;;; In this case CP cannot even infer that I is of class INTEGER.
;;;
;;; -- In the above example if we place the check after SETQ, CP will
-;;; fail to infer (< I FIXNUM): is does not understand that this
+;;; fail to infer (< I FIXNUM): it does not understand that this
;;; constraint follows from (TYPEP I (INTEGER 0 0)).
-;;; BUGS:
-;;;
-;;; -- this code does not check whether SET appears between REF and a
-;;; test (bug 233b)
-
(in-package "SB!C")
(deftype constraint-y () '(or ctype lvar lambda-var constant))
(not-p nil :type boolean))
(defvar *constraint-number*)
+(declaim (type (integer 0) *constraint-number*))
(defun find-constraint (kind x y not-p)
(declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
(defun ok-lvar-lambda-var (lvar constraints)
(declare (type lvar lvar))
(let ((use (lvar-uses lvar)))
- (when (ref-p use)
- (let ((lambda-var (ok-ref-lambda-var use)))
- (when lambda-var
- (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
- (when (and constraint (sset-member constraint constraints))
- lambda-var)))))))
+ (cond ((ref-p use)
+ (let ((lambda-var (ok-ref-lambda-var use)))
+ (when lambda-var
+ (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
+ (when (and constraint (sset-member constraint constraints))
+ lambda-var)))))
+ ((cast-p use)
+ (ok-lvar-lambda-var (cast-value use) constraints)))))
+
+(defmacro do-eql-vars ((symbol (var constraints) &optional result) &body body)
+ (once-only ((var var))
+ `(let ((,symbol ,var))
+ (flet ((body-fun ()
+ ,@body))
+ (body-fun)
+ (do-sset-elements (con ,constraints ,result)
+ (let ((other (and (eq (constraint-kind con) 'eql)
+ (eq (constraint-not-p con) nil)
+ (cond ((eq ,var (constraint-x con))
+ (constraint-y con))
+ ((eq ,var (constraint-y con))
+ (constraint-x con))
+ (t
+ nil)))))
+ (when other
+ (setq ,symbol other)
+ (when (lambda-var-p ,symbol)
+ (body-fun)))))))))
;;;; Searching constraints
-;;; Add the indicated test constraint to BLOCK, marking the block as
-;;; having a new assertion when the constriant was not already
-;;; present. We don't add the constraint if the block has multiple
-;;; predecessors, since it only holds on this particular path.
-(defun add-test-constraint (block fun x y not-p)
- (unless (rest (block-pred block))
- (let ((con (find-or-create-constraint fun x y not-p))
- (old (or (block-test-constraint block)
- (setf (block-test-constraint block) (make-sset)))))
- (when (sset-adjoin con old)
- (setf (block-type-asserted block) t))))
+;;; Add the indicated test constraint to BLOCK. We don't add the
+;;; constraint if the block has multiple predecessors, since it only
+;;; holds on this particular path.
+(defun add-test-constraint (fun x y not-p constraints target)
+ (cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p))
+ (add-eql-var-var-constraint x y constraints target))
+ (t
+ (do-eql-vars (x (x constraints))
+ (let ((con (find-or-create-constraint fun x y not-p)))
+ (sset-adjoin con target)))))
(values))
;;; Add complementary constraints to the consequent and alternative
;;; blocks of IF. We do nothing if X is NIL.
-(defun add-complement-constraints (if fun x y not-p)
+(defun add-complement-constraints (if fun x y not-p constraints
+ consequent-constraints
+ alternative-constraints)
(when (and x
;; Note: Even if we do (IF test exp exp) => (PROGN test exp)
;; optimization, the *MAX-OPTIMIZE-ITERATIONS* cutoff means
;; done, so we still need to avoid barfing on this case.
(not (eq (if-consequent if)
(if-alternative if))))
- (add-test-constraint (if-consequent if) fun x y not-p)
- (add-test-constraint (if-alternative if) fun x y (not not-p)))
+ (add-test-constraint fun x y not-p constraints
+ consequent-constraints)
+ (add-test-constraint fun x y (not not-p) constraints
+ alternative-constraints))
(values))
;;; Add test constraints to the consequent and alternative blocks of
;;; the test represented by USE.
