--- /dev/null
+;;; Copyright (C) 2003 Gerd Moellmann <gerd.moellmann@t-online.de>
+;;; All rights reserved.
+;;;
+;;; Redistribution and use in source and binary forms, with or without
+;;; modification, are permitted provided that the following conditions
+;;; are met:
+;;;
+;;; 1. Redistributions of source code must retain the above copyright
+;;; notice, this list of conditions and the following disclaimer.
+;;; 2. Redistributions in binary form must reproduce the above copyright
+;;; notice, this list of conditions and the following disclaimer in the
+;;; documentation and/or other materials provided with the distribution.
+;;; 3. The name of the author may not be used to endorse or promote
+;;; products derived from this software without specific prior written
+;;; permission.
+;;;
+;;; THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
+;;; OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+;;; WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+;;; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
+;;; LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+;;; CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
+;;; OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+;;; BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+;;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+;;; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+;;; USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+;;; DAMAGE.
+
+;;; Statistical profiler for x86.
+
+;;; Overview:
+;;;
+;;; This profiler arranges for SIGPROF interrupts to interrupt a
+;;; running program at regular intervals. Each time a SIGPROF occurs,
+;;; the current program counter and return address is recorded in a
+;;; vector, until a configurable maximum number of samples have been
+;;; taken.
+;;;
+;;; A profiling report is generated from the samples array by
+;;; determining the Lisp functions corresponding to the recorded
+;;; addresses. Each program counter/return address pair forms one
+;;; edge in a call graph.
+
+;;; Problems:
+;;;
+;;; The code being generated on x86 makes determining callers reliably
+;;; something between extremely difficult and impossible. Example:
+;;;
+;;; 10979F00: .entry eval::eval-stack-args(arg-count)
+;;; 18: pop dword ptr [ebp-8]
+;;; 1B: lea esp, [ebp-32]
+;;; 1E: mov edi, edx
+;;;
+;;; 20: cmp ecx, 4
+;;; 23: jne L4
+;;; 29: mov [ebp-12], edi
+;;; 2C: mov dword ptr [ebp-16], #x28F0000B ; nil
+;;; ; No-arg-parsing entry point
+;;; 33: mov dword ptr [ebp-20], 0
+;;; 3A: jmp L3
+;;; 3C: L0: mov edx, esp
+;;; 3E: sub esp, 12
+;;; 41: mov eax, [#x10979EF8] ; #<FDEFINITION object for eval::eval-stack-pop>
+;;; 47: xor ecx, ecx
+;;; 49: mov [edx-4], ebp
+;;; 4C: mov ebp, edx
+;;; 4E: call dword ptr [eax+5]
+;;; 51: mov esp, ebx
+;;;
+;;; Suppose this function is interrupted by SIGPROF at 4E. At that
+;;; point, the frame pointer EBP has been modified so that the
+;;; original return address of the caller of eval-stack-args is no
+;;; longer where it can be found by x86-call-context, and the new
+;;; return address, for the call to eval-stack-pop, is not yet on the
+;;; stack. The effect is that x86-call-context returns something
+;;; bogus, which leads to wrong edges in the call graph.
+;;;
+;;; One thing that one might try is filtering cases where the program
+;;; is interrupted at a call instruction. But since the above example
+;;; of an interrupt at a call instruction isn't the only case where
+;;; the stack is something x86-call-context can't really cope with,
+;;; this is not a general solution.
+;;;
+;;; Random ideas for implementation:
+;;;
+;;; * Show a disassembly of a function annotated with sampling
+;;; information.
+;;;
+;;; * Space profiler. Sample when new pages are allocated instead of
+;;; at SIGPROF.
+;;;
+;;; * Record a configurable number of callers up the stack. That
+;;; could give a more complete graph when there are many small
+;;; functions.
+;;;
+;;; * Print help strings for reports, include hints to the problem
+;;; explained above.
+;;;
+;;; * Make flat report the default since call-graph isn't that
+;;; reliable?
+
+(defpackage #:sb-sprof
+ (:use #:cl #:sb-ext #:sb-unix #:sb-alien #:sb-sys)
+ (:export #:*sample-interval* #:*max-samples*
+ #:start-sampling #:stop-sampling #:with-sampling
+ #:with-profiling #:start-profiling #:stop-profiling
+ #:reset #:report))
+
+(in-package #:sb-sprof)
+
+\f
+;;;; Graph Utilities
+
+(defstruct (vertex (:constructor make-vertex)
+ (:constructor make-scc (scc-vertices edges)))
+ (visited nil :type boolean)
+ (root nil :type (or null vertex))
+ (dfn 0 :type fixnum)
+ (edges () :type list)
+ (scc-vertices () :type list))
+
+(defstruct edge
+ (vertex (sb-impl::missing-arg) :type vertex))
+
+(defstruct graph
+ (vertices () :type list))
+
+(declaim (inline scc-p))
+(defun scc-p (vertex)
+ (not (null (vertex-scc-vertices vertex))))
+
+(defmacro do-vertices ((vertex graph) &body body)
+ `(dolist (,vertex (graph-vertices ,graph))
+ ,@body))
+
+(defmacro do-edges ((edge edge-to vertex) &body body)
+ `(dolist (,edge (vertex-edges ,vertex))
+ (let ((,edge-to (edge-vertex ,edge)))
+ ,@body)))
+
+(defun self-cycle-p (vertex)
+ (do-edges (e to vertex)
+ (when (eq to vertex)
+ (return t))))
+
+(defun map-vertices (fn vertices)
+ (dolist (v vertices)
+ (setf (vertex-visited v) nil))
+ (dolist (v vertices)
+ (unless (vertex-visited v)
+ (funcall fn v))))
+
+;;; Eeko Nuutila, Eljas Soisalon-Soininen, around 1992. Improves on
+;;; Tarjan's original algorithm by not using the stack when processing
+;;; trivial components. Trivial components should appear frequently
+;;; in a call-graph such as ours, I think. Same complexity O(V+E) as
+;;; Tarjan.
