responsibility */
         return 0;
 
     } else {
+        int ret;
+        ret = thread_mutex_lock(&free_pages_lock);
+        gc_assert(ret == 0);
         if (page_table[page_index].write_protected) {
             /* Unprotect the page. */
-            os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
+            os_protect(page_address(page_index), GENCGC_CARD_BYTES, OS_VM_PROT_ALL);
             page_table[page_index].write_protected_cleared = 1;
             page_table[page_index].write_protected = 0;
-        } else {
+        } else if (!ignore_memoryfaults_on_unprotected_pages) {
             /* The only acceptable reason for this signal on a heap
              * access is that GENCGC write-protected the page.
              * However, if two CPUs hit a wp page near-simultaneously,
              * we had better not have the second one lose here if it
              * does this test after the first one has already set wp=0
              */
-            if(page_table[page_index].write_protected_cleared != 1)
-                lose("fault in heap page not marked as write-protected");
+            if(page_table[page_index].write_protected_cleared != 1) {
+                void lisp_backtrace(int frames);
+                lisp_backtrace(10);
+                fprintf(stderr,
+                        "Fault @ %p, page %"PAGE_INDEX_FMT" not marked as write-protected:\n"
+                        "  boxed_region.first_page: %"PAGE_INDEX_FMT","
+                        "  boxed_region.last_page %"PAGE_INDEX_FMT"\n"
+                        "  page.scan_start_offset: %"OS_VM_SIZE_FMT"\n"
+                        "  page.bytes_used: %"PAGE_BYTES_FMT"\n"
+                        "  page.allocated: %d\n"
+                        "  page.write_protected: %d\n"
+                        "  page.write_protected_cleared: %d\n"
+                        "  page.generation: %d\n",
+                        fault_addr,
+                        page_index,
+                        boxed_region.first_page,
+                        boxed_region.last_page,
+                        page_table[page_index].scan_start_offset,
+                        page_table[page_index].bytes_used,
+                        page_table[page_index].allocated,
+                        page_table[page_index].write_protected,
+                        page_table[page_index].write_protected_cleared,
+                        page_table[page_index].gen);
+                if (!continue_after_memoryfault_on_unprotected_pages)
+                    lose("Feh.\n");
+            }
         }
+        ret = thread_mutex_unlock(&free_pages_lock);
+        gc_assert(ret == 0);
         /* Don't worry, we can handle it. */
         return 1;
     }
@@ -4223,18 +4457,23 @@ gencgc_handle_wp_violation(void* fault_addr)
  * are about to let Lisp deal with it. It's basically just a
  * convenient place to set a gdb breakpoint. */
 void
-unhandled_sigmemoryfault()
+unhandled_sigmemoryfault(void *addr)
 {}
 
 void gc_alloc_update_all_page_tables(void)
 {
     /* Flush the alloc regions updating the tables. */
     struct thread *th;
-    for_each_thread(th)
-        gc_alloc_update_page_tables(0, &th->alloc_region);
-    gc_alloc_update_page_tables(1, &unboxed_region);
-    gc_alloc_update_page_tables(0, &boxed_region);
+    for_each_thread(th) {
+        gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
+#if defined(LISP_FEATURE_SB_SAFEPOINT_STRICTLY) && !defined(LISP_FEATURE_WIN32)
+        gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->sprof_alloc_region);
+#endif
+    }
+    gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
+    gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
 }
+
 void
 gc_set_region_empty(struct alloc_region *region)
 {
@@ -4244,3 +4483,96 @@ gc_set_region_empty(struct alloc_region *region)
     region->free_pointer = page_address(0);
     region->end_addr = page_address(0);
 }
+
+static void
+zero_all_free_pages()
+{
+    page_index_t i;
+
+    for (i = 0; i < last_free_page; i++) {
+        if (page_free_p(i)) {
+#ifdef READ_PROTECT_FREE_PAGES
+            os_protect(page_address(i),
+                       GENCGC_CARD_BYTES,
+                       OS_VM_PROT_ALL);
+#endif
+            zero_pages(i, i);
+        }
+    }
+}
+
+/* Things to do before doing a final GC before saving a core (without
+ * purify).
+ *
+ * + Pages in large_object pages aren't moved by the GC, so we need to
+ *   unset that flag from all pages.
+ * + The pseudo-static generation isn't normally collected, but it seems
+ *   reasonable to collect it at least when saving a core. So move the
+ *   pages to a normal generation.
+ */
+static void
+prepare_for_final_gc ()
+{
+    page_index_t i;
+    for (i = 0; i < last_free_page; i++) {
+        page_table[i].large_object = 0;
+        if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
+            int used = page_table[i].bytes_used;
+            page_table[i].gen = HIGHEST_NORMAL_GENERATION;
+            generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
+            generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
+        }
+    }
+}
+
+
+/* Do a non-conservative GC, and then save a core with the initial
+ * function being set to the value of the static symbol
+ * SB!VM:RESTART-LISP-FUNCTION */
+void
+gc_and_save(char *filename, boolean prepend_runtime,
+            boolean save_runtime_options, boolean compressed,
+            int compression_level, int application_type)
+{
+    FILE *file;
+    void *runtime_bytes = NULL;
+    size_t runtime_size;
+
+    file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
+                           &runtime_size);
+    if (file == NULL)
+       return;
+
+    conservative_stack = 0;
+
+    /* The filename might come from Lisp, and be moved by the now
+     * non-conservative GC. */
+    filename = strdup(filename);
+
+    /* Collect twice: once into relatively high memory, and then back
+     * into low memory. This compacts the retained data into the lower
+     * pages, minimizing the size of the core file.
+     */
+    prepare_for_final_gc();
+    gencgc_alloc_start_page = last_free_page;
+    collect_garbage(HIGHEST_NORMAL_GENERATION+1);
+
+    prepare_for_final_gc();
+    gencgc_alloc_start_page = -1;
+    collect_garbage(HIGHEST_NORMAL_GENERATION+1);
+
+    if (prepend_runtime)
+        save_runtime_to_filehandle(file, runtime_bytes, runtime_size,
+                                   application_type);
+
+    /* The dumper doesn't know that pages need to be zeroed before use. */
+    zero_all_free_pages();
+    save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
+                       prepend_runtime, save_runtime_options,
+                       compressed ? compression_level : COMPRESSION_LEVEL_NONE);
+    /* Oops. Save still managed to fail. Since we've mangled the stack
+     * beyond hope, there's not much we can do.
+     * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
+     * going to be rather unsatisfactory too... */
+    lose("Attempt to save core after non-conservative GC failed.\n");
+}