(defun add-test-constraints (use if constraints)
(declare (type node use) (type cif if))
- (typecase use
- (ref
- (add-complement-constraints if 'typep (ok-lvar-lambda-var (ref-lvar use)
- constraints)
- (specifier-type 'null) t))
- (combination
- (unless (eq (combination-kind use)
- :error)
- (let ((name (lvar-fun-name
- (basic-combination-fun use)))
- (args (basic-combination-args use)))
- (case name
- ((%typep %instance-typep)
- (let ((type (second args)))
- (when (constant-lvar-p type)
- (let ((val (lvar-value type)))
- (add-complement-constraints if 'typep
- (ok-lvar-lambda-var (first args)
- constraints)
- (if (ctype-p val)
- val
- (specifier-type val))
- nil)))))
- ((eq eql)
- (let* ((var1 (ok-lvar-lambda-var (first args) constraints))
- (arg2 (second args))
- (var2 (ok-lvar-lambda-var arg2 constraints)))
- (cond ((not var1))
- (var2
- (add-complement-constraints if 'eql var1 var2 nil))
- ((constant-lvar-p arg2)
- (add-complement-constraints if 'eql var1
- (ref-leaf
- (principal-lvar-use arg2))
- nil)))))
- ((< >)
- (let* ((arg1 (first args))
- (var1 (ok-lvar-lambda-var arg1 constraints))
- (arg2 (second args))
- (var2 (ok-lvar-lambda-var arg2 constraints)))
- (when var1
- (add-complement-constraints if name var1 (lvar-type arg2)
- nil))
- (when var2
- (add-complement-constraints if (if (eq name '<) '> '<)
- var2 (lvar-type arg1)
- nil))))
- (t
- (let ((ptype (gethash name *backend-predicate-types*)))
- (when ptype
- (add-complement-constraints if 'typep
- (ok-lvar-lambda-var (first args)
- constraints)
- ptype nil)))))))))
- (values))
-
-;;; Set the TEST-CONSTRAINT in the successors of BLOCK according to
-;;; the condition it tests.
-(defun find-test-constraints (block)
- (declare (type cblock block))
- (let ((last (block-last block)))
- (when (if-p last)
- (let ((use (lvar-uses (if-test last))))
- (when (node-p use)
- ;; BLOCK-OUT contains the (EQL LAMBDA-VAR LVAR)
- ;; constraints valid at the end of the block. Since the
- ;; IF node is last node in its block, it can be used to
- ;; check LVAR LAMBDA-VAR equality.
- (add-test-constraints use last (block-out block))))))
- (values))
+ (let ((consequent-constraints (make-sset))
+ (alternative-constraints (make-sset)))
+ (macrolet ((add (fun x y not-p)
+ `(add-complement-constraints if ,fun ,x ,y ,not-p
+ constraints
+ consequent-constraints
+ alternative-constraints)))
+ (typecase use
+ (ref
+ (add 'typep (ok-lvar-lambda-var (ref-lvar use) constraints)
+ (specifier-type 'null) t))
+ (combination
+ (unless (eq (combination-kind use)
+ :error)
+ (let ((name (lvar-fun-name
+ (basic-combination-fun use)))
+ (args (basic-combination-args use)))
+ (case name
+ ((%typep %instance-typep)
+ (let ((type (second args)))
+ (when (constant-lvar-p type)
+ (let ((val (lvar-value type)))
+ (add 'typep (ok-lvar-lambda-var (first args) constraints)
+ (if (ctype-p val)
+ val
+ (specifier-type val))
+ nil)))))
+ ((eq eql)
+ (let* ((var1 (ok-lvar-lambda-var (first args) constraints))
+ (arg2 (second args))
+ (var2 (ok-lvar-lambda-var arg2 constraints)))
+ (cond ((not var1))
+ (var2
+ (add 'eql var1 var2 nil))
+ ((constant-lvar-p arg2)