+(defun strong-components (vertices)
+ (let ((in-component (make-array (length vertices)
+ :element-type 'boolean
+ :initial-element nil))
+ (stack ())
+ (components ())
+ (dfn -1))
+ (labels ((min-root (x y)
+ (let ((rx (vertex-root x))
+ (ry (vertex-root y)))
+ (if (< (vertex-dfn rx) (vertex-dfn ry))
+ rx
+ ry)))
+ (in-component (v)
+ (aref in-component (vertex-dfn v)))
+ ((setf in-component) (in v)
+ (setf (aref in-component (vertex-dfn v)) in))
+ (vertex-> (x y)
+ (> (vertex-dfn x) (vertex-dfn y)))
+ (visit (v)
+ (setf (vertex-dfn v) (incf dfn)
+ (in-component v) nil
+ (vertex-root v) v
+ (vertex-visited v) t)
+ (do-edges (e w v)
+ (unless (vertex-visited w)
+ (visit w))
+ (unless (in-component w)
+ (setf (vertex-root v) (min-root v w))))
+ (if (eq v (vertex-root v))
+ (loop while (and stack (vertex-> (car stack) v))
+ as w = (pop stack)
+ collect w into this-component
+ do (setf (in-component w) t)
+ finally
+ (setf (in-component v) t)
+ (push (cons v this-component) components))
+ (push v stack))))
+ (map-vertices #'visit vertices)
+ components)))
+
+;;; Given a dag as a list of vertices, return the list sorted
+;;; topologically, children first.
+(defun topological-sort (dag)
+ (let ((sorted ())
+ (dfn -1))
+ (labels ((sort (v)
+ (setf (vertex-visited v) t)
+ (setf (vertex-dfn v) (incf dfn))
+ (dolist (e (vertex-edges v))
+ (unless (vertex-visited (edge-vertex e))
+ (sort (edge-vertex e))))
+ (push v sorted)))
+ (map-vertices #'sort dag)
+ (nreverse sorted))))
+
+;;; Reduce graph G to a dag by coalescing strongly connected components
+;;; into vertices. Sort the result topologically.
+(defun reduce-graph (graph &optional (scc-constructor #'make-scc))
+ (sb-int:collect ((sccs) (trivial))
+ (dolist (c (strong-components (graph-vertices graph)))
+ (if (or (cdr c) (self-cycle-p (car c)))
+ (sb-int:collect ((outgoing))
+ (dolist (v c)
+ (do-edges (e w v)
+ (unless (member w c)
+ (outgoing e))))
+ (sccs (funcall scc-constructor c (outgoing))))
+ (trivial (car c))))
+ (dolist (scc (sccs))
+ (dolist (v (trivial))
+ (do-edges (e w v)
+ (when (member w (vertex-scc-vertices scc))
+ (setf (edge-vertex e) scc)))))
+ (setf (graph-vertices graph)
+ (topological-sort (nconc (sccs) (trivial))))))
+
+\f
+;;;; AA Trees
+
+;;; An AA tree is a red-black tree with the extra condition that left
+;;; children may not be red. This condition simplifies the red-black
+;;; algorithm. It eliminates half of the restructuring cases, and
+;;; simplifies the delete algorithm.
+
+(defstruct (aa-node (:conc-name aa-))
+ (left nil :type (or null aa-node))
+ (right nil :type (or null aa-node))
+ (level 0 :type integer)
+ (data nil :type t))
+
+(defvar *null-node*
+ (let ((node (make-aa-node)))
+ (setf (aa-left node) node)
+ (setf (aa-right node) node)
+ node))
+
+(defstruct aa-tree
+ (root *null-node* :type aa-node))
+
+(declaim (inline skew split rotate-with-left-child rotate-with-right-child))
+
+(defun rotate-with-left-child (k2)
+ (let ((k1 (aa-left k2)))
+ (setf (aa-left k2) (aa-right k1))
+ (setf (aa-right k1) k2)
+ k1))
+
+(defun rotate-with-right-child (k1)
+ (let ((k2 (aa-right k1)))
+ (setf (aa-right k1) (aa-left k2))
+ (setf (aa-left k2) k1)
+ k2))
+
+(defun skew (aa)
+ (if (= (aa-level (aa-left aa)) (aa-level aa))
+ (rotate-with-left-child aa)
+ aa))
+
+(defun split (aa)
+ (when (= (aa-level (aa-right (aa-right aa)))
+ (aa-level aa))
+ (setq aa (rotate-with-right-child aa))
+ (incf (aa-level aa)))
+ aa)
+
+(macrolet ((def (name () &body body)
+ (let ((name (sb-int::symbolicate 'aa- name)))
+ `(defun ,name (item tree &key
+ (test-< #'<) (test-= #'=)
+ (node-key #'identity) (item-key #'identity))
+ (let ((.item-key. (funcall item-key item)))
+ (flet ((item-< (node)
+ (funcall test-< .item-key.
