Implement modular function optimization for PPC.
... Haven't implemented modular - or *; they could be TODO.
... probably doesn't build on anything but PPC currently, so
onto a branch it goes.
performance of the compiler by about 20%.
* optimization: performance of FILL (and :INITIAL-ELEMENT) on
simple-base-strings and simple-bit-vectors is improved.
+ * optimization: the optimization of 32-bit logical and arithmetic
+ functions introduced in version 0.8.3 on the x86 has been
+ implemented on the ppc.
* microoptimization: the compiler is better able to make use of the
x86 LEA instruction for multiplication by constants.
* bug fix: in some situations compiler did not report usage of
"TWO-ARG-/" "TWO-ARG-/=" "TWO-ARG-<"
"TWO-ARG-<=" "TWO-ARG-="
"TWO-ARG->" "TWO-ARG->=" "TWO-ARG-AND"
- "TWO-ARG-GCD" "TWO-ARG-IOR"
+ "TWO-ARG-EQV" "TWO-ARG-GCD" "TWO-ARG-IOR"
"TWO-ARG-LCM" "TWO-ARG-XOR"
"TYPE-DIFFERENCE" "TYPE-EXPAND"
"TYPE-INTERSECTION" "TYPE-INTERSECTION2"
(declare (integer result)))
-1))
-(defun lognand (integer1 integer2)
- #!+sb-doc
- "Return the complement of the logical AND of integer1 and integer2."
- (lognand integer1 integer2))
-
-(defun lognor (integer1 integer2)
- #!+sb-doc
- "Return the complement of the logical OR of integer1 and integer2."
- (lognor integer1 integer2))
-
-(defun logandc1 (integer1 integer2)
- #!+sb-doc
- "Return the logical AND of (LOGNOT integer1) and integer2."
- (logandc1 integer1 integer2))
-
-(defun logandc2 (integer1 integer2)
- #!+sb-doc
- "Return the logical AND of integer1 and (LOGNOT integer2)."
- (logandc2 integer1 integer2))
-
-(defun logorc1 (integer1 integer2)
- #!+sb-doc
- "Return the logical OR of (LOGNOT integer1) and integer2."
- (logorc1 integer1 integer2))
-
-(defun logorc2 (integer1 integer2)
- #!+sb-doc
- "Return the logical OR of integer1 and (LOGNOT integer2)."
- (logorc2 integer1 integer2))
-
(defun lognot (number)
#!+sb-doc
"Return the bit-wise logical not of integer."
(fixnum (lognot (truly-the fixnum number)))
(bignum (bignum-logical-not number))))
-(macrolet ((def (name op big-op)
- `(defun ,name (x y)
- (number-dispatch ((x integer) (y integer))
- (bignum-cross-fixnum ,op ,big-op)))))
+(macrolet ((def (name op big-op &optional doc)
+ `(defun ,name (integer1 integer2)
+ ,@(when doc
+ (list doc))
+ (let ((x integer1)
+ (y integer2))
+ (number-dispatch ((x integer) (y integer))
+ (bignum-cross-fixnum ,op ,big-op))))))
(def two-arg-and logand bignum-logical-and)
(def two-arg-ior logior bignum-logical-ior)
- (def two-arg-xor logxor bignum-logical-xor))
+ (def two-arg-xor logxor bignum-logical-xor)
+ ;; BIGNUM-LOGICAL-{AND,IOR,XOR} need not return a bignum, so must
+ ;; call the generic LOGNOT...
+ (def two-arg-eqv logeqv (lambda (x y) (lognot (bignum-logical-xor x y))))
+ (def lognand lognand
+ (lambda (x y) (lognot (bignum-logical-and x y)))
+ #!+sb-doc "Complement the logical AND of INTEGER1 and INTEGER2.")
+ (def lognor lognor
+ (lambda (x y) (lognot (bignum-logical-ior x y)))
+ #!+sb-doc "Complement the logical AND of INTEGER1 and INTEGER2.")
