(min 0 :type fixnum)
(max 0 :type fixnum))
- (defmacro do-conset-elements ((constraint conset &optional result) &body body)
- (with-unique-names (vector index start end
- #-sb-xc-host ignore
- #-sb-xc-host constraint-universe-end)
- (let* ((constraint-universe #+sb-xc-host '*constraint-universe*
- #-sb-xc-host (sb!xc:gensym "UNIVERSE"))
- (with-array-data
- #+sb-xc-host '(progn)
- #-sb-xc-host `(with-array-data
- ((,constraint-universe *constraint-universe*)
- (,ignore 0) (,constraint-universe-end nil)
- :check-fill-pointer t)
- (declare (ignore ,ignore))
- (aver (<= ,end ,constraint-universe-end)))))
- `(let* ((,vector (conset-vector ,conset))
- (,start (conset-min ,conset))
- (,end (min (conset-max ,conset) (length ,vector))))
- (,@with-array-data
- (do ((,index ,start (1+ ,index))) ((>= ,index ,end) ,result)
- (when (plusp (sbit ,vector ,index))
- (let ((,constraint (elt ,constraint-universe ,index)))
- ,@body))))))))
-
- ;; Oddly, iterating just between the maximum of the two sets' minima
- ;; and the minimum of the sets' maxima slowed down CP.
- (defmacro do-conset-intersection
- ((constraint conset1 conset2 &optional result) &body body)
- `(do-conset-elements (,constraint ,conset1 ,result)
- (when (conset-member ,constraint ,conset2)
- ,@body)))
-
(defun conset-empty (conset)
(or (= (conset-min conset) (conset-max conset))
;; TODO: I bet FIND on bit-vectors can be optimized, if it
(plusp (sbit vector number)))))
(defun conset-adjoin (constraint conset)
- (prog1
- (not (conset-member constraint conset))
- (let ((number (%constraint-number constraint)))
- (conset-grow conset (1+ number))
- (setf (sbit (conset-vector conset) number) 1)
- (setf (conset-min conset) (min number (conset-min conset)))
- (when (>= number (conset-max conset))
- (setf (conset-max conset) (1+ number))))))
+ (let ((number (%constraint-number constraint)))
+ (conset-grow conset (1+ number))
+ (setf (sbit (conset-vector conset) number) 1)
+ (setf (conset-min conset) (min number (conset-min conset)))
+ (when (>= number (conset-max conset))
+ (setf (conset-max conset) (1+ number))))
+ conset)
(defun conset= (conset1 conset2)
(let* ((vector1 (conset-vector conset1))
;;; to over-approximate and then linear search through the potential hits.
;;; LVARs can only be found in EQL (not-p = NIL) constraints, while constant
;;; and lambda-vars can only be found in EQL constraints.
-
(defun find-constraint (kind x y not-p)
(declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
(etypecase y
;;; Lambda-var -- lvar EQL constraints only serve one purpose: remember whether
;;; an lvar is (only) written to by a ref to that lambda-var, and aren't ever
;;; propagated.
-
+;;;
+;;; Finally, the lambda-var conset is only used to track the whole set of
+;;; constraints associated with a given lambda-var, and thus easily delete
+;;; such constraints from a conset.
(defun register-constraint (x con y)
(declare (type lambda-var x) (type constraint con) (type constraint-y y))
(conset-adjoin con (lambda-var-constraints x))
(when (lambda-var-p y)
(register-constraint y new x))
new)))
-
-;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow
-;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL.
-#!-sb-fluid (declaim (inline ok-ref-lambda-var))
-(defun ok-ref-lambda-var (ref)
- (declare (type ref ref))
- (let ((leaf (ref-leaf ref)))
- (when (and (lambda-var-p leaf)
- (lambda-var-constraints leaf))
- leaf)))
-
-;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL
-;;; according to CONSTRAINTS. Return LAMBDA-VAR if so.
-(defun ok-lvar-lambda-var (lvar constraints)
- (declare (type lvar lvar))
- (let ((use (lvar-uses lvar)))
- (cond ((ref-p use)
- (let ((lambda-var (ok-ref-lambda-var use)))
- (when lambda-var
- (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
- (when (and constraint (conset-member constraint constraints))
- lambda-var)))))
- ((cast-p use)
- (ok-lvar-lambda-var (cast-value use) constraints)))))
-
+\f
+;;; Actual conset interface
+;;;
+;;; Constraint propagation needs to iterate over the set of lambda-vars known to
+;;; be EQL to a given variable (including itself), via DO-EQL-VARS.
