(res-len-1 (1- res-len))
,@(if result `((,result (%allocate-bignum res-len)))))
(declare (type bignum-index res-len res-len-1))
- (do ((i ,start-digit i+1)
- (i+1 (1+ ,start-digit) (1+ i+1))
+ (do ((i ,start-digit (1+ i))
(j 0 (1+ j)))
,termination
- (declare (type bignum-index i i+1 j))
+ (declare (type bignum-index i j))
(setf (%bignum-ref ,(if result result source) j)
(%logior (%digit-logical-shift-right (%bignum-ref ,source i)
,start-pos)
- (%ashl (%bignum-ref ,source i+1)
+ (%ashl (%bignum-ref ,source (1+ i))
high-bits-in-first-digit))))))
) ; EVAL-WHEN
(res-len-1 (1- res-len))
(res (or res (%allocate-bignum res-len))))
(declare (type bignum-index res-len res-len-1))
- (do ((i 0 i+1)
- (i+1 1 (1+ i+1))
+ (do ((i 0 (1+ i))
(j (1+ digits) (1+ j)))
((= j res-len-1)
(setf (%bignum-ref res digits)
(if resp
(%normalize-bignum-buffer res res-len)
(%normalize-bignum res res-len)))
- (declare (type bignum-index i i+1 j))
+ (declare (type bignum-index i j))
(setf (%bignum-ref res j)
(%logior (%digit-logical-shift-right (%bignum-ref bignum i)
remaining-bits)
- (%ashl (%bignum-ref bignum i+1) n-bits))))))
+ (%ashl (%bignum-ref bignum (1+ i)) n-bits))))))
\f
;;;; relational operators
;;; digit.
((bignum-truncate-single-digit (x len-x y)
(declare (type bignum-index len-x))
- (let ((q (%allocate-bignum len-x))
- (r 0)
- (y (%bignum-ref y 0)))
- (declare (type bignum-element-type r y))
- (do ((i (1- len-x) (1- i)))
- ((minusp i))
- (multiple-value-bind (q-digit r-digit)
- (%floor r (%bignum-ref x i) y)
- (declare (type bignum-element-type q-digit r-digit))
- (setf (%bignum-ref q i) q-digit)
- (setf r r-digit)))
- (let ((rem (%allocate-bignum 1)))
- (setf (%bignum-ref rem 0) r)
- (values q rem))))
+ (let ((y (%bignum-ref y 0)))
+ (declare (type bignum-element-type y))
+ (if (not (logtest y (1- y)))
+ ;; Y is a power of two.
+ (if (= y 1)
+ ;; SHIFT-RIGHT-UNALIGNED won't do the right thing
+ ;; with a shift count of 0, so special case this.
+ ;; We could probably get away with (VALUES X 0)
+ ;; here, but it's not clear that some of the
+ ;; normalization logic further down would avoid
+ ;; mutilating X. Just go ahead and cons, consing's
+ ;; cheap.
+ (values (copy-bignum x len-x) 0)
+ (let ((n-bits (1- (integer-length y))))
+ (values
+ (shift-right-unaligned x 0 n-bits len-x
+ ((= j res-len-1)
+ (setf (%bignum-ref res j)
+ (%ashr (%bignum-ref x i) n-bits))
+ res)
+ res)
+ (logand (%bignum-ref x 0) (1- y)))))
+ (do ((i (1- len-x) (1- i))
+ (q (%allocate-bignum len-x))
+ (r 0))
+ ((minusp i)
+ (let ((rem (%allocate-bignum 1)))
+ (setf (%bignum-ref rem 0) r)
+ (values q rem)))
+ (declare (type bignum-element-type r))
+ (multiple-value-bind (q-digit r-digit)
+ (%floor r (%bignum-ref x i) y)
+ (declare (type bignum-element-type q-digit r-digit))
+ (setf (%bignum-ref q i) q-digit)
+ (setf r r-digit))))))
;;; This returns a guess for the next division step. Y1 is the
;;; highest y digit, and y2 is the second to highest y
;;; digit. The x... variables are the three highest x digits