+ (funcall node-key (aa-data node))))
+ (item-= (node)
+ (funcall test-= .item-key.
+ (funcall node-key (aa-data node)))))
+ (declare (inline item-< item-=))
+ ,@body))))))
+
+ (def insert ()
+ (labels ((insert-into (aa)
+ (cond ((eq aa *null-node*)
+ (setq aa (make-aa-node :data item
+ :left *null-node*
+ :right *null-node*)))
+ ((item-= aa)
+ (return-from insert-into aa))
+ ((item-< aa)
+ (setf (aa-left aa) (insert-into (aa-left aa))))
+ (t
+ (setf (aa-right aa) (insert-into (aa-right aa)))))
+ (split (skew aa))))
+ (setf (aa-tree-root tree)
+ (insert-into (aa-tree-root tree)))))
+
+ (def delete ()
+ (let ((deleted-node *null-node*)
+ (last-node nil))
+ (labels ((remove-from (aa)
+ (unless (eq aa *null-node*)
+ (setq last-node aa)
+ (if (item-< aa)
+ (setf (aa-left aa) (remove-from (aa-left aa)))
+ (progn
+ (setq deleted-node aa)
+ (setf (aa-right aa) (remove-from (aa-right aa)))))
+ (cond ((eq aa last-node)
+ ;;
+ ;; If at the bottom of the tree, and item
+ ;; is present, delete it.
+ (when (and (not (eq deleted-node *null-node*))
+ (item-= deleted-node))
+ (setf (aa-data deleted-node) (aa-data aa))
+ (setq deleted-node *null-node*)
+ (setq aa (aa-right aa))))
+ ;;
+ ;; Otherwise not at bottom of tree; rebalance.
+ ((or (< (aa-level (aa-left aa))
+ (1- (aa-level aa)))
+ (< (aa-level (aa-right aa))
+ (1- (aa-level aa))))
+ (decf (aa-level aa))
+ (when (> (aa-level (aa-right aa)) (aa-level aa))
+ (setf (aa-level (aa-right aa)) (aa-level aa)))
+ (setq aa (skew aa))
+ (setf (aa-right aa) (skew (aa-right aa)))
+ (setf (aa-right (aa-right aa))
+ (skew (aa-right (aa-right aa))))
+ (setq aa (split aa))
+ (setf (aa-right aa) (split (aa-right aa))))))
+ aa))
+ (setf (aa-tree-root tree)
+ (remove-from (aa-tree-root tree))))))
+
+ (def find ()
+ (let ((current (aa-tree-root tree)))
+ (setf (aa-data *null-node*) item)
+ (loop
+ (cond ((eq current *null-node*)
+ (return (values nil nil)))
+ ((item-= current)
+ (return (values (aa-data current) t)))
+ ((item-< current)
+ (setq current (aa-left current)))
+ (t
+ (setq current (aa-right current))))))))
+
+\f
+;;;; Other Utilities
+
+;;; Sort the subsequence of Vec in the interval [From To] using
+;;; comparison function Test. Assume each element to sort consists of
+;;; Element-Size array slots, and that the slot Key-Offset contains
+;;; the sort key.
+(defun qsort (vec &key (test #'<) (element-size 1) (key-offset 0)
+ (from 0) (to (- (length vec) element-size)))
+ (declare (fixnum to from element-size)
+ (function test))
+ (labels ((rotate (i j)
+ (loop repeat element-size
+ for i from i and j from j do
+ (rotatef (aref vec i) (aref vec j))))
+ (key (i)
+ (aref vec (+ i key-offset)))
+ (sort (from to)
+ (when (> to from)
+ (let* ((mid (* element-size
+ (round (+ (/ from element-size)
+ (/ to element-size))
+ 2)))
+ (i from)
+ (j (+ to element-size))
+ (p (key mid)))
+ (declare (fixnum i j))
+ (rotate mid from)
+ (loop
+ (loop do (incf i element-size)
+ until (or (> i to)
+ (funcall test p (key i))))
+ (loop do (decf j element-size)
+ until (or (<= j from)
+ (funcall test (key j) p)))
+ (when (< j i) (return))
+ (rotate i j))
+ (rotate from j)
+ (sort from (- j element-size))
+ (sort i to)))))
+ (sort from to)
+ vec))
+
+\f
+;;;; The Profiler
+
+(deftype address ()
+ "Type used for addresses, for instance, program counters,
+ code start/end locations etc."
+ '(unsigned-byte 32))
+
+(defconstant +unknown-address+ 0
+ "Constant representing an address that cannot be determined.")
+
+;;; A call graph. Vertices are NODE structures, edges are CALL
+;;; structures.
+(defstruct (call-graph (:include graph)
+ (:constructor %make-call-graph))
+ ;; the value of *Sample-Interval* at the time the graph was created
+ (sample-interval (sb-impl::missing-arg) :type number)
+ ;; number of samples taken
+ (nsamples (sb-impl::missing-arg) :type sb-impl::index)
+ ;; sample count for samples not in any function
+ (elsewhere-count (sb-impl::missing-arg) :type sb-impl::index)
+ ;; a flat list of NODEs, sorted by sample count
+ (flat-nodes () :type list))
+
+;;; A node in a call graph, representing a function that has been
+;;; sampled. The edges of a node are CALL structures that represent
+;;; functions called from a given node.