+ (add 'eql var1 (ref-leaf (principal-lvar-use arg2))
+ nil)))))
+ ((< >)
+ (let* ((arg1 (first args))
+ (var1 (ok-lvar-lambda-var arg1 constraints))
+ (arg2 (second args))
+ (var2 (ok-lvar-lambda-var arg2 constraints)))
+ (when var1
+ (add name var1 (lvar-type arg2) nil))
+ (when var2
+ (add (if (eq name '<) '> '<) var2 (lvar-type arg1) nil))))
+ (t
+ (let ((ptype (gethash name *backend-predicate-types*)))
+ (when ptype
+ (add 'typep (ok-lvar-lambda-var (first args) constraints)
+ ptype nil))))))))))
+ (values consequent-constraints alternative-constraints)))
;;;; Applying constraints
(member-type-p other-type))
(setq not-res (type-union not-res other-type)))
(let ((leaf-type (leaf-type leaf)))
- (when (or (constant-p other)
- (and (leaf-refs other) ; protect from
- ; deleted vars
- (csubtypep other-type leaf-type)
- (not (type= other-type leaf-type))))
- (change-ref-leaf ref other)
- (when (constant-p other) (return))))))))
+ (cond
+ ((or (constant-p other)
+ (and (leaf-refs other) ; protect from
+ ; deleted vars
+ (csubtypep other-type leaf-type)
+ (not (type= other-type leaf-type))))
+ (change-ref-leaf ref other)
+ (when (constant-p other) (return)))
+ (t
+ (setq res (type-approx-intersection2
+ res other-type)))))))))
((< >)
- (cond ((and (integer-type-p res) (integer-type-p y))
- (let ((greater (eq kind '>)))
- (let ((greater (if not-p (not greater) greater)))
- (setq res
- (constrain-integer-type res y greater not-p)))))
- ((and (float-type-p res) (float-type-p y))
- (let ((greater (eq kind '>)))
- (let ((greater (if not-p (not greater) greater)))
- (setq res
- (constrain-float-type res y greater not-p)))))
- )))))
-
+ (cond
+ ((and (integer-type-p res) (integer-type-p y))
+ (let ((greater (eq kind '>)))
+ (let ((greater (if not-p (not greater) greater)))
+ (setq res
+ (constrain-integer-type res y greater not-p)))))
+ ((and (float-type-p res) (float-type-p y))
+ (let ((greater (eq kind '>)))
+ (let ((greater (if not-p (not greater) greater)))
+ (setq res
+ (constrain-float-type res y greater not-p))))))))))
(cond ((and (if-p (node-dest ref))
(csubtypep (specifier-type 'null) not-res))
(setf (node-derived-type ref) *wild-type*)
;;;; Flow analysis
+(defun maybe-add-eql-var-lvar-constraint (ref gen)
+ (let ((lvar (ref-lvar ref))
+ (leaf (ref-leaf ref)))
+ (when (and (lambda-var-p leaf) lvar)
+ (sset-adjoin (find-or-create-constraint 'eql leaf lvar nil)
+ gen))))
+
+;;; Copy all CONSTRAINTS involving FROM-VAR to VAR except the (EQL VAR
+;;; LVAR) ones.
+(defun inherit-constraints (var from-var constraints target)
+ (do-sset-elements (con constraints)
+ (let ((eq-x (eq from-var (constraint-x con)))
+ (eq-y (eq from-var (constraint-y con))))
+ ;; Constant substitution is controversial.
+ (unless (constant-p (constraint-y con))
+ (when (or (and eq-x (not (lvar-p (constraint-y con))))
+ eq-y)
+ (sset-adjoin (find-or-create-constraint
+ (constraint-kind con)
+ (if eq-x var (constraint-x con))
+ (if eq-y var (constraint-y con))
+ (constraint-not-p con))
+ target))))))
+
+;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and
+;; inherit each other's constraints.