+ ;; ... but BIGNUM-LOGICAL-NOT on a bignum will always return a bignum
+ (def logandc1 logandc1
+ (lambda (x y) (bignum-logical-and (bignum-logical-not x) y))
+ #!+sb-doc "Bitwise AND (LOGNOT INTEGER1) with INTEGER2.")
+ (def logandc2 logandc2
+ (lambda (x y) (bignum-logical-and x (bignum-logical-not y)))
+ #!+sb-doc "Bitwise AND INTEGER1 with (LOGNOT INTEGER2).")
+ (def logorc1 logorc1
+ (lambda (x y) (bignum-logical-ior (bignum-logical-not x) y))
+ #!+sb-doc "Bitwise OR (LOGNOT INTEGER1) with INTEGER2.")
+ (def logorc2 logorc2
+ (lambda (x y) (bignum-logical-ior x (bignum-logical-not y)))
+ #!+sb-doc "Bitwise OR INTEGER1 with (LOGNOT INTEGER2)."))
(defun logcount (integer)
#!+sb-doc
\f
;;;; 32-bit operations
-#!-x86 ; on X86 it is a modular function
+#!-(or ppc x86) ; on X86 it is a modular function
(deftransform lognot ((x) ((unsigned-byte 32)) *
:node node
:result result)
(eval-when (:compile-toplevel :load-toplevel :execute)
-(defmacro define-var-binop (translate untagged-penalty op)
+(defmacro define-var-binop (translate untagged-penalty op
+ &optional arg-swap restore-fixnum-mask)
`(progn
(define-vop (,(symbolicate "FAST-" translate "/FIXNUM=>FIXNUM")
fast-fixnum-binop)
+ ,@(when restore-fixnum-mask
+ `((:temporary (:sc non-descriptor-reg) temp)))
(:translate ,translate)
(:generator 2
- (inst ,op r x y)))
+ ,(if arg-swap
+ `(inst ,op ,(if restore-fixnum-mask 'temp 'r) y x)
+ `(inst ,op ,(if restore-fixnum-mask 'temp 'r) x y))
+ ;; FIXME: remind me what convention we used for 64bitizing
+ ;; stuff? -- CSR, 2003-08-27
+ ,@(when restore-fixnum-mask
+ `((inst clrrwi r temp (1- n-lowtag-bits))))))
(define-vop (,(symbolicate "FAST-" translate "/SIGNED=>SIGNED")
fast-signed-binop)
(:translate ,translate)
(:generator ,(1+ untagged-penalty)
- (inst ,op r x y)))
+ ,(if arg-swap
+ `(inst ,op r y x)
+ `(inst ,op r x y))))
(define-vop (,(symbolicate "FAST-" translate "/UNSIGNED=>UNSIGNED")
fast-unsigned-binop)
(:translate ,translate)
(:generator ,(1+ untagged-penalty)
- (inst ,op r x y)))))
+ ,(if arg-swap
+ `(inst ,op r y x)
+ `(inst ,op r x y))))))
(defmacro define-const-binop (translate untagged-penalty op)
(define-var-binop + 4 add)
(define-var-binop - 4 sub)
(define-var-binop logand 2 and)
+(define-var-binop logandc1 2 andc t)
(define-var-binop logandc2 2 andc)
(define-var-binop logior 2 or)
-(define-var-binop logorc2 2 orc)
+(define-var-binop logorc1 2 orc t t)
+(define-var-binop logorc2 2 orc nil t)
(define-var-binop logxor 2 xor)
-(define-var-binop logeqv 2 eqv)
+(define-var-binop logeqv 2 eqv nil t)
+(define-var-binop lognand 2 nand nil t)
+(define-var-binop lognor 2 nor nil t)
(define-const-binop + 4 addi)
(define-const-binop - 4 subi)
(emit-label done))))
\f
+;;;; Modular functions:
+(define-modular-fun lognot-mod32 (x) lognot 32)
+(define-vop (lognot-mod32/unsigned=>unsigned)
+ (:translate lognot-mod32)
+ (:args (x :scs (unsigned-reg)))
+ (:arg-types unsigned-num)
+ (:results (res :scs (unsigned-reg)))
+ (:result-types unsigned-num)
+ (:policy :fast-safe)
+ (:generator 1
+ (inst not res x)))
+
+(macrolet
+ ((define-modular-backend (fun &optional constantp)
+ (let ((mfun-name (symbolicate fun '-mod32))
+ (modvop (symbolicate 'fast- fun '-mod32/unsigned=>unsigned))
+ (modcvop (symbolicate 'fast- fun 'mod32-c/unsigned=>unsigned))