+(defstruct (node (:include vertex)
+ (:constructor %make-node))
+ ;; A numeric label for the node. The most frequently called function
+ ;; gets label 1. This is just for identification purposes in the
+ ;; profiling report.
+ (index 0 :type fixnum)
+ ;; start and end address of the function's code
+ (start-pc 0 :type address)
+ (end-pc 0 :type address)
+ ;; the name of the function
+ (name nil :type t)
+ ;; sample count for this function
+ (count 0 :type fixnum)
+ ;; count including time spent in functions called from this one
+ (accrued-count 0 :type fixnum)
+ ;; list of NODEs for functions calling this one
+ (callers () :type list))
+
+;;; A cycle in a call graph. The functions forming the cycle are
+;;; found in the SCC-VERTICES slot of the VERTEX structure.
+(defstruct (cycle (:include node)))
+
+;;; An edge in a call graph. EDGE-VERTEX is the function being
+;;; called.
+(defstruct (call (:include edge)
+ (:constructor make-call (vertex)))
+ ;; number of times the call was sampled
+ (count 1 :type sb-impl::index))
+
+;;; Info about a function in dynamic-space. This is used to track
+;;; address changes of functions during GC.
+(defstruct (dyninfo (:constructor make-dyninfo (code start end)))
+ ;; component this info is for
+ (code (sb-impl::missing-arg) :type sb-kernel::code-component)
+ ;; current start and end address of the component
+ (start (sb-impl::missing-arg) :type address)
+ (end (sb-impl::missing-arg) :type address)
+ ;; new start address of the component, after GC.
+ (new-start 0 :type address))
+
+(defmethod print-object ((call-graph call-graph) stream)
+ (print-unreadable-object (call-graph stream :type t :identity t)
+ (format stream "~d samples" (call-graph-nsamples call-graph))))
+
+(defmethod print-object ((node node) stream)
+ (print-unreadable-object (node stream :type t :identity t)
+ (format stream "~s [~d]" (node-name node) (node-index node))))
+
+(defmethod print-object ((call call) stream)
+ (print-unreadable-object (call stream :type t :identity t)
+ (format stream "~s [~d]" (node-name (call-vertex call))
+ (node-index (call-vertex call)))))
+
+(deftype report-type ()
+ '(member nil :flat :graph))
+
+(defvar *sample-interval* 0.01
+ "Default number of seconds between samples.")
+(declaim (number *sample-interval*))
+
+(defvar *max-samples* 50000
+ "Default number of samples taken.")
+(declaim (type sb-impl::index *max-samples*))
+
+(defconstant +sample-size+ 2)
+
+(defvar *samples* nil)
+(declaim (type (or null (vector address)) *samples*))
+
+(defvar *samples-index* 0)
+(declaim (type sb-impl::index *samples-index*))
+
+(defvar *profiling* nil)
+(defvar *sampling* nil)
+(declaim (type boolean *profiling* *sampling*))
+
+(defvar *dynamic-space-code-info* ())
+(declaim (type list *dynamic-space-code-info*))
+
+(defvar *show-progress* nil)
+
+(defvar *old-sampling* nil)
+
+(defun turn-off-sampling ()
+ (setq *old-sampling* *sampling*)
+ (setq *sampling* nil))
+
+(defun turn-on-sampling ()
+ (setq *sampling* *old-sampling*))
+
+(defun show-progress (format-string &rest args)
+ (when *show-progress*
+ (apply #'format t format-string args)
+ (finish-output)))
+
+(defun start-sampling ()
+ "Switch on statistical sampling."
+ (setq *sampling* t))
+
+(defun stop-sampling ()
+ "Switch off statistical sampling."
+ (setq *sampling* nil))
+
+(defmacro with-sampling ((&optional (on t)) &body body)
+ "Evaluate body with statistical sampling turned on or off."
+ `(let ((*sampling* ,on))
+ ,@body))
+
+(defun sort-samples (&key test (key :pc))
+ "Sort *Samples* using comparison Test. Key must be one of
+ :Pc or :Return-Pc for sorting by pc or return pc."
+ (declare (type (member :pc :return-pc) key))
+ (when (plusp *samples-index*)
+ (qsort *samples*
+ :from 0
+ :to (- *samples-index* +sample-size+)
+ :test test
+ :element-size +sample-size+
+ :key-offset (if (eq key :pc) 0 1))))
+
+(defun record (pc)
+ (declare (type address pc))
+ (setf (aref *samples* *samples-index*) pc)
+ (incf *samples-index*))
+
+;;; SIGPROF handler. Record current PC and return address in
+;;; *SAMPLES*.
+#+x86
+(defun sigprof-handler (signal code scp)
+ (declare (ignore signal code) (type system-area-pointer scp))
+ (when (and *sampling*
+ (< *samples-index* (length *samples*)))
+ (sb-sys:without-gcing
+ (with-alien ((scp (* os-context-t) :local scp))
+ (locally (declare (optimize (inhibit-warnings 2)))
+ (let* ((pc-ptr (sb-vm:context-pc scp))
+ (fp (sb-vm::context-register scp #.sb-vm::ebp-offset))
+ (ra (sap-ref-32 (int-sap fp)
+ (- (* (1+ sb-vm::return-pc-save-offset)
+ sb-vm::n-word-bytes)))))
+ (record (sap-int pc-ptr))
+ (record ra)))))))
+
+#-x86
+(defun sigprof-handler (signal code scp)
+ (declare (ignore signal code scp))
+ (error "Implement me."))