+(defun add-eql-var-var-constraint (var1 var2 constraints
+ &optional (target constraints))
+ (let ((con (find-or-create-constraint 'eql var1 var2 nil)))
+ (when (sset-adjoin con target)
+ (do-eql-vars (var2 (var2 constraints))
+ (inherit-constraints var1 var2 constraints target))
+ (do-eql-vars (var1 (var1 constraints))
+ (inherit-constraints var1 var2 constraints target))
+ t)))
+
+;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's
+;; LAMBDA-VAR if possible.
+(defun maybe-add-eql-var-var-constraint (var lvar constraints
+ &optional (target constraints))
+ (declare (type lambda-var var) (type lvar lvar))
+ (let ((lambda-var (ok-lvar-lambda-var lvar constraints)))
+ (when lambda-var
+ (add-eql-var-var-constraint var lambda-var constraints target))))
+
;;; Local propagation
;;; -- [TODO: For any LAMBDA-VAR ref with a type check, add that
;;; constraint.]
;;; -- For any LAMBDA-VAR set, delete all constraints on that var; add
;;; a type constraint based on the new value type.
(declaim (ftype (function (cblock sset
- &key (:ref-preprocessor function)
- (:set-preprocessor function))
+ &key (:ref-preprocessor (or null function))
+ (:set-preprocessor (or null function)))
sset)
constraint-propagate-in-block))
(defun constraint-propagate-in-block
(block gen &key ref-preprocessor set-preprocessor)
- (let ((test (block-test-constraint block)))
- (when test
- (sset-union gen test)))
-
(do-nodes (node lvar block)
(typecase node
(bind
(loop with call = (lvar-dest (node-lvar (first (lambda-refs fun))))
for var in (lambda-vars fun)
and val in (combination-args call)
- when (and val
- (lambda-var-constraints var)
- ;; if VAR has no SETs, type inference is
- ;; fully performed by IR1 optimizer
- (lambda-var-sets var))
+ when (and val (lambda-var-constraints var))
do (let* ((type (lvar-type val))
(con (find-or-create-constraint 'typep var type
nil)))
- (sset-adjoin con gen))))))
+ (sset-adjoin con gen))
+ (maybe-add-eql-var-var-constraint var val gen)))))
(ref
(when (ok-ref-lambda-var node)
- (maybe-add-eql-constraint-for-lvar node gen)
+ (maybe-add-eql-var-lvar-constraint node gen)
(when ref-preprocessor
(funcall ref-preprocessor node gen))))
(cast
(let ((lvar (cast-value node)))
(let ((var (ok-lvar-lambda-var lvar gen)))
- (when var
- (let* ((atype (single-value-type (cast-derived-type node))) ; FIXME
- (con (find-or-create-constraint 'typep var atype nil)))
- (sset-adjoin con gen))))))
+ (when var
+ (let ((atype (single-value-type (cast-derived-type node)))) ;FIXME
+ (do-eql-vars (var (var gen))
+ (let ((con (find-or-create-constraint 'typep var atype nil)))
+ (sset-adjoin con gen))))))))
(cset
(binding* ((var (set-var node))
(nil (lambda-var-p var) :exit-if-null)
(sset-difference gen cons)
(let* ((type (single-value-type (node-derived-type node)))
(con (find-or-create-constraint 'typep var type nil)))
- (sset-adjoin con gen))))))
+ (sset-adjoin con gen))
+ (maybe-add-eql-var-var-constraint var (set-value node) gen)))))
gen)
-;;; BLOCK-KILL is just a list of the LAMBDA-VARs killed, so we must
-;;; compute the kill set when there are any vars killed. We bum this a
-;;; bit by special-casing when only one var is killed, and just using
-;;; that var's constraints as the kill set. This set could possibly be
-;;; precomputed, but it would have to be invalidated whenever any
-;;; constraint is added, which would be a pain.
