1.0.4.6:
[sbcl.git] / src / code / target-random.lisp
index f0b740f..3dc3325 100644 (file)
@@ -69,7 +69,7 @@
 
 (defun make-random-state (&optional state)
   #!+sb-doc
-  "Make a random state object. If STATE is not supplied, return a copy
+  "Make a RANDOM-STATE object. If STATE is not supplied, return a copy
   of the default random state. If STATE is a random state, then return a
   copy of it. If STATE is T then return a random state generated from
   the universal time."
 (defun random-chunk (state)
   (declare (type random-state state))
   (sb!vm::random-mt19937 (random-state-state state)))
-
-#!-sb-fluid (declaim (inline big-random-chunk))
-(defun big-random-chunk (state)
-  (declare (type random-state state))
-  (logand (1- (expt 2 64))
-          (logior (ash (random-chunk state) 32)
-                  (random-chunk state))))
 \f
 ;;; Handle the single or double float case of RANDOM. We generate a
 ;;; float between 0.0 and 1.0 by clobbering the significand of 1.0
   (* arg
      (- (make-single-float
          (dpb (ash (random-chunk state)
-                   (- sb!vm:single-float-digits random-chunk-length))
+                   (- sb!vm:single-float-digits n-random-chunk-bits))
               sb!vm:single-float-significand-byte
               (single-float-bits 1.0)))
         1.0)))
   (* arg
      (- (sb!impl::make-double-float
          (dpb (ash (random-chunk state)
-                   (- sb!vm:double-float-digits random-chunk-length 32))
+                   (- sb!vm:double-float-digits n-random-chunk-bits 32))
               sb!vm:double-float-significand-byte
               (sb!impl::double-float-high-bits 1d0))
          (random-chunk state))
     (* arg
        (- (sb!impl::make-double-float
            (dpb (ash (sb!vm::random-mt19937 state-vector)
-                     (- sb!vm:double-float-digits random-chunk-length
+                     (- sb!vm:double-float-digits n-random-chunk-bits
                         sb!vm:n-word-bits))
                 sb!vm:double-float-significand-byte
                 (sb!impl::double-float-high-bits 1d0))
 \f
 ;;;; random integers
 