+
+;;; Map function FN over code objects in dynamic-space. FN is called
+;;; with two arguments, the object and its size in bytes.
+(defun map-dynamic-space-code (fn)
+ (flet ((call-if-code (obj obj-type size)
+ (declare (ignore obj-type))
+ (when (sb-kernel:code-component-p obj)
+ (funcall fn obj size))))
+ (sb-vm::map-allocated-objects #'call-if-code :dynamic)))
+
+;;; Return the start address of CODE.
+(defun code-start (code)
+ (declare (type sb-kernel:code-component code))
+ (sap-int (sb-kernel:code-instructions code)))
+
+;;; Return start and end address of CODE as multiple values.
+(defun code-bounds (code)
+ (declare (type sb-kernel:code-component code))
+ (let* ((start (code-start code))
+ (end (+ start (sb-kernel:%code-code-size code))))
+ (values start end)))
+
+;;; Record the addresses of dynamic-space code objects in
+;;; *DYNAMIC-SPACE-CODE-INFO*. Call this with GC disabled.
+(defun record-dyninfo ()
+ (flet ((record-address (code size)
+ (declare (ignore size))
+ (multiple-value-bind (start end)
+ (code-bounds code)
+ (push (make-dyninfo code start end)
+ *dynamic-space-code-info*))))
+ (map-dynamic-space-code #'record-address)))
+
+;;; Adjust pcs or return-pcs in *SAMPLES* for address changes of
+;;; dynamic-space code objects. KEY being :PC means adjust pcs.
+(defun adjust-samples (key)
+ (declare (type (member :pc :return-pc) key))
+ (sort-samples :test #'> :key key)
+ (let ((sidx 0)
+ (offset (if (eq key :pc) 0 1)))
+ (declare (type sb-impl::index sidx))
+ (dolist (info *dynamic-space-code-info*)
+ (unless (= (dyninfo-new-start info) (dyninfo-start info))
+ (let ((pos (do ((i sidx (+ i +sample-size+)))
+ ((= i *samples-index*) nil)
+ (declare (type sb-impl::index i))
+ (when (<= (dyninfo-start info)
+ (aref *samples* (+ i offset))
+ (dyninfo-end info))
+ (return i)))))
+ (when pos
+ (setq sidx pos)
+ (loop with delta = (- (dyninfo-new-start info)
+ (dyninfo-start info))
+ for j from sidx below *samples-index* by +sample-size+
+ as pc = (aref *samples* (+ j offset))
+ while (<= (dyninfo-start info) pc (dyninfo-end info)) do
+ (incf (aref *samples* (+ j offset)) delta)
+ (incf sidx +sample-size+))))))))
+
+;;; This runs from *AFTER-GC-HOOKS*. Adjust *SAMPLES* for address
+;;; changes of dynamic-space code objects.
+(defun adjust-samples-for-address-changes ()
+ (sb-sys:without-gcing
+ (turn-off-sampling)
+ (setq *dynamic-space-code-info*
+ (sort *dynamic-space-code-info* #'> :key #'dyninfo-start))
+ (dolist (info *dynamic-space-code-info*)
+ (setf (dyninfo-new-start info)
+ (code-start (dyninfo-code info))))
+ (adjust-samples :pc)
+ (adjust-samples :return-pc)
+ (dolist (info *dynamic-space-code-info*)
+ (let ((size (- (dyninfo-end info) (dyninfo-start info))))
+ (setf (dyninfo-start info) (dyninfo-new-start info))
+ (setf (dyninfo-end info) (+ (dyninfo-new-start info) size))))
+ (turn-on-sampling)))
+
+(defmacro with-profiling ((&key (sample-interval '*sample-interval*)
+ (max-samples '*max-samples*)
+ (reset nil)
+ show-progress
+ (report nil report-p))
+ &body body)
+ "Repeatedly evaluate Body with statistical profiling turned on.
+ The following keyword args are recognized:
+
+ :Sample-Interval <seconds>
+ Take a sample every <seconds> seconds. Default is
+ *Sample-Interval*.
+
+ :Max-Samples <max>
+ Repeat evaluating body until <max> samples are taken.
+ Default is *Max-Samples*.
+
+ :Report <type>
+ If specified, call Report with :Type <type> at the end.
+
+ :Reset <bool>
+ It true, call Reset at the beginning."
+ (declare (type report-type report))
+ `(let ((*sample-interval* ,sample-interval)
+ (*max-samples* ,max-samples))
+ ,@(when reset '((reset)))
+ (start-profiling)
+ (loop
+ (when (>= *samples-index* (length *samples*))
+ (return))
+ ,@(when show-progress
+ `((format t "~&===> ~d of ~d samples taken.~%"
+ (/ *samples-index* +sample-size+)
+ *max-samples*)))
+ (let ((.last-index. *samples-index*))
+ ,@body
+ (when (= .last-index. *samples-index*)
+ (warn "No sampling progress; possibly a profiler bug.")
+ (return))))
+ (stop-profiling)
+ ,@(when report-p `((report :type ,report)))))
+
+(defun start-profiling (&key (max-samples *max-samples*)
+ (sample-interval *sample-interval*)
+ (sampling t))
+ "Start profiling statistically if not already profiling.