-(defun compute-block-out (block)
- (declare (type cblock block))
- (let ((in (block-in block))
- (kill (block-kill block))
- (out (copy-sset (block-gen block))))
- (cond ((null kill)
- (sset-union out in))
- ((null (rest kill))
- (let ((con (lambda-var-constraints (first kill))))
- (if con
- (sset-union-of-difference out in con)
- (sset-union out in))))
- (t
- (let ((kill-set (make-sset)))
- (dolist (var kill)
- (let ((con (lambda-var-constraints var)))
- (when con
- (sset-union kill-set con))))
- (sset-union-of-difference out in kill-set))))
- out))
-
-;; Add a (EQL LAMBDA-VAR LVAR) constraint, but only for LVAR's with a
-;; DEST that's an IF or a test for an IF.
-(defun maybe-add-eql-constraint-for-lvar (ref gen)
- (let ((lvar (ref-lvar ref))
- (leaf (ref-leaf ref)))
- (when (and (lambda-var-p leaf) lvar
- ;; This test avoids generating constraints for an LVAR
- ;; for which EQLness to its referenced LAMBDA-VAR is
- ;; not important because OK-LVAR-LAMBDA-VAR won't need
- ;; it.
- (or (cast-p (lvar-dest lvar))
- (if-p (lvar-dest lvar))
- (and (valued-node-p (lvar-dest lvar))
- (let ((lvar2 (node-lvar (lvar-dest lvar))))
- (when lvar2
- (if-p (lvar-dest lvar2)))))))
- (sset-adjoin (find-or-create-constraint 'eql leaf lvar nil)
- gen))))
+(defun constraint-propagate-if (block gen)
+ (let ((node (block-last block)))
+ (when (if-p node)
+ (let ((use (lvar-uses (if-test node))))
+ (when (node-p use)
+ (add-test-constraints use node gen))))))
-;;; Compute the initial flow analysis sets for BLOCK:
-;;; -- Compute IN/OUT sets; if OUT of a predecessor is not yet
-;;; computed, assume it to be a universal set (this is only
-;;; possible in a loop)
-;;;
-;;; Return T if we have found a loop.
-(defun find-block-type-constraints (block)
+(defun constrain-node (node cons)
+ (let* ((var (ref-leaf node))
+ (con (lambda-var-constraints var)))
+ (constrain-ref-type node con cons)))
+
+;;; Starting from IN compute OUT and (consequent/alternative
+;;; constraints if the block ends with and IF). Return the list of
+;;; successors that may need to be recomputed.
+(defun find-block-type-constraints (block &key final-pass-p)
(declare (type cblock block))
- (collect ((kill nil adjoin))
- (let ((gen (constraint-propagate-in-block
- block (make-sset)
- :set-preprocessor (lambda (var)
- (kill var)))))
- (setf (block-gen block) gen)
- (setf (block-kill block) (kill))
- (setf (block-type-asserted block) nil)
- (let* ((n (block-number block))
- (pred (block-pred block))
- (in nil)
- (loop-p nil))
- (dolist (b pred)
- (cond ((> (block-number b) n)
- (if in
- (sset-intersection in (block-out b))
- (setq in (copy-sset (block-out b)))))
- (t (setq loop-p t))))
- (unless in
- (bug "Unreachable code is found or flow graph is not ~
- properly depth-first ordered."))
- (setf (block-in block) in)
- (setf (block-out block) (compute-block-out block))
- loop-p))))
-
-;;; BLOCK-IN becomes the intersection of the OUT of the predecessors.
-;;; Our OUT is:
-;;; gen U (in - kill)
-;;;
-;;; Return True if we have done something.