+;;;
+;;; It also has to iterate through constraints that are inherited by EQL variables
+;;; (DO-INHERITABLE-CONSTRAINTS), and through constraints used by
+;;; CONSTRAIN-REF-TYPE (to derive the type of a REF to a lambda-var).
+;;;
+;;; Consets must keep track of which lvars are EQL to a given lambda-var (result
+;;; from a REF to the lambda-var): CONSET-LVAR-LAMBDA-VAR-EQL-P and
+;;; CONSET-ADD-LVAR-LAMBDA-VAR-EQL. This, as all other constraints, must of
+;;; course be cleared when a lambda-var's constraints are dropped because of
+;;; assignment.
+;;;
+;;; Consets must be able to add constraints to a given lambda-var
+;;; (CONSET-ADD-CONSTRAINT), and to the set of variables EQL to a given
+;;; lambda-var (CONSET-ADD-CONSTRAINT-TO-EQL).
+;;;
+;;; When a lambda-var is assigned to, all the constraints involving that variable
+;;; must be dropped: constraint propagation is flow-sensitive, so the constraints
+;;; relate to the variable at a given range of program point. In such cases,
+;;; constraint propagation calls CONSET-CLEAR-LAMBDA-VAR.
+;;;
+;;; Finally, one of the main strengths of constraint propagation in SBCL is the
+;;; tracking of EQL variables to help constraint propagation. When two variables
+;;; are known to be EQL (e.g. after a branch), ADD-EQL-VAR-VAR-CONSTRAINT is
+;;; called to add the EQL constraint, but also have each equality class inherit
+;;; the other's (inheritable) constraints.
+;;;
+;;; On top of that, we have the usual bulk set operations: intersection, copy,
+;;; equality or emptiness testing. There's also union, but that's only an
+;;; optimisation to avoid useless copies in ADD-TEST-CONSTRAINTS and
+;;; FIND-BLOCK-TYPE-CONSTRAINTS.
(defmacro do-conset-constraints-intersection ((symbol (conset constraints) &optional result)
- &body body)
+ &body body)
(let ((min (gensym "MIN"))
(max (gensym "MAX")))
(once-only ((conset conset)
(do-conset-constraints-intersection
(con (,conset (lambda-var-inheritable-constraints ,variable)) ,result)
(body-fun con))))))
+
+(declaim (inline conset-lvar-lambda-var-eql-p conset-add-lvar-lambda-var-eql))
+(defun conset-lvar-lambda-var-eql-p (conset lvar lambda-var)
+ (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
+ (and constraint
+ (conset-member constraint conset))))
+
+(defun conset-add-lvar-lambda-var-eql (conset lvar lambda-var)
+ (let ((constraint (find-or-create-constraint 'eql lambda-var lvar nil)))
+ (conset-adjoin constraint conset)))
+
+(declaim (inline conset-add-constraint conset-add-constraint-to-eql))
+(defun conset-add-constraint (conset kind x y not-p)
+ (declare (type conset conset)
+ (type lambda-var x))
+ (conset-adjoin (find-or-create-constraint kind x y not-p)
+ conset))
+
+(defun conset-add-constraint-to-eql (conset kind x y not-p &optional (target conset))
+ (declare (type conset target conset)
+ (type lambda-var x))
+ (do-eql-vars (x (x conset))
+ (conset-add-constraint target kind x y not-p)))
+
+(declaim (inline conset-clear-lambda-var))
+(defun conset-clear-lambda-var (conset var)
+ (conset-difference conset (lambda-var-constraints var)))
+
+;;; Copy all CONSTRAINTS involving FROM-VAR - except the (EQL VAR
+;;; LVAR) ones - to all of the variables in the VARS list.
+(defun inherit-constraints (vars from-var constraints target)
+ (do-inheritable-constraints (con (constraints from-var))
+ (let ((eq-x (eq from-var (constraint-x con)))
+ (eq-y (eq from-var (constraint-y con))))
+ (dolist (var vars)
+ (conset-add-constraint target
+ (constraint-kind con)
+ (if eq-x var (constraint-x con))
+ (if eq-y var (constraint-y con))
+ (constraint-not-p con))))))
+
+;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and
+;; inherit each other's constraints.
+(defun add-eql-var-var-constraint (var1 var2 constraints
+ &optional (target constraints))
+ (let ((constraint (find-or-create-constraint 'eql var1 var2 nil)))
+ (unless (conset-member constraint target)
+ (conset-adjoin constraint target)
+ (collect ((eql1) (eql2))
+ (do-eql-vars (var1 (var1 constraints))
+ (eql1 var1))
+ (do-eql-vars (var2 (var2 constraints))
+ (eql2 var2))
+ (inherit-constraints (eql1) var2 constraints target)
+ (inherit-constraints (eql2) var1 constraints target))
+ t)))
+\f
+;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow
+;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL.