+ The following keyword args are recognized:
+
+ :Sample-Interval <seconds>
+ Take a sample every <seconds> seconds. Default is
+ *Sample-Interval*.
+
+ :Max-Samples <max>
+ Maximum number of samples. Default is *Max-Samples*.
+
+ :Sampling <bool>
+ If true, the default, start sampling right away.
+ If false, Start-Sampling can be used to turn sampling on."
+ (unless *profiling*
+ (multiple-value-bind (secs usecs)
+ (multiple-value-bind (secs rest)
+ (truncate sample-interval)
+ (values secs (truncate (* rest 1000000))))
+ (setq *samples* (make-array (* max-samples +sample-size+)
+ :element-type 'address))
+ (setq *samples-index* 0)
+ (setq *sampling* sampling)
+ ;; Disabled for now, since this was causing some problems with the
+ ;; sampling getting turned off completely. --JES, 2004-06-19
+ ;;
+ ;; BEFORE-GC-HOOKS have exceedingly bad interactions with
+ ;; threads. -- CSR, 2004-06-21
+ ;;
+ ;; (pushnew 'turn-off-sampling *before-gc-hooks*)
+ (pushnew 'adjust-samples-for-address-changes *after-gc-hooks*)
+ (record-dyninfo)
+ (sb-sys:enable-interrupt sb-unix::sigprof #'sigprof-handler)
+ (unix-setitimer :profile secs usecs secs usecs)
+ (setq *profiling* t)))
+ (values))
+
+(defun stop-profiling ()
+ "Stop profiling if profiling."
+ (when *profiling*
+ (setq *after-gc-hooks*
+ (delete 'adjust-samples-for-address-changes *after-gc-hooks*))
+ (unix-setitimer :profile 0 0 0 0)
+ (sb-sys:enable-interrupt sb-unix::sigprof :default)
+ (setq *sampling* nil)
+ (setq *profiling* nil))
+ (values))
+
+(defun reset ()
+ "Reset the profiler."
+ (stop-profiling)
+ (setq *sampling* nil)
+ (setq *dynamic-space-code-info* ())
+ (setq *samples* nil)
+ (setq *samples-index* 0)
+ (values))
+
+;;; Make a NODE for debug-info INFO.
+(defun make-node (info)
+ (typecase info
+ (sb-kernel::code-component
+ (multiple-value-bind (start end)
+ (code-bounds info)
+ (%make-node :name (or (sb-disassem::find-assembler-routine start)
+ (format nil "~a" info))
+ :start-pc start :end-pc end)))
+ (sb-di::compiled-debug-fun
+ (let* ((name (sb-di::debug-fun-name info))
+ (cdf (sb-di::compiled-debug-fun-compiler-debug-fun info))
+ (start-offset (sb-c::compiled-debug-fun-start-pc cdf))
+ (end-offset (sb-c::compiled-debug-fun-elsewhere-pc cdf))
+ (component (sb-di::compiled-debug-fun-component info))
+ (start-pc (code-start component)))
+ (%make-node :name name
+ :start-pc (+ start-pc start-offset)
+ :end-pc (+ start-pc end-offset))))
+ (t
+ (%make-node :name (sb-di::debug-fun-name info)))))
+
+;;; Return something serving as debug info for address PC. If we can
+;;; get something from SB-DI:DEBUG-FUNCTION-FROM-PC, return that.
+;;; Otherwise, if we can determine a code component, return that.
+;;; Otherwise return nil.
+(defun debug-info (pc)
+ (declare (type address pc))
+ (let ((ptr (sb-di::component-ptr-from-pc (int-sap pc))))
+ (unless (sap= ptr (int-sap 0))
+ (let* ((code (sb-di::component-from-component-ptr ptr))
+ (code-header-len (* (sb-kernel:get-header-data code)
+ sb-vm:n-word-bytes))
+ (pc-offset (- pc
+ (- (sb-kernel:get-lisp-obj-address code)
+ sb-vm:other-pointer-lowtag)
+ code-header-len))
+ (df (ignore-errors (sb-di::debug-fun-from-pc code
+ pc-offset))))
+ (or df code)))))
+
+;;; One function can have more than one COMPILED-DEBUG-FUNCTION with
+;;; the same name. Reduce the number of calls to Debug-Info by first
+;;; looking for a given PC in a red-black tree. If not found in the
+;;; tree, get debug info, and look for a node in a hash-table by
+;;; function name. If not found in the hash-table, make a new node.
+
+(defvar *node-tree*)
+(defvar *name->node*)
+
+(defmacro with-lookup-tables (() &body body)
+ `(let ((*node-tree* (make-aa-tree))
+ (*name->node* (make-hash-table :test 'equal)))
+ ,@body))
+
+(defun tree-find (item)
+ (flet ((pc/node-= (pc node)
+ (<= (node-start-pc node) pc (node-end-pc node)))
+ (pc/node-< (pc node)
+ (< pc (node-start-pc node))))
+ (aa-find item *node-tree* :test-= #'pc/node-= :test-< #'pc/node-<)))
+
+(defun tree-insert (item)
+ (flet ((node/node-= (x y)
+ (<= (node-start-pc y) (node-start-pc x) (node-end-pc y)))
+ (node/node-< (x y)
+ (< (node-start-pc x) (node-start-pc y))))
+ (aa-insert item *node-tree* :test-= #'node/node-= :test-< #'node/node-<)))
+
+;;; Find or make a new node for address PC. Value is the NODE found
+;;; or made; NIL if not enough information exists to make a NODE for
+;;; PC.