-(defun flow-propagate-constraints (block)
- (let* ((pred (block-pred block))
- (in (progn (aver pred)
- (let ((res (copy-sset (block-out (first pred)))))
- (dolist (b (rest pred))
- (sset-intersection res (block-out b)))
- res))))
- (setf (block-in block) in)
- (let ((out (compute-block-out block)))
- (if (sset= out (block-out block))
- nil
- (setf (block-out block) out)))))
+ (let ((gen (constraint-propagate-in-block
+ block
+ (if final-pass-p
+ (block-in block)
+ (copy-sset (block-in block)))
+ :ref-preprocessor (if final-pass-p #'constrain-node nil))))
+ (setf (block-gen block) gen)
+ (multiple-value-bind (consequent-constraints alternative-constraints)
+ (constraint-propagate-if block gen)
+ (if consequent-constraints
+ (let* ((node (block-last block))
+ (old-consequent-constraints (if-consequent-constraints node))
+ (old-alternative-constraints (if-alternative-constraints node))
+ (succ ()))
+ ;; Add the consequent and alternative constraints to GEN.
+ (cond ((sset-empty consequent-constraints)
+ (setf (if-consequent-constraints node) gen)
+ (setf (if-alternative-constraints node) gen))
+ (t
+ (setf (if-consequent-constraints node) (copy-sset gen))
+ (sset-union (if-consequent-constraints node)
+ consequent-constraints)
+ (setf (if-alternative-constraints node) gen)
+ (sset-union (if-alternative-constraints node)
+ alternative-constraints)))
+ ;; Has the consequent been changed?
+ (unless (and old-consequent-constraints
+ (sset= (if-consequent-constraints node)
+ old-consequent-constraints))
+ (push (if-consequent node) succ))
+ ;; Has the alternative been changed?
+ (unless (and old-alternative-constraints
+ (sset= (if-alternative-constraints node)
+ old-alternative-constraints))
+ (push (if-alternative node) succ))
+ succ)
+ ;; There is no IF.
+ (unless (and (block-out block)
+ (sset= gen (block-out block)))
+ (setf (block-out block) gen)
+ (block-succ block))))))
;;; Deliver the results of constraint propagation to REFs in BLOCK.
;;; During this pass, we also do local constraint propagation by
-;;; adding in constraints as we seem them during the pass through the
+;;; adding in constraints as we see them during the pass through the
;;; block.
(defun use-result-constraints (block)
(declare (type cblock block))
- (constraint-propagate-in-block
- block (block-in block)
- :ref-preprocessor (lambda (node cons)
- (let* ((var (ref-leaf node))
- (con (lambda-var-constraints var)))
- (constrain-ref-type node con cons)))))
+ (constraint-propagate-in-block block (block-in block)
+ :ref-preprocessor #'constrain-node))
;;; Give an empty constraints set to any var that doesn't have one and
;;; isn't a set closure var. Since a var that we previously rejected
(dolist (let (lambda-lets fun))
(frob let)))))
-;;; How many blocks does COMPONENT have?
-(defun component-n-blocks (component)
- (let ((result 0))
- (declare (type index result))
- (do-blocks (block component :both)
- (incf result))
- result))
+;;; Return the constraints that flow from PRED to SUCC. This is
+;;; BLOCK-OUT unless PRED ends with and IF and test constraints were
+;;; added.
+(defun block-out-for-successor (pred succ)
+ (declare (type cblock pred succ))
+ (let ((last (block-last pred)))
+ (or (when (if-p last)
+ (cond ((eq succ (if-consequent last))
+ (if-consequent-constraints last))
+ ((eq succ (if-alternative last))
+ (if-alternative-constraints last))))
+ (block-out pred))))
+
+(defun compute-block-in (block)
+ (let ((in nil))
+ (dolist (pred (block-pred block))
+ ;; If OUT has not been calculated, assume it to be the universal
+ ;; set.
+ (let ((out (block-out-for-successor pred block)))
+ (when out
+ (if in
+ (sset-intersection in out)
+ (setq in (copy-sset out))))))
+ (or in (make-sset))))
+
+(defun update-block-in (block)
+ (let ((in (compute-block-in block)))
+ (cond ((and (block-in block) (sset= in (block-in block)))
+ nil)
+ (t
+ (setf (block-in block) in)))))
+
+;;; Return two lists: one of blocks that precede all loops and
+;;; therefore require only one constraint propagation pass and the
+;;; rest. This implementation does not find all such blocks.