+ (vop (symbolicate 'fast- fun '/unsigned=>unsigned))
+ (cvop (symbolicate 'fast- fun '-c/unsigned=>unsigned)))
+ `(progn
+ (define-modular-fun ,mfun-name (x y) ,fun 32)
+ (define-vop (,modvop ,vop)
+ (:translate ,mfun-name))
+ ,@(when constantp
+ `((define-vop (,modcvop ,cvop)
+ (:translate ,mfun-name))))))))
+ (define-modular-backend + t)
+ (define-modular-backend logxor t)
+ (define-modular-backend logeqv)
+ (define-modular-backend lognand)
+ (define-modular-backend lognor)
+ (define-modular-backend logandc1)
+ (define-modular-backend logandc2)
+ (define-modular-backend logorc1)
+ (define-modular-backend logorc2))
+\f
;;;; Binary conditional VOPs:
(define-vop (fast-conditional)
(emit-label done)
(move result res))))
+(define-source-transform 32bit-logical-not (x)
+ `(logand (lognot (the (unsigned-byte 32) ,x)) #.(1- (ash 1 32))))
-(define-vop (32bit-logical)
- (:args (x :scs (unsigned-reg zero))
- (y :scs (unsigned-reg zero)))
- (:arg-types unsigned-num unsigned-num)
- (:results (r :scs (unsigned-reg)))
- (:result-types unsigned-num)
- (:policy :fast-safe))
-
-(define-vop (32bit-logical-not 32bit-logical)
- (:translate 32bit-logical-not)
- (:args (x :scs (unsigned-reg zero)))
- (:arg-types unsigned-num)
- (:generator 1
- (inst not r x)))
-
-(define-vop (32bit-logical-and 32bit-logical)
- (:translate 32bit-logical-and)
- (:generator 1
- (inst and r x y)))
-
-(deftransform 32bit-logical-nand ((x y) (* *))
- '(32bit-logical-not (32bit-logical-and x y)))
+(deftransform 32bit-logical-and ((x y))
+ '(logand x y))
-(define-vop (32bit-logical-or 32bit-logical)
- (:translate 32bit-logical-or)
- (:generator 1
- (inst or r x y)))
+(deftransform 32bit-logical-nand ((x y))
+ '(logand (lognand x y) #.(1- (ash 1 32))))
-(deftransform 32bit-logical-nor ((x y) (* *))
- '(32bit-logical-not (32bit-logical-or x y)))
+(deftransform 32bit-logical-or ((x y))
+ '(logior x y))
-(define-vop (32bit-logical-xor 32bit-logical)
- (:translate 32bit-logical-xor)
- (:generator 1
- (inst xor r x y)))
+(deftransform 32bit-logical-nor ((x y))
+ '(logand (lognor x y) #.(1- (ash 1 32))))
-(define-vop (32bit-logical-eqv 32bit-logical)
- (:translate 32bit-logical-eqv)
- (:generator 1
- (inst eqv r x y)))
+(deftransform 32bit-logical-xor ((x y))
+ '(logxor x y))
-(define-vop (32bit-logical-orc2 32bit-logical)
- (:translate 32bit-logical-orc2)
- (:generator 1
- (inst orc r x y)))
+(deftransform 32bit-logical-eqv ((x y))
+ '(logand (logeqv x y) #.(1- (ash 1 32))))
-(deftransform 32bit-logical-orc1 ((x y) (* *))
- '(32bit-logical-orc2 y x))
+(deftransform 32bit-logical-orc1 ((x y))
+ '(logand (logorc1 x y) #.(1- (ash 1 32))))
-(define-vop (32bit-logical-andc2 32bit-logical)
- (:translate 32bit-logical-andc2)
- (:generator 1
- (inst andc r x y)))
+(deftransform 32bit-logical-orc2 ((x y))
+ '(logand (logorc2 x y) #.(1- (ash 1 32))))
-(deftransform 32bit-logical-andc1 ((x y) (* *))
- '(32bit-logical-andc2 y x))
+(deftransform 32bit-logical-andc1 ((x y))
+ '(logand (logandc1 x y) #.(1- (ash 1 32))))
+(deftransform 32bit-logical-andc2 ((x y))
+ '(logand (logandc2 x y) #.(1- (ash 1 32))))
(define-vop (shift-towards-someplace)
(:policy :fast-safe)
(:generator 1
(inst rlwinm amount amount 0 27 31)
(inst srw r num amount)))
-
-
-
\f
;;;; Bignum stuff.