+(defun lookup-node (pc)
+ (declare (type address pc))
+ (or (tree-find pc)
+ (let ((info (debug-info pc)))
+ (when info
+ (let* ((new (make-node info))
+ (found (gethash (node-name new) *name->node*)))
+ (cond (found
+ (setf (node-start-pc found)
+ (min (node-start-pc found) (node-start-pc new)))
+ (setf (node-end-pc found)
+ (max (node-end-pc found) (node-end-pc new)))
+ found)
+ (t
+ (setf (gethash (node-name new) *name->node*) new)
+ (tree-insert new)
+ new)))))))
+
+;;; Return a list of all nodes created by LOOKUP-NODE.
+(defun collect-nodes ()
+ (loop for node being the hash-values of *name->node*
+ collect node))
+
+;;; Value is a CALL-GRAPH for the current contents of *SAMPLES*.
+(defun make-call-graph-1 ()
+ (let ((elsewhere-count 0))
+ (with-lookup-tables ()
+ (loop for i below *samples-index* by +sample-size+
+ as pc = (aref *samples* i)
+ as return-pc = (aref *samples* (1+ i))
+ as callee = (lookup-node pc)
+ as caller =
+ (when (and callee (/= return-pc +unknown-address+))
+ (let ((caller (lookup-node return-pc)))
+ (when caller
+ caller)))
+ when (and *show-progress* (plusp i)) do
+ (cond ((zerop (mod i 1000))
+ (show-progress "~d" i))
+ ((zerop (mod i 100))
+ (show-progress ".")))
+ if callee do
+ (incf (node-count callee))
+ else do
+ (incf elsewhere-count)
+ when (and callee caller) do
+ (let ((call (find callee (node-edges caller)
+ :key #'call-vertex)))
+ (pushnew caller (node-callers callee))
+ (if call
+ (incf (call-count call))
+ (push (make-call callee) (node-edges caller)))))
+ (let ((sorted-nodes (sort (collect-nodes) #'> :key #'node-count)))
+ (loop for node in sorted-nodes and i from 1 do
+ (setf (node-index node) i))
+ (%make-call-graph :nsamples (/ *samples-index* +sample-size+)
+ :sample-interval *sample-interval*
+ :elsewhere-count elsewhere-count
+ :vertices sorted-nodes)))))
+
+;;; Reduce CALL-GRAPH to a dag, creating CYCLE structures for call
+;;; cycles.
+(defun reduce-call-graph (call-graph)
+ (let ((cycle-no 0))
+ (flet ((make-one-cycle (vertices edges)
+ (let* ((name (format nil "<Cycle ~d>" (incf cycle-no)))
+ (count (loop for v in vertices sum (node-count v))))
+ (make-cycle :name name
+ :index cycle-no
+ :count count
+ :scc-vertices vertices
+ :edges edges))))
+ (reduce-graph call-graph #'make-one-cycle))))
+
+;;; For all nodes in CALL-GRAPH, compute times including the time
+;;; spent in functions called from them. Note that the call-graph
+;;; vertices are in reverse topological order, children first, so we
+;;; will have computed accrued counts of called functions before they
+;;; are used to compute accrued counts for callers.
+(defun compute-accrued-counts (call-graph)
+ (do-vertices (from call-graph)
+ (setf (node-accrued-count from) (node-count from))
+ (do-edges (call to from)
+ (incf (node-accrued-count from)
+ (round (* (/ (call-count call) (node-count to))
+ (node-accrued-count to)))))))
+
+;;; Return a CALL-GRAPH structure for the current contents of
+;;; *SAMPLES*. The result contain a list of nodes sorted by self-time
+;;; in the FLAT-NODES slot, and a dag in Vertices, with call cycles
+;;; reduced to Cycle structures.