-(defun %random-integer (arg state)
-  (declare (type (integer 1) arg) (type random-state state))
-  (let ((shift (- random-chunk-length random-integer-overlap)))
-    (do ((bits (random-chunk state)
-               (logxor (ash bits shift) (random-chunk state)))
-         (count (+ (integer-length arg)
-                   (- random-integer-extra-bits shift))
-                (- count shift)))
-        ((minusp count)
-         (rem bits arg))
-      (declare (fixnum count)))))
+;;; a bitmask M wide enough that (= (LOGAND INCLUSIVE-LIMIT M) INCLUSIVE-LIMIT)
+(declaim (inline %inclusive-random-integer-mask))
+(defun %inclusive-random-integer-mask (inclusive-limit)
+  (1- (ash 1 (integer-length inclusive-limit))))
+
+;;; Transform a uniform sample from an at-least-as-large range into a
+;;; random sample in [0,INCLUSIVE-LIMIT] range by throwing away
+;;; too-big samples.
+;;;
+;;; Up through sbcl-1.0.4, the (RANDOM INTEGER) worked by taking (MOD
+;;; RAW-MERSENNE-OUTPUT INTEGER). That introduces enough bias that it
+;;; is unsuitable for some calculations (like the Metropolis Monte
+;;; Carlo simulations that I, WHN, worked on in grad school): in the
+;;; sbcl-1.0.4, the expectation value of a sample was (in the worst
+;;; part of the range) more than 1.0001 times the ideal expectation
+;;; value. Perhaps that was even ANSI-conformant, because ANSI says only
+;;;   An approximately uniform choice distribution is used. If
+;;;   LIMIT is an integer, each of the possible results occurs
+;;;   with (approximate) probability 1/LIMIT.
+;;; But I (WHN again) said "yuck," so these days we try to get a
+;;; truly uniform distribution by translating RAW-MERSENNE-OUTPUT to
+;;; our output using the second method recommended by
+;;; <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/efaq.html>:
+;;;   In the rare case that the rounding-off error becomes a problem,
+;;;   obtain minimum integer n such that N<=2^n, generate integer
+;;;   random numbers, take the most significant n bits, and discard
+;;;   those more than or equal to N.
+;;; (The first method recommended there differs from the sbcl-1.0.4
+;;; method: the recommended method gives slightly different weights
+;;; to different integers, but distributes the overweighted integers
+;;; evenly across the range of outputs so that any skew would be
+;;; of order (/ MOST-POSITIVE-MACHINE-WORD), rather than the (/ 10000)
+;;; or so achieved by sbcl-1.0.4. That skew would probably be
+;;; acceptable --- it seems to be exactly the kind of deviation that
+;;; might have been anticipated in the ANSI CL standard. However, that
+;;; recommended calculation involves multiplication and division of
+;;; two-machine-word bignums, which is hard for us to do efficiently
+;;; here. Without special low-level hacking to support such short
+;;; bignums without consing, the accept-reject solution is not only
+;;; more exact, but also likely more efficient.)
+(defmacro %inclusive-random-integer-accept-reject (raw-mersenne-output-expr
+                                                   inclusive-limit)
+  (with-unique-names (raw-mersenne-output inclusive-limit-once)
+  `(loop
+    with ,inclusive-limit-once = ,inclusive-limit
+    for ,raw-mersenne-output = ,raw-mersenne-output-expr
+    until (<= ,raw-mersenne-output ,inclusive-limit-once)
+    finally (return ,raw-mersenne-output))))
+
+;;; an UNSIGNED-BYTE of N-CHUNKS chunks sampled from the Mersenne twister
+(declaim (inline %random-chunks))
+(defun %random-chunks (n-chunks state)
+  ;; KLUDGE: This algorithm will cons O(N^2) words when constructing
+  ;; an N-word result. To do better should be fundamentally easy, we
+  ;; just need to do some low-level hack preallocating the bignum and
+  ;; writing its words one by one.
+  ;;
+  ;; Note: The old sbcl-1.0.4 code did its analogous operation using a
+  ;; mysterious RANDOM-INTEGER-OVERLAP parameter, "the amount that we
+  ;; overlap chunks by when building a large integer to make up for
+  ;; the loss of randomness in the low bits." No such thing is called
+  ;; for on
+  ;;   <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/efaq.html>:
+  ;; they say there that it's OK just to concatenate words of twister
+  ;; output with no overlap. Thus, crossing our fingers and hoping that
+  ;; the previous RNG author didn't have some subtle reason to need
+  ;; RANDOM-INTEGER-OVERLAP that we know not of, we just concatenate
+  ;; chunks.
+  (loop repeat n-chunks
+        for result = 0 then (logior (ash result n-random-chunk-bits)
+                                    (random-chunk state))
+        finally (return result)))
+
+;;; an UNSIGNED-BYTE of N-BITS bits sampled from the Mersenne twister
+(declaim (inline %random-bits))
+(defun %random-bits (n-bits state)
+  (multiple-value-bind (n-full-chunks n-extra-bits)
+      (floor n-bits n-random-chunk-bits)
+    (let ((full-chunks (%random-chunks n-full-chunks state)))
+      (if (zerop n-extra-bits)
+          full-chunks
+          (logior full-chunks
+                  (ash (logand (random-chunk state)
+                               (1- (ash 1 n-extra-bits)))
+                       (* n-full-chunks n-random-chunk-bits)))))))
+
+;;; the guts of (RANDOM (1+ INCLUSIVE-LIMIT))
+(defun %inclusive-random-integer (inclusive-limit state)
+  (declare (optimize speed (space 1))) ; to ensure DEFTRANSFORM is enabled
+  (%inclusive-random-integer inclusive-limit state))
+
+;;; the guts of RANDOM for the known-to-return-FIXNUM case
+;;;
+;;; We use INCLUSIVE-LIMIT instead of the (exclusive) LIMIT of RANDOM,
+;;; because we want it to be a FIXNUM even for the possibly-common
+;;; case of (RANDOM (1+ MOST-POSITIVE-FIXNUM)). (That case is what
+;;; one might use for generating random hash values, e.g.)
+;;; It also turns out to be just what's needed for INTEGER-LENGTH.
+(declaim (maybe-inline %inclusive-random-fixnum))
+(defun %inclusive-random-fixnum (inclusive-limit state)
+  (declare (type (and fixnum unsigned-byte) inclusive-limit))
+  (aver (<= inclusive-limit most-positive-random-chunk))
+  (let (;; If this calculation needs to be optimized further, a good
+        ;; start might be a DEFTRANSFORM which picks off the case of
+        ;; constant LIMIT and precomputes the MASK at compile time.
+        (mask (%inclusive-random-integer-mask inclusive-limit)))
+    (%inclusive-random-integer-accept-reject (logand (random-chunk state) mask)
+                                             inclusive-limit)))
+\f
+;;;; outer, dynamically-typed interface
 
 (defun random (arg &optional (state *random-state*))
-  (declare (inline %random-single-float %random-double-float
+  (declare (inline %random-single-float
+                   %random-double-float
                    #!+long-float %random-long-float))
   (cond
-    ((and (fixnump arg) (<= arg random-fixnum-max) (> arg 0))
-     (rem (random-chunk state) arg))
+    ((and (fixnump arg) (plusp arg))
+     (locally
+         ;; The choice to inline this very common case of
+         ;; %INCLUSIVE-RANDOM-FIXNUM and not the less-common call
+         ;; below was just a guess (by WHN 2007-03-27), not based on
+         ;; benchmarking or anything.
+         (declare (inline %inclusive-random-fixnum))
+       (%inclusive-random-fixnum (1- arg) state)))
     ((and (typep arg 'single-float) (> arg 0.0f0))
      (%random-single-float arg state))
     ((and (typep arg 'double-float) (> arg 0.0d0))
     #!+long-float
     ((and (typep arg 'long-float) (> arg 0.0l0))
      (%random-long-float arg state))
-    ((and (integerp arg) (> arg 0))
-     (%random-integer arg state))
+    ((and (integerp arg) (plusp arg))
+     (if (= arg (1+ most-positive-fixnum))
+         (%inclusive-random-fixnum most-positive-fixnum state)
+         (%inclusive-random-integer (1- arg) state)))
     (t
      (error 'simple-type-error
             :expected-type '(or (integer 1) (float (0))) :datum arg