+#!-sb-fluid (declaim (inline ok-ref-lambda-var))
+(defun ok-ref-lambda-var (ref)
+ (declare (type ref ref))
+ (let ((leaf (ref-leaf ref)))
+ (when (and (lambda-var-p leaf)
+ (lambda-var-constraints leaf))
+ leaf)))
+
+;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL
+;;; according to CONSTRAINTS. Return LAMBDA-VAR if so.
+(defun ok-lvar-lambda-var (lvar constraints)
+ (declare (type lvar lvar))
+ (let ((use (lvar-uses lvar)))
+ (cond ((ref-p use)
+ (let ((lambda-var (ok-ref-lambda-var use)))
+ (and lambda-var
+ (conset-lvar-lambda-var-eql-p constraints lvar lambda-var)
+ lambda-var)))
+ ((cast-p use)
+ (ok-lvar-lambda-var (cast-value use) constraints)))))
;;;; Searching constraints
;;; Add the indicated test constraint to BLOCK. We don't add the
(cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p))
(add-eql-var-var-constraint x y constraints target))
(t
- (do-eql-vars (x (x constraints))
- (let ((con (find-or-create-constraint fun x y not-p)))
- (conset-adjoin con target)))))
+ (conset-add-constraint-to-eql constraints fun x y not-p target)))
(values))
;;; Add complementary constraints to the consequent and alternative
(let ((lvar (ref-lvar ref))
(leaf (ref-leaf ref)))
(when (and (lambda-var-p leaf) lvar)
- (conset-adjoin (find-or-create-constraint 'eql leaf lvar nil)
- gen))))
-
-;;; Copy all CONSTRAINTS involving FROM-VAR - except the (EQL VAR
-;;; LVAR) ones - to all of the variables in the VARS list.
-(defun inherit-constraints (vars from-var constraints target)
- (do-inheritable-constraints (con (constraints from-var))
- (let ((eq-x (eq from-var (constraint-x con)))
- (eq-y (eq from-var (constraint-y con))))
- (dolist (var vars)
- (conset-adjoin (find-or-create-constraint
- (constraint-kind con)
- (if eq-x var (constraint-x con))
- (if eq-y var (constraint-y con))
- (constraint-not-p con))
- target)))))
-
-;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and
-;; inherit each other's constraints.
-(defun add-eql-var-var-constraint (var1 var2 constraints
- &optional (target constraints))
- (let ((con (find-or-create-constraint 'eql var1 var2 nil)))
- (when (conset-adjoin con target)
- (collect ((eql1) (eql2))
- (do-eql-vars (var1 (var1 constraints))
- (eql1 var1))
- (do-eql-vars (var2 (var2 constraints))
- (eql2 var2))
- (inherit-constraints (eql1) var2 constraints target)
- (inherit-constraints (eql2) var1 constraints target))
- t)))
+ (conset-add-lvar-lambda-var-eql gen lvar leaf))))
;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's
;; LAMBDA-VAR if possible.
when (and val (lambda-var-constraints var))
do (let ((type (lvar-type val)))
(unless (eq type *universal-type*)
- (let ((con (find-or-create-constraint 'typep var type nil)))
- (conset-adjoin con gen))))
+ (conset-add-constraint gen 'typep var type nil)))
(maybe-add-eql-var-var-constraint var val gen)))))
(ref
(when (ok-ref-lambda-var node)
(when var
(let ((atype (single-value-type (cast-derived-type node)))) ;FIXME
(unless (eq atype *universal-type*)
- (do-eql-vars (var (var gen))
- (let ((con (find-or-create-constraint 'typep var atype nil)))
- (conset-adjoin con gen)))))))))
+ (conset-add-constraint-to-eql gen 'typep var atype nil)))))))
(cset
(binding* ((var (set-var node))
(nil (lambda-var-p var) :exit-if-null)
- (cons (lambda-var-constraints var) :exit-if-null))
- (conset-difference gen cons)
+ (nil (lambda-var-constraints var) :exit-if-null))
+ (conset-clear-lambda-var gen var)
(let ((type (single-value-type (node-derived-type node))))
(unless (eq type *universal-type*)
- (let ((con (find-or-create-constraint 'typep var type nil)))
- (conset-adjoin con gen))))
+ (conset-add-constraint gen 'typep var type nil)))
(maybe-add-eql-var-var-constraint var (set-value node) gen)))))
gen)