+(defun make-call-graph ()
+ (stop-profiling)
+ (show-progress "~&Computing call graph ")
+ (let ((call-graph (without-gcing (make-call-graph-1))))
+ (setf (call-graph-flat-nodes call-graph)
+ (copy-list (graph-vertices call-graph)))
+ (show-progress "~&Finding cycles")
+ (reduce-call-graph call-graph)
+ (show-progress "~&Propagating counts")
+ (compute-accrued-counts call-graph)
+ call-graph))
+
+\f
+;;;; Reporting
+
+(defun print-separator (&key (length 72) (char #\-))
+ (format t "~&~V,,,V<~>~%" length char))
+
+(defun samples-percent (call-graph count)
+ (* 100.0 (/ count (call-graph-nsamples call-graph))))
+
+(defun print-call-graph-header (call-graph)
+ (let ((nsamples (call-graph-nsamples call-graph))
+ (interval (call-graph-sample-interval call-graph))
+ (ncycles (loop for v in (graph-vertices call-graph)
+ count (scc-p v))))
+ (format t "~2&Number of samples: ~d~%~
+ Sample interval: ~f seconds~%~
+ Total sampling time: ~f seconds~%~
+ Number of cycles: ~d~2%"
+ nsamples
+ interval
+ (* nsamples interval)
+ ncycles)))
+
+(defun print-flat (call-graph &key (stream *standard-output*) max
+ min-percent (print-header t))
+ (let ((*standard-output* stream)
+ (*print-pretty* nil)
+ (total-count 0)
+ (total-percent 0)
+ (min-count (if min-percent
+ (round (* (/ min-percent 100.0)
+ (call-graph-nsamples call-graph)))
+ 0)))
+ (when print-header
+ (print-call-graph-header call-graph))
+ (format t "~& Self Total~%")
+ (format t "~& Nr Count % Count % Function~%")
+ (print-separator)
+ (let ((elsewhere-count (call-graph-elsewhere-count call-graph))
+ (i 0))
+ (dolist (node (call-graph-flat-nodes call-graph))
+ (when (or (and max (> (incf i) max))
+ (< (node-count node) min-count))
+ (return))
+ (let* ((count (node-count node))
+ (percent (samples-percent call-graph count)))
+ (incf total-count count)
+ (incf total-percent percent)
+ (format t "~&~4d ~6d ~5,1f ~6d ~5,1f ~s~%"
+ (node-index node)
+ count
+ percent
+ total-count
+ total-percent
+ (node-name node))))
+ (print-separator)
+ (format t "~& ~6d ~5,1f elsewhere~%"
+ elsewhere-count
+ (samples-percent call-graph elsewhere-count)))))
+
+(defun print-cycles (call-graph)
+ (when (some #'cycle-p (graph-vertices call-graph))
+ (format t "~& Cycle~%")
+ (format t "~& Count % Parts~%")
+ (do-vertices (node call-graph)
+ (when (cycle-p node)
+ (flet ((print (indent index count percent name)
+ (format t "~&~6d ~5,1f ~11@t ~V@t ~s [~d]~%"
+ count percent indent name index)))
+ (print-separator)
+ (format t "~&~6d ~5,1f ~a...~%"
+ (node-count node)
+ (samples-percent call-graph (cycle-count node))
+ (node-name node))
+ (dolist (v (vertex-scc-vertices node))
+ (print 4 (node-index v) (node-count v)
+ (samples-percent call-graph (node-count v))
+ (node-name v))))))
+ (print-separator)
+ (format t "~2%")))
+
+(defun print-graph (call-graph &key (stream *standard-output*)
+ max min-percent)
+ (let ((*standard-output* stream)
+ (*print-pretty* nil))
+ (print-call-graph-header call-graph)
+ (print-cycles call-graph)
+ (flet ((find-call (from to)
+ (find to (node-edges from) :key #'call-vertex))
+ (print (indent index count percent name)
+ (format t "~&~6d ~5,1f ~11@t ~V@t ~s [~d]~%"
+ count percent indent name index)))
+ (format t "~& Callers~%")
+ (format t "~& Cumul. Function~%")
+ (format t "~& Count % Count % Callees~%")
+ (do-vertices (node call-graph)
+ (print-separator)
+ ;;
+ ;; Print caller information.
+ (dolist (caller (node-callers node))
+ (let ((call (find-call caller node)))
+ (print 4 (node-index caller)
+ (call-count call)
+ (samples-percent call-graph (call-count call))
+ (node-name caller))))
+ ;; Print the node itself.
+ (format t "~&~6d ~5,1f ~6d ~5,1f ~s [~d]~%"
+ (node-count node)
+ (samples-percent call-graph (node-count node))
+ (node-accrued-count node)
+ (samples-percent call-graph (node-accrued-count node))
+ (node-name node)
+ (node-index node))
+ ;; Print callees.
+ (do-edges (call called node)
+ (print 4 (node-index called)
+ (call-count call)
+ (samples-percent call-graph (call-count call))
+ (node-name called))))
+ (print-separator)
+ (format t "~2%")
+ (print-flat call-graph :stream stream :max max
+ :min-percent min-percent :print-header nil))))
+
+(defun report (&key (type :graph) max min-percent call-graph
+ (stream *standard-output*) ((:show-progress *show-progress*)))
+ "Report statistical profiling results. The following keyword
+ args are recognized:
+
+ :Type <type>
+ Specifies the type of report to generate. If :FLAT, show
+ flat report, if :GRAPH show a call graph and a flat report.
+ If nil, don't print out a report.
+
+ :Stream <stream>
+ Specify a stream to print the report on. Default is
+ *Standard-Output*.
+
+ :Max <max>
+ Don't show more than <max> entries in the flat report.
+
+ :Min-Percent <min-percent>
+ Don't show functions taking less than <min-percent> of the
+ total time in the flat report.
+
+ :Show-Progress <bool>
+ If true, print progress messages while generating the call graph.
+
+ :Call-Graph <graph>
+ Print a report from <graph> instead of the latest profiling
+ results.
+
+ Value of this function is a Call-Graph object representing the
+ resulting call-graph."
+ (declare (type report-type type))
+ (let ((graph (or call-graph (make-call-graph))))
+ (ecase type
+ (:flat
+ (print-flat graph :stream stream :max max :min-percent min-percent))
+ (:graph
+ (print-graph graph :stream stream :max max :min-percent min-percent))
+ ((nil)))
+ graph))
+
+;;;; Silly Examples
+
+(defun test-0 (n &optional (depth 0))
+ (declare (optimize (debug 3)))
+ (when (< depth n)
+ (dotimes (i n)
+ (test-0 n (1+ depth))
+ (test-0 n (1+ depth)))))
+
+(defun test ()
+ (with-profiling (:reset t :max-samples 1000 :report :graph)
+ (test-0 7)))
+
+;;; End of file.