+;;;
+;;; A more complete implementation would be:
+;;;
+;;; (do-blocks (block component)
+;;; (if (every #'(lambda (pred)
+;;; (or (member pred leading-blocks)
+;;; (eq pred head)))
+;;; (block-pred block))
+;;; (push block leading-blocks)
+;;; (push block rest-of-blocks)))
+;;;
+;;; Trailing blocks that succeed all loops could be found and handled
+;;; similarly. In practice though, these more complex solutions are
+;;; slightly worse performancewise.
+(defun leading-component-blocks (component)
+ (declare (type component component))
+ (flet ((loopy-p (block)
+ (let ((n (block-number block)))
+ (dolist (pred (block-pred block))
+ (unless (< n (block-number pred))
+ (return t))))))
+ (let ((leading-blocks ())
+ (rest-of-blocks ())
+ (seen-loop-p ()))
+ (do-blocks (block component)
+ (when (and (not seen-loop-p) (loopy-p block))
+ (setq seen-loop-p t))
+ (if seen-loop-p
+ (push block rest-of-blocks)
+ (push block leading-blocks)))
+ (values (nreverse leading-blocks) (nreverse rest-of-blocks)))))
+
+;;; Append OBJ to the end of LIST as if by NCONC but only if it is not
+;;; a member already.
+(defun nconc-new (obj list)
+ (do ((x list (cdr x))
+ (prev nil x))
+ ((endp x) (if prev
+ (progn
+ (setf (cdr prev) (list obj))
+ list)
+ (list obj)))
+ (when (eql (car x) obj)
+ (return-from nconc-new list))))
(defun find-and-propagate-constraints (component)
- (let ((loop-p nil))
- (do-blocks (block component)
- (when (find-block-type-constraints block)
- (setq loop-p t)))
- (when loop-p
- ;; If we have to propagate changes more than this many times,
- ;; something is wrong.
- (let ((max-n-changes-remaining (component-n-blocks component)))
- (declare (type fixnum max-n-changes-remaining))
- (loop (aver (>= max-n-changes-remaining 0))
- (decf max-n-changes-remaining)
- (let ((did-something nil))
- (do-blocks (block component)
- (when (flow-propagate-constraints block)
- (setq did-something t)))
- (unless did-something
- (return))))))))
+ (let ((blocks-to-process ()))
+ (flet ((enqueue (blocks)
+ (dolist (block blocks)
+ (setq blocks-to-process (nconc-new block blocks-to-process)))))
+ (multiple-value-bind (leading-blocks rest-of-blocks)
+ (leading-component-blocks component)
+ ;; Update every block once to account for changes in the
+ ;; IR1. The constraints of the lead blocks cannot be changed
+ ;; after the first pass so we might as well use them and skip
+ ;; USE-RESULT-CONSTRAINTS later.
+ (dolist (block leading-blocks)
+ (setf (block-in block) (compute-block-in block))
+ (find-block-type-constraints block :final-pass-p t))
+ (setq blocks-to-process (copy-list rest-of-blocks))
+ ;; The rest of the blocks.
+ (dolist (block rest-of-blocks)
+ (aver (eq block (pop blocks-to-process)))
+ (setf (block-in block) (compute-block-in block))
+ (enqueue (find-block-type-constraints block)))
+ ;; Propagate constraints
+ (loop for block = (pop blocks-to-process)
+ while block do
+ (unless (eq block (component-tail component))
+ (when (update-block-in block)
+ (enqueue (find-block-type-constraints block)))))
+ rest-of-blocks))))
(defun constraint-propagate (component)
(declare (type component component))
(unless (block-out (component-head component))
(setf (block-out (component-head component)) (make-sset)))
- (find-and-propagate-constraints component)
-
- (do-blocks (block component)
- (when (block-test-modified block)
- (find-test-constraints block)
- (setf (block-test-modified block) nil)))
-
- (find-and-propagate-constraints component)
-
- (do-blocks (block component)
+ (dolist (block (find-and-propagate-constraints component))
(unless (block-delete-p block)
(use-result-constraints block)))