(inst mullw lo x y)
(inst mulhwu hi x y)))
-(define-vop (bignum-lognot)
- (:translate sb!bignum::%lognot)
- (:policy :fast-safe)
- (:args (x :scs (unsigned-reg)))
- (:arg-types unsigned-num)
- (:results (r :scs (unsigned-reg)))
- (:result-types unsigned-num)
- (:generator 1
- (inst not r x)))
+(define-vop (bignum-lognot lognot-mod32/unsigned=>unsigned)
+ (:translate sb!bignum::%lognot))
(define-vop (fixnum-to-digit)
(:translate sb!bignum::%fixnum-to-digit)
(define-static-fun two-arg-and (x y) :translate logand)
(define-static-fun two-arg-ior (x y) :translate logior)
(define-static-fun two-arg-xor (x y) :translate logxor)
+(define-static-fun two-arg-eqv (x y) :translate logeqv)
\f
(in-package "SB!C")
sb!kernel:two-arg-and
sb!kernel:two-arg-ior
sb!kernel:two-arg-xor
+ sb!kernel:two-arg-eqv
sb!kernel:two-arg-gcd
sb!kernel:two-arg-lcm))
#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
(deffrob ceiling))
-(define-source-transform lognand (x y) `(lognot (logand ,x ,y)))
-(define-source-transform lognor (x y) `(lognot (logior ,x ,y)))
-(define-source-transform logandc1 (x y) `(logand (lognot ,x) ,y))
-(define-source-transform logandc2 (x y) `(logand ,x (lognot ,y)))
-(define-source-transform logorc1 (x y) `(logior (lognot ,x) ,y))
-(define-source-transform logorc2 (x y) `(logior ,x (lognot ,y)))
(define-source-transform logtest (x y) `(not (zerop (logand ,x ,y))))
(define-source-transform logbitp (index integer)
`(not (zerop (logand (ash 1 ,index) ,integer))))
;;; the types of both X and Y are integer types, then we compute a new
;;; integer type with bounds determined Fun when applied to X and Y.
;;; Otherwise, we use Numeric-Contagion.
+(defun derive-integer-type-aux (x y fun)
+ (declare (type function fun))
+ (if (and (numeric-type-p x) (numeric-type-p y)
+ (eq (numeric-type-class x) 'integer)
+ (eq (numeric-type-class y) 'integer)
+ (eq (numeric-type-complexp x) :real)
+ (eq (numeric-type-complexp y) :real))
+ (multiple-value-bind (low high) (funcall fun x y)
+ (make-numeric-type :class 'integer
+ :complexp :real
+ :low low
+ :high high))
+ (numeric-contagion x y)))
(defun derive-integer-type (x y fun)
(declare (type continuation x y) (type function fun))
(let ((x (continuation-type x))
(y (continuation-type y)))
- (if (and (numeric-type-p x) (numeric-type-p y)
- (eq (numeric-type-class x) 'integer)
- (eq (numeric-type-class y) 'integer)
- (eq (numeric-type-complexp x) :real)
- (eq (numeric-type-complexp y) :real))
- (multiple-value-bind (low high) (funcall fun x y)
- (make-numeric-type :class 'integer
- :complexp :real
- :low low
- :high high))
- (numeric-contagion x y))))
+ (derive-integer-type-aux x y fun)))
;;; simple utility to flatten a list
(defun flatten-list (x)
(defoptimizer (%negate derive-type) ((num))
(derive-integer-type num num (frob -))))
+(defun lognot-derive-type-aux (int)
+ (derive-integer-type-aux int int
+ (lambda (type type2)
+ (declare (ignore type2))
+ (let ((lo (numeric-type-low type))
+ (hi (numeric-type-high type)))
+ (values (if hi (lognot hi) nil)
+ (if lo (lognot lo) nil)
+ (numeric-type-class type)
+ (numeric-type-format type))))))
+
(defoptimizer (lognot derive-type) ((int))
- (derive-integer-type int int
- (lambda (type type2)
- (declare (ignore type2))
- (let ((lo (numeric-type-low type))
- (hi (numeric-type-high type)))
- (values (if hi (lognot hi) nil)
- (if lo (lognot lo) nil)
- (numeric-type-class type)
- (numeric-type-format type))))))
+ (lognot-derive-type-aux (continuation-type int)))
#-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
(defoptimizer (%negate derive-type) ((num))
'*)))))
((or (and (not x-pos) (not y-neg))
(and (not y-neg) (not y-pos)))
- ;; Either X is negative and Y is positive of vice-versa. The
+ ;; Either X is negative and Y is positive or vice-versa. The
;; result will be negative.
(specifier-type `(integer ,(if (and x-len y-len)
(ash -1 (max x-len y-len))
(deffrob logand)
(deffrob logior)
(deffrob logxor))
+
+;;; FIXME: could actually do stuff with SAME-LEAF
+(defoptimizer (logeqv derive-type) ((x y))
+ (two-arg-derive-type x y (lambda (x y same-leaf)
+ (lognot-derive-type-aux
+ (logxor-derive-type-aux x y same-leaf)))
+ #'logeqv))
+(defoptimizer (lognand derive-type) ((x y))
+ (two-arg-derive-type x y (lambda (x y same-leaf)
+ (lognot-derive-type-aux
+ (logand-derive-type-aux x y same-leaf)))
+ #'lognand))
+(defoptimizer (lognor derive-type) ((x y))
+ (two-arg-derive-type x y (lambda (x y same-leaf)
+ (lognot-derive-type-aux
+ (logior-derive-type-aux x y same-leaf)))
+ #'lognor))
+(defoptimizer (logandc1 derive-type) ((x y))
+ (two-arg-derive-type x y (lambda (x y same-leaf)
+ (logand-derive-type-aux
+ (lognot-derive-type-aux x) y nil))
+ #'logandc1))
+(defoptimizer (logandc2 derive-type) ((x y))
+ (two-arg-derive-type x y (lambda (x y same-leaf)
+ (logand-derive-type-aux
+ x (lognot-derive-type-aux y) nil))
+ #'logandc2))
+(defoptimizer (logorc1 derive-type) ((x y))
+ (two-arg-derive-type x y (lambda (x y same-leaf)
+ (logior-derive-type-aux
+ (lognot-derive-type-aux x) y nil))
+ #'logorc1))
+(defoptimizer (logorc2 derive-type) ((x y))
+ (two-arg-derive-type x y (lambda (x y same-leaf)
+ (logior-derive-type-aux
+ x (lognot-derive-type-aux y) nil))
+ #'logorc2))
\f
;;;; miscellaneous derive-type methods
(source-transform-transitive 'logxor args 0 'integer))
(define-source-transform logand (&rest args)
(source-transform-transitive 'logand args -1 'integer))
-
(define-source-transform logeqv (&rest args)
- (if (evenp (length args))
- `(lognot (logxor ,@args))
- `(logxor ,@args)))
+ (source-transform-transitive 'logeqv args -1 'integer))
;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
;;; because when they are given one argument, they return its absolute
;;; checkins which aren't released. (And occasionally for internal
;;; versions, especially for internal versions off the main CVS
;;; branch, it gets hairier, e.g. "0.pre7.14.flaky4.13".)
-"0.8.3.45"
+"0.8.3.45.modular1"